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Abstract

This appendix provides extra material on two topics. First, we provide an asymptotic theory, which

shows that statistics constructed with the cluster jackknife variance estimator are asymptotic normal.

Second, we provide details concerning our implementation of the wild bootstrap in the numerical sim-

ulation.

1 Asymptotic Theory

The model is the linear regression with clustered errors

Y g = X gβ+eg . (1)

The finite sample theory in the main text treated the regressors as fixed. For our asymptotic theory we

instead assume that (Y g , X g ) are jointly random. Define the unconditional covariance matrix compo-

nents

Qn = 1

n

G∑
g=1

E
[

X ′
g X g

]
Ωn = 1

n

G∑
g=1

E
[

X ′
g eg e ′

g X g

]
V n =Q−1

n ΩnQ−1
n .

An important feature of cluster asymptotic theory is that we allow the possibility of non-standard

rates of convergence, which can arise due to within-cluster dependence and non-homogeneous cluster

sizes. Thus, we allow the possibility that the covariance matricesΩn and V n , or some sub-components

of these matrices, increase with n, rather than converge to constant matrices as they do under non-

clustered i.i.d. sampling.

We use the following conditions, which correspond to Theorem 9 of Hansen and Lee (1999), which

estalished results for test statistics constructed with the CRVE1 variance estimator. Let (Yi g , Xi g ) denote
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a single observation. Let λmin(A) and λmax(A) denote the smallest and largest eigenvalue of a Hermitian

matrix A, let ∥a∥ = (
a ′a

)1/2 denote the Euclidean norm for a vector a, and let ∥A∥ = (
λmax

(
A′A

))1/2

denote the spectral norm of a matrix A.

Assumption 1 The clusters (Y g , X g ) are mutually independent across g . For some 2 ≤ r < s <∞, C <∞,

and δ> 0,

1. E
[

X ′
g eg

]
= 0

2. max
g≤G

n2
g

n
→ 0

3. n−1
(∑G

g=1 nr
g

)2/r ≤C

4. E
∣∣Yi g

∣∣2s ≤C

5. E
∥∥Xi g

∥∥2s ≤C

6. λmin
(
Qn

)≥ δ

7. λmin (Ωn) ≥ δ.

Assumption 1.1 states that the model is a linear projection. Assumption 1.2 and 1.3 regulate the

cluster sizes ng . The assumptions allow ng to be heterogeneous and increase with n, but do not allow any

individual cluster to dominate the full sample asymptotically. Assumption 1.2 specifies that the largest

cluster size must increase at a slower rate than the square root of the total sample size. Assumption 1.3 is

non-intuitive, but is an additional restriction on the allowable heterogeneity in the cluster sample sizes.

The parameter r involves a trade-off with the moment conditions of Assumptions 1.4-1.5. Assumption

1.3 is less restrictive for large r , and more restrictive for small r . (At r = 2 it requires the cluster sizes ng

to be bounded. At r =∞ it states n−1 max
g≤G

n2
g ≤C , which is implied by Assumption 1.3 so is redundant.)

Assumptions 1.4-1.5 are moment bounds, where the number of required finite moments is 2s for some

s > r . For bounded observations we can set r = s =∞, eliminating the need for Assumption 1.3. The least

restrictive moment condition sets r = 2, which requires just over four finite moments (as is conventional

for regression asymptotic theory) but requires that the cluster sizes ng are bounded. Assumptions 1.6-1.7

state that the covariance matrix components Qn andΩn are uniformly full rank.

We now establish that the linear functions of the least squares estimator β̂ are asymptotically normal

when standardized by the jackknife covariance matrix estimator.

Theorem 1 Take model (1) under Assumption 1. Let β̂ be the least squares estimator of β, and let V̂ 5 be

the jackknife variance estimator (equation (10) of the text). For any sequence of k × q full rank matrices

Rn , (
R ′

nV̂ 5Rn
)−1/2

R ′
n

(
β̂−β)−→

d
N

(
0, I q

)
(2)

2



as n →∞. For the case q = 1 this implies

θ̂−θ
ν̂5

−→
d

N(0,1) . (3)

For the Satterthwaite adjustmnent coefficients a and K (equations (35) and (36) in the text) calculated

with Σ0
g = I ng ,

a −→
p

1 (4)

K −→
p

∞. (5)

For the Satterthwaite confidence interval and p-value (equastions (30) and (31) in the text)

P
[
θ ∈ C̃5

]−→ 1−α (6)

p −→
d

U [0,1], (7)

the latter under θ = θ0.

Equation (3) shows that the jackknife t-ratios have standard asymptotic normal distributions under

the same conditions as for CRVE t-ratios. Equation (2) is a multivariate generalization, showing that sets

of coefficient estimates are asymptotically normal, and immediately implies that jackknife Wald statistics

have standard asymptotic chi-square distributions.

Equations (4)-(7) describe the properties of the default Satterthwaite approximations under the same

conditions. Equation (4) shows that the scale adjustment converges in probability to one, and (5) shows

that the Satterthwaite degree-of-freedom K diverges to infinity, meaning that asymptotically the adjust-

ment becomes negligible, and adjusted inference reduces to conventional inference. Equations (6)-(7)

show that this implies that the Satterthwaite inference procedures produce correct inferences. Equation

(6) shows that the recommended default Satterthwaite confidence interval has asymptotically correct

coverage for any regression model satisfying Assumption 1. Similarly, equation (7) shows that the rec-

ommend default Satterthwaite p-values have asymptotically correct U [0,1] null distributions.

3



2 Proof

We start with some preliminary results. Define Q̂n = 1
n X ′X and recall the definition M g = I ng −X g

(
X ′X

)−1 X ′
g .

We first establish that ∥∥∥Q̂
−1
n

∥∥∥≤Op (1) (8)

1

n
max
g≤G

∥∥X g
∥∥2 ≤ op (1) (9)

max
g≤G

∥∥I ng −M g
∥∥= max

g≤G

∥∥∥X g
(

X ′X
)−1 X ′

g

∥∥∥= op (1) (10)

max
g≤G

∥∥∥M−1
g − I ng

∥∥∥= op (1) . (11)

By the Schwarz matrix inequality

∥∥Q−1/2
n Q̂nQ−1/2

n − I k
∥∥≤ ∥∥Q−1

n

∥∥∥∥Q̂n −Qn

∥∥≤ op (1).

The final inequality holds because Assumption 1.6 implies
∥∥Q−1

n

∥∥ ≤ δ−1 <∞ and Theorem 1 of Hansen

and Lee (2019) established
∥∥Q̂n −Qn

∥∥ = op (1). Equivalently, Q−1/2
n Q̂nQ−1/2

n −→
p

I k . By the continuous

mapping theorem we deduce Q1/2
n Q̂

−1
n Q1/2

n −→
p

I k . Using the triangle inequality, the Schwarz matrix

inequality, and
∥∥Q−1

n

∥∥≤ δ−1, ∥∥∥Q̂
−1
n

∥∥∥=
∥∥∥Q̂

−1
n −Q−1

n +Q−1
n

∥∥∥
≤

∥∥∥Q̂
−1
n −Q−1

n

∥∥∥+∥∥Q−1
n

∥∥
≤ ∥∥Q−1

n

∥∥∥∥∥Q1/2
n Q̂

−1
n Q1/2

n − I k

∥∥∥+∥∥Q−1
n

∥∥
≤Op (1).

This is (8).

Since the spectral norm is less than the Frobenius norm and ng ≤p
n for n sufficiently large by As-

sumption 1.2,
1

n

∥∥X g
∥∥2 ≤ 1

n

ng∑
i=1

∥∥Xi g
∥∥2 ≤ 1

n1/2

(
1

ng

ng∑
i=1

∥∥Xi g
∥∥2

)
. (12)

Assumption 1.5 implies that
∥∥Xi g

∥∥2r is uniformly integrable. Lemma 1 of Hansen and Lee (2019) shows

that this implies that
(
n−1

g
∑ng

i=1

∥∥Xi g
∥∥2

)r
is uniformly integrable. Theorem 9.7 of Hansen (2022) shows

that this implies maxg≤G

(
n−1

g
∑ng

i=1

∥∥Xi g
∥∥2

)
= op

(
G1/r

)
. We find that (12) is uniformly bounded by op

(
n−1/2G1/r

)≤
op (1), since G ≤ n and r ≥ 2. This establishes (9).

Using the Schwarz matrix inequality, (8), and (9),

max
g≤G

∥∥I ng −M g
∥∥= max

g≤G

∥∥∥X g
(

X ′X
)−1 X ′

g

∥∥∥≤
∥∥∥Q̂

−1
n

∥∥∥ 1

n
max
g≤G

∥∥X g
∥∥2 ≤ op (1).
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This is (10).

As I ng −M g is positive semi-definite,

max
g≤G

∥∥I ng −M g
∥∥= max

g≤G
λmax

(
I ng −M g

)= 1−min
g≤G

λmin(M g ). (13)

Thus (10) implies that ming≤G λmin(M g ) −→
p

1. One implication is that the matrices M g are asymptoti-

cally invertible, which means that the regresssion is clusterwise invertible. For the remainder of the proof

we assume that the sample size is sufficiently large so that this holds.

Equation (13) also implies that

max
g≤G

∥∥∥M−1
g − I ng

∥∥∥= max
g≤G

λmax(M−1
g − I ng )

= max
g≤G

λmax(M−1
g )−1

= 1

ming≤G λmin(M g )
−1

−→
p

0

This is (11).

Hansen and Lee (2019, Theorem 9) proved (2) for the CRVE variance estimator under Assumption

1. We establish (2) for the jackknife variance estimator by showing that the replacement of the variance

estimators is asymptotically negligible.

It will be useful to define the central component of the CRVE estimator

Ω̂n = 1

n

G∑
g=1

X ′
g êg ê ′

g X g .

We define the analog for the jackknife estimator:

Ω̃n = 1

n

G∑
g=1

X ′
g ê−g ê ′

−g X g = 1

n

G∑
g=1

X ′
g M−1

g êg ê ′
g M−1

g X g .

The second equality holds because MacKinnon, Nielsen, and Webb (2023) established that under clus-

terwise invertibility, ê−g = M−1
g êg .

Examining the proof of Theorem 9 of Hansen and Lee (2019), the key is equation (89) in their supple-

mental appendix: ∥∥Ω−1/2
n

(
Ω̂n − I k

)
Ω−1/2

n

∥∥−→
p

0. (14)

The analog needed for the jackknife estimator is to demonstrate that

∥∥Ω−1/2
n

(
Ω̃n − I k

)
Ω−1/2

n

∥∥−→
p

0. (15)

Our goal is therefore to demonstrate (15), which is sufficient to establish (2).
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Using the triangle inequality

∥∥Ω−1/2
n

(
Ω̃n − I k

)
Ω−1/2

n

∥∥≤ ∥∥Ω−1/2
n

(
Ω̃n −Ω̂n

)
Ω−1/2

n

∥∥+∥∥Ω−1/2
n

(
Ω̂n − I k

)
Ω−1/2

n

∥∥
= ∥∥Ω−1/2

n

(
Ω̃n −Ω̂n

)
Ω−1/2

n

∥∥+op (1)

where the final equality is (14). It is therefore sufficient to show that

∥∥Ω−1/2
n

(
Ω̃n −Ω̂n

)
Ω−1/2

n

∥∥−→
p

0. (16)

Define P g = M−1
g − I ng , which satisfies maxg≤G

∥∥P g
∥∥= op (1) by (11). Using the Triangle and Schwarz

matrix inequalities,

∥∥Ω−1/2
n

(
Ω̃n −Ω̂n

)
Ω−1/2

n

∥∥=
∥∥∥∥∥Ω−1/2

n

(
1

n

G∑
g=1

X ′
g P g êg ê ′

g P g X g + 1

n

G∑
g=1

X ′
g P g êg ê ′

g X g + 1

n

G∑
g=1

X ′
g êg ê ′

g P g X g

)
Ω−1/2

n

∥∥∥∥∥
≤

∥∥∥∥∥ 1

n

G∑
g=1
Ω−1/2

n X ′
g P g êg ê ′

g P g X gΩ
−1/2
n

∥∥∥∥∥+2

∥∥∥∥∥ 1

n

G∑
g=1
Ω−1/2

n X ′
g P g êg ê ′

g X gΩ
−1/2
n

∥∥∥∥∥
≤ 1

n

G∑
g=1

∥∥∥Ω−1/2
n X ′

g êg

∥∥∥2
op (1)

≤ op (1).

The fact n−1 ∑G
g=1

∥∥∥Ω−1/2
n X ′

g êg

∥∥∥2 = Op (1) follows implicitly from Hansen and Lee’s proof of (14). This is

(16), which completes the proof (2).

Theorem 7 in the main text established (4) and (5) under (8)-(9).

We next establish (6). Given the definition of C̃5 and results (3), (4), and (5),

P
[
θ ∈ C̃5

]=P[∣∣∣∣∣ θ̂−θν̂5

∣∣∣∣∣≤ t 1−α/2
K

a

]
→P

[|N(0,1)| ≤ t 1−α/2
∞

]
= 1−α

which is (6).

Similarly, given the definition of the p-value p,

p = 2

(
1−G

(
a

∣∣∣∣∣ θ̂−θν̂5

∣∣∣∣∣ ,K

))
→ 2(1−Φ (|N(0,1)|)) ∼U [0,1]

which is (7).

This completes the proof. ■
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3 Wild Bootstrap

We describe here the details of our implementation of the wild bootstrap with jackknife standard

errors, as used in the numerical simulation. Our implementation is modeled on MacKinnon (2023) who

describes a fast wild bootstrap implementation with CRVE1 standard errors.

It is useful to describe the algorithm first for a fixed value of the parameter θ, and then discuss how

this is used to (separately) calculate p-values and confidence intervals. Define ν2
0 = R ′ (X ′X

)−1 R and

Z g = X g
(

X ′X
)−1 R. Let β̃= β̂− (

X ′X
)−1 Rθ̂/ν2

0 denote the constrained least squares estimator subject to

θ̃ = R ′β̃= 0. Let ẽg = Y g −X g β̃= êg +Z g θ̂/ν2
0 denote the associated cluster-level residual. For given θ, let

β̃(θ) = β̃+ (
X ′X

)−1 Rθ/ν2
0 denote the constrained least squares estimator subject to θ̃(θ) = R ′β̃ = θ. Let

ẽg (θ) = Y g −X g β̃(θ) = ẽg −Z gθ/ν2
0 denote the associated cluster-level residual.

For each bootstrap draw we simulate a G ×1 vectorφ∼ N(0, I G ) with g th element φg . The bootstrap

dependent variable equals Y ∗
g = ẽg (θ)φg . The bootstrap version of θ̂ is

θ̂∗ = R ′ (X ′X
)−1 (

X ′Y ∗)= G∑
g=1

Z ′
g ẽg (θ)φg = a ′

0φ−a ′
1φθ

where a0 and a1 are G×1 with g th elements a0g = Z ′
g ẽg and a1g = Z ′

g Z g /ν2
0, respectively. The bootstrap

version of θ̂−g − θ̂ is

θ̂∗−g − θ̂∗ = R ′
(

X ′X −X ′
g X g

)− ( ∑
h ̸=g

X ′
hY ∗

h

)
− θ̂∗

= R ′
(

X ′X −X ′
g X g

)− ( ∑
h ̸=g

X ′
h ẽh(θ)φh

)
− (

a ′
0φ−a ′

1φθ
)

= (
d 0g −a0

)′
φ− (

d 1g −a1
)′
φθ

where d 0g and d 1g are G×1. Their g th elements are 0, and for h ̸= g their hth elements are R ′
(

X ′X −X ′
g X g

)−
X ′

h ẽh

and R ′
(

X ′X −X ′
g X g

)−
X ′

h Z h/ν2
0, respectively. Stacking, we obtain the G×1 vector θ̂∗−− θ̂∗ =C ′

0φ−C ′
1φθ

where C 0 and C 1 are G ×G with g th column d 0g −a0 and d 1g −a1, respectively.

The bootstrap version of ν̂2
5 is

ν̂2∗
5 =

G∑
g=1

(
θ̂∗−g − θ̂∗

)2 =φ′C 0C ′
0φ−2φ′C 0C ′

1φθ+φ′C 1C ′
1φθ

2.

The bootstrap version of the squared t-statistic
(
θ̂−θ)2

/ν̂2
5 is

T ∗ = θ̂∗2

ν̂2∗
5

=
(
a ′

0φ−a ′
1φθ

)2

φ′C 0C ′
0φ−2φ′C 0C ′

1φθ+φ′C 1C ′
1φθ

2 .

The bootstrap repeats this calculation for B independent draws of the random vectorφ. As described

by MacKinnon (2023), it is computationally efficient to calculate the vectors and matrices a0, a1, C 0,
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and C 1 before making the draws φ and calculating the bootstrap statistics T ∗. This way, calculation of

T ∗ only involves a small number of basic matrix operations. It is also useful to observe that given the

statistics a ′
0φ, a ′

1φ, φ′C 0C ′
0φ, φ′C 0C ′

1φ, and φ′C 1C ′
1φ the bootstrap statistic T ∗ is a simple function of

θ (a ratio of quadratics). This is a useful insight for confidence interval construction, where T ∗ will need

to be iteratively re-calculated for many values of θ.

For any θ, the bootstrap 1−α critical value c(θ) is the 1−α quantile of the empirical distribution of

the bootstrap statistics T ∗ across the bootstrap drawsφ.

A hypothesis θ = θ0 is accepted if
(
θ̂−θ0

)2
/ν̂2

5 ≤ c(θ0) and rejected otherwise. This is how we calculate

the coverage probabilities in the simulation.

The 1−α level wild bootstrap confidence interval for θ is the set of values which are accepted by the

bootstrap test; equivalently, the set of θ which satisfy
(
θ̂−θ)2

/ν̂2
5 ≤ c(θ). Let θ j be the set of solutions to(

θ̂−θ)2
/ν̂2

5 = c(θ). There are at least two solutions, satisfying θ1 ≤ θ̂ ≤ θ2, but is possible that there are

more. We define the confidence interval as [θL ,θU ] with θL = minθ j and θU = max j θ.

For the confidence interval length results presented in the simulation we calculate the confidence

interval endpoints as follows. We take the endpoints of the Satterthwaite intervals as initial values, thus

θL = θ̂− t 1−α/2
K ν̂5/a and θU = θ̂+ t 1−α/2

K ν̂5/a, then search for solutions to
(
θ̂−θ)2

/ν̂2
5 = c(θ) using a lo-

cal grid search to find values which bracket the solution, and then apply the bisection algorithm. This

locates the unique endpoint solution when it exists, and otherwise locates the solution closest to the

Satterthwaite interval.
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