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Abstract. A distribution theory is developed for least-squares estimates of the threshold in Threshold

Autoregressive (TAR) models. We find that if we let the threshold effect (the difference in slopes between the two

regimes) become small as the sample size increases, then the asymptotic distribution of the threshold estimator

is free of nuisance parameters (up to scale). Similarly, the likelihood ratio statistic for testing hypotheses

concerning the unknown threshold is asymptotically free of nuisance parameters. These asymptotic

distributions are nonstandard, but are available in closed form, so critical values are readily available. To

illustrate this theory, we report an application to the U.S. unemployment rate. We find statistically significant

threshold effects.
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1 Introduction

Threshold Autoregressive (TAR) models are quite popular in the nonlinear time-series literature. This
popularity is due to the fact that they are relatively simple to specify, estimate, and interpret, at least in
comparison with many other nonlinear time-series models. Despite this popularity, there is only a small
literature studying the sampling properties of the estimators and test statistics associated with TAR models.
Our goal in this paper is to propose a distribution theory for the estimate of the threshold which can be used
to form asymptotic confidence intervals for the model parameters.

The idea of approximating a general nonlinear autoregressive structure by a threshold autoregression with
a small number of regimes is probably due to Tong. See Tong (1983) for an early review of this approach, and
Tong (1990) for a more mature view. If the discontinuity of the threshold is replaced by a smooth transition
function, the TAR model can be generalized to the Smooth Transition Autoregressive (STAR) model. See, for
example, Chan and Tong (1986), Granger and Teräsvirta (1993), and Teräsvirta, Tjostheim, and Granger (1994).

Two difficult statistical issues arise in connection with these models. First, conventional tests of the null of a
linear autoregressive model against the TAR alternative have nonstandard distributions, as the threshold
parameter is not identified under the null of linearity. This problem was pointed out by Davies (1977, 1987);
see also Andrews and Ploberger (1994) and Andrews (1994). To circumvent this problem, Luukkonen,
Saikkonen, and Teräsvirta (1988) proposed a Lagrange Multiplier (LM) test for a Taylor-series approximation
to the regression function under the STAR alternative. Chan (1990a) (see also Chan [1991] and Chan and Tong
[1990]) found an empirical process representation for the asymptotic distribution of the likelihood ratio test.
Hansen (1996a) showed that a bootstrap method replicates this asymptotic distribution.

The second difficult statistical issue associated with TAR models is the sampling distribution of the threshold
estimate. Chan (1993) showed that the least-squares (LS) estimator is rate-n consistent, and found an empirical
process representation for the limiting distribution. Since the latter depends on a host of nuisance parameters,
it is not useful as a basis for forming confidence intervals for the unknown threshold. In contrast, our theory
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develops an alternative approximation to the sampling distribution of the threshold estimator, based on the
empirical process results of Hansen (1996b), who studied general threshold models. Translated into the TAR
context, our results show that if we let the threshold effect (the difference between the regression slopes in
the two regimes) diminish as the sample size diverges, then we can approximate the sampling distribution of
the threshold estimate by an asymptotic distribution that is free of nuisance parameters (other than scale).
Similarly, we obtain the limiting distribution of the likelihood ratio statistic for tests on hypotheses concerning
the threshold, which we find is completely free of nuisance parameters. The latter gives a computationally
convenient way to construct confidence intervals for the threshold: simply plot the likelihood ratio as a
function of the threshold, draw in the critical value associated with the desired confidence level, and mark off
the values of the threshold with likelihood ratios that fall below the critical value.

This is the first statistical technique that allows confidence-interval construction for threshold estimates in
TAR models. The theory of Chan (1993) has been used only to justify the super-consistency of threshold
estimates, and it is unclear if his theory could be used to construct confidence intervals.

Our theory is partially derived from an analogous theory for the sampling distribution of the estimate of
change points. For the latter, see Picard (1985), Yao (1987), Dümbgen (1991), and Bai (forthcoming).

We are also interested in approximations to the sampling distributions of the other regression parameter
estimates. Since sampling error in the estimated threshold is likely to affect the sampling distribution of the
regression estimates in finite samples, we propose a simple procedure for forming confidence intervals that
appears to produce superior finite sample approximations compared to the conventional approach.

To make our recommendations concrete, we walk through a simple empirical exercise concerning the U.S.
unemployment rate. We find strong evidence for a TAR model using average unemployment changes as the
threshold variable, and estimate the threshold to be near zero, meaning that the autoregressive structure
changes in expansions (declining unemployment) relative to contractions (increasing unemployment).

The remainder of the paper is organized as follows. The next section introduces the model and estimation
methods. Tests of the null of no threshold effect are reviewed. Section 3 describes the main asymptotic theory
for the threshold estimator. Section 4 is concerned with confidence interval construction. We introduce
methods for forming confidence intervals for the threshold parameter and the regression parameters, and we
discuss corrections in the presence of heteroskedasticity. Section 5 contains the unemployment rate
application. The final section contains a brief conclusion, and the proof of the theorem is contained in the
Appendix.

A GAUSS program that replicates the empirical work reported in this paper is available on request from the
author, or can be downloaded from his WWW homepage.

2 Preliminaries

2.1 Model
The observed data is (y1, . . . , yn), with initial conditions (y0, y−1, . . . , y−p+1). A two-regime Threshold
Autoregressive (TAR) model takes the form

yt =
(
α0 + α1yt−1 + · · · + αp yt−p

)
1
(
qt−1 ≤ γ

)
+ (β0 + β1yt−1 + · · · + βp yt−p

)
1
(
qt−1 > γ

)+ et (1)

where 1(·) denotes the indicator function, and qt−1 = q(yt−1, . . . , yt−p) is a known function of the data. The
autoregressive order is p ≥ 1, and the threshold parameter is γ . The parameters αj are the autoregressive
slopes when qt−1 ≤ γ , and βj are the slopes when qt−1 > γ . The error et is assumed to be a Martingale
difference sequence with respect to the past history of yt . In principle, we would like to allow et to be
conditionally heteroskedastic, but for the formal theory we will assume that et is iid (0, σ 2).

Two alternative representations of Equation (1) will be useful in our exposition. Let

xt =
(

1 yt−1 · · · yt−p

)′
and

xt (γ ) =
(

x ′t1
(
qt−1 ≤ γ

)
x ′t1

(
qt−1 > γ

) )′
,

so that Equation (1) can be written as either

yt = x ′tα1
(
qt−1 ≤ γ

)+ x ′tβ1
(
qt−1 > γ

)+ et (2)
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or

yt = xt (γ )
′θ + et , (3)

where θ = (α′ β ′)′.

2.2 Estimation
The parameters of interest are θ and γ . Since Equation (3) is a regression equation (albeit nonlinear in
parameters), an appropriate estimation method is least squares. Under the auxiliary assumption that et is iid
N (0, σ 2), LS is equivalent to the maximum likelihood estimation. Since the regression equation is nonlinear
and discontinuous, the easiest method to obtain the LS estimates is to use sequential conditional LS. For a
given value of γ , the LS estimate of θ is

θ̂ (γ ) =
(

n∑
t=1

xt (γ )xt (γ )
′
)−1 ( n∑

t=1

xt (γ )yt

)
,

with residuals êt (γ ) = yt − xt (γ )
′θ̂ (γ ), and residual variance

σ̂ 2
n(γ ) =

1

n

n∑
t=1

êt (γ )
2. (4)

The LS estimate of γ is the value that minimizes Equation (4):

γ̂ = argmin
γ∈0

σ̂ 2
n(γ ), (5)

where 0 = [γ , γ ].
The minimization problem of Equation (5) can be solved by direct search. Observe that the residual

variance σ̂ 2
n(γ ) only takes on at most n distinct values as γ is varied, and these values correspond to σ̂ 2

n(qt−1),
t = 1, . . . ,n. Thus, to find the LS estimates of Equation (5), we employ the following algorithm. Run Ordinary
Least Squares (OLS) regressions of the form of Equation (3), setting γ = qt−1 for each qt−1 ∈ 0. (This amounts
to slightly less than n regressions.) For each regression, calculate the residual variance σ̂ 2

n(γ ). Pick the value
of γ that corresponds to the smallest variance. This can be expressed as

γ̂ = argmin
qt−1∈0

σ̂ 2
n(qt−1). (6)

The LS estimates of θ are then found as θ̂ = θ̂ (γ̂ ). Similarly, the LS residuals are êt = yt − xt (γ̂ )
′θ̂ , with sample

variance σ̂ 2
n = σ̂ 2

n(γ̂ ).

2.3 Estimating the Delay Parameter
In the Self-Exciting Threshold Autoregressive (SETAR) model, the threshold variable is qt−1 = yt−d for some
integer d ∈ [1,d ]. The integer d is called the delay lag. Typically, d is unknown so must be estimated. The
least-squares principle allows d to be estimated along with the other parameters. The estimation problem of
Equation (6) is augmented to include a search over d , so instead of n regressions, the search method requires
approximately nd regressions. Since the parameter space for d is discrete, the LS estimate d̂ is super-
consistent, and for the purpose of inference on the other parameters we can act as if d is known with
certainty. This is the approach taken in the following applications.

2.4 Testing for Threshold Autoregression
An important question is whether the TAR model of Equation (1) is statistically significant relative to a linear
AR(p). The relevant null hypothesis is H0 : α = β. As is well known, this testing problem is tainted by the
difficulty that the threshold γ is not identified under H0. We review in this section the testing methodology
suggested by Hansen (1996a).

If the errors are iid, from the theories of Davies (1977, 1987) and Andrews-Ploberger (1994), a test with
near-optimal power against alternatives distant from the null hypothesis is the standard F-statistic

Fn = n

(
σ̃ 2

n − σ̂ 2
n

σ̂ 2
n

)
,
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where

σ̃ 2
n =

1

n

n∑
t=1

(
yt − x ′t α̃

)2
,

and

α̃ =
(

n∑
t=1

xt x
′
t

)−1 ( n∑
t=1

xt yt

)

is the OLS estimate of α under the assumption that α = β. Since Fn is a monotonic function of σ̂ 2
n , it is easy to

see that

Fn = sup
γ∈0

Fn(γ )

where

Fn(γ ) = n

(
σ̃ 2

n − σ̂ 2
n(γ )

σ̂ 2
n(γ )

)
is the pointwise F -statistic against the alternative H1 : α 6= β when γ is known.

Since γ is not identified, the asymptotic distribution of Fn is not χ2. Hansen (1996a) shows that the
asymptotic distribution may be approximated by the following bootstrap procedure. Let u∗t , t = 1, . . . ,n be iid
N (0, 1) random draws, and set y∗t = u∗t . Using the observations xt , t = 1, . . . ,n, regress y∗t on xt to obtain the
residual variance σ̃ ∗2n , on xt (γ ) to obtain the residual variance σ̂ ∗2n (γ ), and form
F ∗n (γ ) = n

(
σ̃ ∗2n − σ̂ ∗2n (γ )

)
/σ̂ ∗2n (γ ) and F ∗n = supγ∈0 F ∗n (γ ). Hansen (1996a) shows that the distribution of F ∗n

converges weakly in probability to the null distribution of Fn under local alternatives for β, so that repeated
(bootstrap) draws from F ∗n may be used to approximate the asymptotic null distribution of Fn. The bootstrap
approximation to the asymptotic p-value of the test is formed by counting the percentage of bootstrap
samples for which F ∗n exceeds the observed Fn.

If et is conditionally heteroskedastic, it is necessary to replace the F -statistic Fn(γ ) with a
heteroskedasticity-consistent Wald or Lagrange multiplier test. For example, setting R = (I − I ),
Mn(γ ) =

∑
xt (γ )xt (γ )

′, and Vn(γ ) =
∑

xt (γ )xt (γ )
′ê2

t , then the pointwise Wald statistic is

Wn(γ ) =
(
R θ̂ (γ )

)′ [
R
(
Mn(γ )

−1Vn(γ )Mn(γ )
−1
)

R ′
]−1

R θ̂ (γ ),

and the appropriate test of H0 is

Wn = sup
γ∈0

Wn(γ ).

To obtain critical values, bootstrap the data as before, but instead set y∗t = êt u∗t . Hansen (1996a) shows that
this procedure produces the asymptotically correct null distribution for this class of models.

3 Asymptotic Distribution

We will explicitly derive our distribution theory for the Self-Exciting Threshold Autoregressive model, which is
the special case where qt−1 = yt−d for some integer d ∈ [1, p]. This is not essential to the main theory, but is
helpful in focusing our derivations.

Assumption 1. For some δ > 0,

1. et is iid, E (et ) = 0, E
(
e2

t

) = σ 2 <∞, E |et |2+δ <∞, and et has a density function f (·) that is continuous
and positive everywhere on R;

2.
∑p

j=1

∣∣αj

∣∣ < 1,
∑p

j=1

∣∣βj

∣∣ < 1;
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3. One of the following inequalities holds: either (α0 − β0)+ (αd − βd ) γ 6= 0, or αj 6= βj for some j 6= 0,d.

In this assumption, Point 1 is standard. Point 2 is sufficient to ensure that yt is geometrically ergodic, which
is necessary for our theory, and Point 3 rules out a degenerate case. Let

D = E
(
xt x
′
t | qt−1 = γ0

)
, (7)

λn = n(α − β)′D(α − β) f (γ0),

and

LRn(γ ) = n

(
σ̂ 2

n(γ )− σ̂ 2
n(γ̂ )

σ̂ 2
n(γ̂ )

)
.

Note that LRn(γ0) is the likelihood ratio (or F ) statistic to test the hypothesis H0 : γ = γ0. The following result
is proved in the Appendix.

Theorem 1. If λn →∞ yet λn/n→ 0 as n→∞, then

1. λn(γ̂ − γ0)→d σ
2T ,

2. LRn(γ0)→d ξ ,

where

T = argmax
s∈R

[
W (s)− 1

2
|s|
]
,

ξ = max
s∈R

[
2W (s)− |s|] ,

and

W (ν) =
 W1(−ν), ν < 0

0 ν = 0
W2(ν) ν > 0

,

and W1(ν) and W2(ν) are two independent standard Brownian motions on [0,∞).
The distribution functions for T and ξ are available in closed form. First, for x ≥ 0,

P(T ≤ x) = 1+
√

x

2π
exp

(
−x

8

)
+ 3

2
exp (x)8

(
−3
√

x

2

)
−
(

x + 5

2

)
8

(
−
√

x

2

)
,

while for x < 0, P(T ≤ x) = 1− P(T ≤ −x). The density function of this distribution is plotted in Figure 1.
Second,

P(ξ ≤ x) = (1− e−x/2
)2
.

Selected values of P(|T | ≤ x) and P(ξ ≤ x) can be found in Table 1.

Table 1
Asymptotic Critical Values

.80 .85 .90 .925 .95 .975 .99

P(|T | ≤ x) 4.70 5.89 7.69 9.04 11.04 14.66 19.77
P(ξ ≤ x) 4.50 5.10 5.94 6.53 7.35 8.75 10.59
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Figure 1
Asymptotic density of the threshold estimate.

Table 2
Confidence Interval Coverage for γ at 10% Level

Γ̂ Γ̂
c

β0= .1 .2 .3 .4 .5 .6 .1 .2 .3 .4 .5 .6

n =50 .15 .14 .13 .17 .14 .15 .08 .09 .07 .11 .10 .11
n =100 .22 .20 .21 .19 .15 .16 .09 .08 .08 .08 .07 .09
n =250 .29 .24 .21 .20 .17 .13 .08 .07 .09 .08 .08 .07
n =500 .35 .31 .20 .16 .12 .11 .08 .09 .08 .07 .07 .07
n =1000 .38 .24 .24 .11 .09 .08 .10 .09 .08 .06 .06 .05

4 Confidence Intervals and Testing

4.1 Threshold Parameter
To construct asymptotically valid confidence intervals for γ , Hansen (1996b) recommends inverting the
likelihood ratio statistic LRn(γ ). Let cξ (β) be the β-level critical value for ξ from the second row of Table 1. Set

0̂ = {γ : LRn(γ ) ≤ cξ (β)
}
. (8)

Theorem 1, part 2, shows that P(γ0 ∈ 0̂)→ β, so 0̂ is an asymptotically valid β-level confidence set for γ . A
graphical method to find 0̂ is to plot the likelihood ratio LRn(γ ) against γ , and draw a flat line at cξ (β). (Note
that the likelihood ratio is identically zero at γ = γ̂ .) Equivalently, one may plot the residual variance σ̂ 2

n(γ )

against γ , and draw a flat line at σ̂ 2
n

(
1+ cξ (β)/n

)
.

The fact that the region 0̂ may be disjoint may be unsatisfactory in practice. A more conservative procedure
is to define the convexified region 0̂c = [γ̂1, γ̂2] where γ̂1 = minγ 0̂ and γ̂2 = maxγ 0̂.

To investigate the accuracy of our asymptotic approximations in finite samples, we report a simple Monte
Carlo experiment. The model is a SETAR of the form of Equation (1) with p = 1, qt−1 = yt−1, and ei iid
N (0, 1). We fixed α0 = 0, β1 = 0, γ = 0, and varied α1 among −.3, .3, 0, and .6 (to assess sensitivity to serial
correlation), β0 from .1 to .6 (to assess sensitivity to the strength of the threshold effect), and n from 50 to
1,000 (to assess sensitivity to sample size). The results were similar for the four values of α1, so we report only
the results for α1 = .6. For each parameterization, 1,000 replications were made. We report in Table 2 the
rejection frequencies of a nominal 10% size test of H0 : γ = 0. The first six columns show rejection rates using
the likelihood ratio region 0̂. The last six columns report rejection rates using the convexified region 0̂c .

The rejection rates for the likelihood ratio test are generally liberal, implying that the confidence region 0̂
will have true coverage rates that are less than the nominal levels. The rejection rates appear to decrease as
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the threshold effect β0 increases (except at the smallest sample size), but the size distortion does not
uniformly diminish as the sample size increases; indeed, it increases in n for the smallest value of β0. This
does not contradict our asymptotic distribution theory, for the latter is based on a delicate argument that the
threshold effect β0 decreases as n gets large. To see this in Table 2 for 0̂, note that for n ≥ 250 the rejection
rate appears to be decreasing monotonically as β0 increases. Thus, there will be a unique β0(n) that yields
(exactly) the correct size.

A better approximation appears to be achieved by the convexified region 0̂c . The rejection rates are
generally close to the nominal, and only somewhat conservative when both β0 and n are large. These results
suggest that 0̂c may be successfully used to construct confidence intervals for the threshold parameter γ .

4.2 Slope Parameters
Standard asymptotic theory shows that if γ0 is known, then

√
n
(
θ̂ (γ0)− θ0

)
→d N (0, 9(γ0)) (9)

where

9(γ ) = (E (xi(γ )xi(γ )
′))−1

σ 2.

Let zβ denote the β-level critical value for the normal distribution, and ŝ(γ ) =
√
9̂(γ )/n denote a standard

error for θ̂ (γ ). Let

2̂(γ ) = θ̂ (γ )± zβ ŝ(γ ) (10)

be the β-level confidence interval for θ , conditional on γ fixed. When γ0 is known, the region 2̂(γ0) is the
natural β-level confidence region for θ .

Since γ̂ is consistent for γ0 at a fast rate, it is possible to show that the first-order asymptotic approximation
to the distribution of θ̂ (when γ is estimated) is identical to that given in Equation (9). Thus we can act as if
γ̂ = γ0, and use 2̂(γ̂ ) as an asymptotically valid confidence interval for θ . One might be skeptical that this
approach will yield good finite sample approximations in practice. In small samples, γ might not be estimated
very precisely, and this sampling error will contaminate the distribution of θ̂ . It appears desirable to use a
sampling approach that takes this uncertainty into account, and one such suggestion is made in Hansen
(1996b). For some φ < 1, construct an φ-level confidence interval for γ (as discussed in the previous section),
and for each γ in this interval, calculate a confidence interval for θ , then take the union of all these sets.
Formally, let 0̂(φ) denote a confidence interval for γ with asymptotic coverage φ. For each γ ∈ 0̂(φ),
construct the pointwise confidence region 2̂(γ ) as in Equation (10), and set

2̂φ =
⋃

γ∈0̂(φ)
2̂(γ ).

By construction, 2̂φ increases with φ in the sense that 2̂φ1 ⊂ 2̂φ2 if φ1 < φ2. Note that the smallest member of
this class is 2̂0 = 2̂(γ̂ ), the confidence interval formed by ignoring the sampling variation in γ̂ , so 2̂φ is by
construction more conservative (larger) than 2̂(γ̂ ) if φ > 0.

To assess the accuracy of these confidence regions, we report a simple Monte Carlo experiment using the
same simulation design as in the previous section. We constructed 95% confidence regions for β0 using the
conventional region 2̂(γ̂ ) = 2̂0, and using the conservative regions 2̂φ for φ = .5, .8, and .95. For the latter,
we used the likelihood ratio region1 0̂ from Equation (8) for γ . Table 3 reports the frequencies that the true
value of β0 fell outside of these confidence regions. To simplify the table, we only report the results for
β0 = .2, .4, and .6, and α1 = .6.

The coverage probabilities for the conventional region 2̂0 are quite poor, except when the sample is large
and the threshold effect is strong. The conservative regions do much better, with the region 2̂.8 appearing to

1Alternatively, the region 0̂c could be used.
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Table 3
Confidence Interval Coverage for β0 at 5% Level

Θ̂0 Θ̂.5 Θ̂.8 Θ̂.95

β0 = .2 .4 .6 .2 .4 .6 .2 .4 .6 .2 .4 .6

n = 50 .41 .39 .34 .20 .18 .17 .08 .07 .08 .02 .03 .03
n = 100 .52 .43 .34 .23 .18 .14 .08 .07 .06 .03 .02 .02
n = 250 .55 .37 .22 .22 .13 .10 .08 .05 .05 .02 .01 .01
n = 500 .50 .25 .09 .19 .11 .04 .08 .05 .02 .02 .02 .01
n = 1000 .40 .11 .04 .13 .05 .03 .06 .02 .02 .02 .02 .01

strike a reasonable balance between under- and over-rejection. It produces a confidence region that is slightly
too liberal when the threshold effect is very small or the sample size is small, and somewhat too conservative
when the threshold effect and the sample size are large. Thus, our recommendation is to use the region 2̂.8 to
construct confidence regions for the regression-slope parameters.

4.3 Heteroskedastic Errors
If the error et is not iid but a heteroskedastic Martingale difference, Assumption 1 does not hold. Hansen
(1996b) shows that if the data yt satisfy the technical requirement of absolute regularity (β-mixing), then the
basic results go through. Can we make this extension for TAR processes? The difficulty is verifying the
technical requirement of absolute regularity. It appears nearly impossible to verify such a requirement under
heteroskedasticity, so we cannot formally state a theorem. Yet it seems likely that this requirement is only an
artifact of the proof technique, so we present the results for heteroskedastic processes anyway.

The key assumption needed to extend the theory is that while et can be conditionally heteroskedastic, the
conditional heteroskedasticity cannot be regime-dependent. Specifically, the conditional expectation
E
(
e2

t | qt−1 = γ
)

must be continuous at γ0. If this condition is violated (for example, if E
(
e2

t | qt−1 ≤ γ
) = σ 2

1

and E
(
e2

t | qt−1 > γ
) = σ 2

2 with σ 2
1 6= σ 2

2 ), then different methods will be necessary than those outlined below.
With heteroskedastic errors, the asymptotic distributions depend on the new nuisance parameter

η2 = (α − β)′ V (α − β)
(α − β)′D (α − β) ,

where D is defined in Equation (7) and

V = E
(
xt x
′
t e

2
t | qt−1 = γ0

)
.

Note that in the homoskedastic case, E
(
e2

t | qt−1

) = σ 2, then V = Dσ 2, and hence η2 = σ 2. We find that
Theorem 1 is modified as follows. Result 1 is replaced by

λn(γ̂ − γ0)→d η
2T ,

and Result 2 is replaced by

LRn(γ0)→d
η2

σ 2
ξ.

Since the second result is used to construct confidence intervals for γ (and hence θ), we can modify the
approach as follows. Given an estimate η̂ of η (to be discussed shortly), define the modified likelihood ratio
sequence

LR∗n(γ ) =
σ̂ 2

n

η̂2
LRn(γ )

= n

(
σ̂ 2

n(γ )− σ̂ 2
n

η̂2

)
,

and the modified likelihood ratio confidence region

0̂∗ = {γ : LR∗n(γ ) ≤ cξ (β)
}
.
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The region 0̂∗ is an asymptotically valid β-level confidence region for γ .
To construct confidence regions for the slope parameters θ , we proceed as before. Rather than using 0̂(φ)

to construct a preliminary φ-level confidence interval for γ , we use 0̂∗(φ). To construct the pointwise
confidence regions 2̂(γ ) for θ , it is also necessary to use a heteroskedasticity-consistent covariance matrix as
in White (1980). Otherwise, the procedures are the same.

It remains to discuss the estimation of the nuisance parameter η. Let

r1t =
(
(α − β)′ xt

)2
,

r2t =
(
(α − β)′ xt

)2
e2

t ,

g1(γ ) = E
(
r1i | qt−1 = γ

)
,

and

g2(γ ) = E
(
r2i | qt−1 = γ

)
.

Then

η2 = g2(γ0)

g1(γ0)
,

and we see that this nuisance parameter equals the ratio of two conditional expectations, evaluated at the

single point γ0. Since these depend on unknown parameters, we can use r̂1t =
((
α̂ − β̂

)′
xt

)2

,

r̂2t =
((
α̂ − β̂

)′
xt

)2

ê2
t , and γ̂ in place of the true values.

To estimate the functions g1 and g2, either polynomial or kernel regression is appropriate. By OLS, a
polynomial regression fits an equation such as

r̂1t = µ̂0 + µ̂1qt−1 + µ̂2q
2
t−1 + ε̂i,

from which we set ĝ1(γ̂ ) = µ̂0 + µ̂1γ̂ + µ̂2γ̂
2. Similarly, ĝ2(γ̂ ) is found by a regression of r̂2t on qt−1 and q2

t−1.
Then the estimate of η2 is

η̂2 = ĝ2(γ̂ )

ĝ1(γ̂ )
.

The kernel estimate of η2 is

η̂2 =
∑n

t=1 K
(
γ̂−qt−1

h

)
r̂2t∑n

t=1 K
(
γ̂−qt−1

h

)
r̂1t

,

where K (x) is a kernel function such as the Epanechikov, K (x) = (3/4)(1− x2)1 (|x | ≤ 1), and h is a
bandwidth.

5 U.S. Unemployment Rate

In this section, we explore the presence of nonlinearities in the business cycle through the use of a Threshold
Autoregressive model for U.S. unemployment. We measure unemployment among males age 20 and over,
using the ratio of the Citibase files LHMU and LHMC. The sample is monthly from 1959.1 through 1996.7, and
is plotted in Figure 2. Standard unit-root tests, such as the augmented Dickey-Fuller, suggest that the
unemployment rate may have an autoregressive unit root, so we work with the first-differenced series 1yt , to
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Figure 2
Unemployment rates for men aged 20 and over.

Table 4
TAR Models for the Unemployment Rate

qt =∆yt−d

d = 1 2 3 4 5 6 7 8 9 10 11 12

SSE 12.1 12.4 12.2 12.6 12.4 12.4 12.3 12.4 12.1 12.4 12.4 12.5
p-value .053 .13 .203 .294 .269 .128 .398 .149 .002 .041 .377 .866

qt = yt−1 − yt−d

d = 2 3 4 5 6 7 8 9 10 11 12

SSE 11.8 12.0 11.9 11.8 11.9 11.9 11.9 11.9 11.8 12.0 11.7
p-value .020 .010 .141 .004 .000 .042 .007 .001 .000 .000 .000

ensure stationarity. We set p = 12, as this appears to be the minimum necessary to adequately describe the
short-run dynamics.

We consider two choices for the threshold variable qt−1. The first is a standard delay lag 1yt−d for some
d ≤ 12. The second is a long difference

y∗t−d = yt−1 − yt−d (11)

for some d ≤ 12, which measures the recent trend in the unemployment rate. Table 4 reports the model sum
of squared errors (SSE) from the various models, and the bootstrap-calculated asymptotic p-value (using 1,000
replications) for the test of the null of linearity against the particular threshold model. For the latter test, we
use a Wald statistic robust to heteroskedasticity, as suggested by White (1980). (There is evidence of residual
heteroskedasticity in all of the models we estimated.) For these and the other calculations, 0 was selected a
priori to contain 70% of the observations, trimming the bottom and top 15% quantiles of the threshold variable
to ensure that the model is well identified for all thresholds in 0. See Andrews (1993) and Hansen (1996a) for
discussion of this point.

The least-squares principle suggests we select d̂ through the minimization of the sum of squared errors. It
is clear from Table 4 that the model using the long difference yt−1 − yt−d for the threshold fits better than the
one using a simple lag value 1yt−d . The smallest squared error is found by setting d̂ = 12. This model is
highly statistically significant. Among our 1,000 bootstrap replications, there was no simulated test statistic that
exceeded the sample value, suggesting that the TAR model with threshold variable qt−1 = yt−1 − yt−12 is
significant at literally any significance level. The latter result is robust to the choice of d , as setting
qt−1 = yt−1 − yt−d for any d ≥ 5 yields a p-value less than 1%.
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Figure 3
Confidence interval construction for threshold.

Setting d̂ = 12, the LS estimate of the threshold is γ̂ = 0.302, with a 95% asymptotic confidence interval
[0.213, 0.340]. The latter was calculated using the convexified likelihood ratio approach, adjusting the
likelihood ratio for residual heteroskedasticity using a kernel estimator for the nuisance parameters with a
bandwidth selected by the plug-in method to minimize asymptotic mean-squared error. A plot of the adjusted
likelihood ratio LR∗n(γ ) is displayed in Figure 3. The values of γ where the likelihood ratio lies beneath the
dotted line yield the confidence region. We can read from this graph that the threshold estimate is quite
precise, and the confidence interval is tight.

The estimate γ̂ = .3 means that the TAR model splits the regression function into two regimes, depending
on whether the unemployment rate has been rising more than 0.3% over the past 12 months (i.e., a change in
the unemployment rate from 5.6 to 5.9). Of the 438 observations in the fitted sample, 314 observations lie in
“regime 1” where yt−1 − yt−12 < .3, and 124 lie in “regime 2” where yt−1 − yt−12 > .3. Heuristically, we can
think of regime 2 as corresponding to economic contractions.

From these point estimates, we can look back at the historical sample to examine how the TAR model splits
the observations into regimes. In Figure 4, we plot the unemployment rate over the period 1970–1996, coded
as to whether the observation falls in the estimated regime 1 (crosses) or regime 2 (triangles). To assess the
precision of the estimate of γ , we code observations for which yt−1 − yt−12 falls in the 95% confidence interval
[0.213, 0.340] as “uncertain” (solid circles). From the plot, we see how upswings in the unemployment rate are
categorized into regime 2, and downswings into regime 1. What seems surprising is how few observations fall
in the uncertain category. Interestingly, two of the these uncertain observations appeared recently (in March
and April, 1996).

Table 5 reports the parameter estimates for the TAR model. We report parameter estimates,
heteroskedasticity consistent standard errors, and the conservative 95% confidence regions calculated from an
80% first-step confidence region for γ . The most noticeable parameter shifts between the two regimes occurs
in the constant and the autoregressive coefficients at lags 1, 2, and 12. In regime 1 (constant or decreasing
unemployment), the AR(1) coefficient is slightly negative, the AR(2) coefficient is near zero, and the intercept
is near zero. The implication is that the unemployment rate will be close to a random walk, with slight
negative serial correlation and a slight negative drift. On the other hand, in regime 2 (rising unemployment),
the intercept and the AR(1) and AR(2) coefficients are all positive, implying that unemployment rate changes
will be serially correlated with a positive drift.

It is difficult to assess the dynamics implicit in point estimates from an autoregression. One method is to plot
the corresponding spectral density function. In Figure 5, we plot the spectral density functions corresponding
to the autoregressive coefficients from the two regimes, as reported in Table 5. These are not actually “spectral
densities,” but are intended to convey information about the dynamic properties in the two regimes. We find
that in regime 1, 1yt has a nearly flat spectral shape, while in regime 2, there is a large peak corresponding to
the business cycle. Interestingly, both regimes display nearly identical higher-frequency spectral shape and
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Figure 4
Classification by regime.

Table 5
TAR Estimates for Unemployment Rate

yt−1 − yt−12 ≤ 0.302

Variable Intercept yt−1 yt−2 yt−3 yt−4 yt−5 yt−6

α̂ −.018 −.186 .084 .132 .165 .070 .267
Standard error (.012) (.062) (.065) (.069) (.056) (.065) (.065)
95% confidence [−.043, .010] [−.309,−.035] [−.048, .214] [−.008, .275] [.047, .290] [−.065, .204] [−.107, .162]

Variable yt−7 yt−8 yt−9 yt−10 yt−11 yt−12

α̂ .062 .044 −.031 −.057 .091 −.136
Standard error (.062) (.055) (.059) (.060) (.059) (.058)
95% confidence [−.075, .194] [−.063, .169] [−.159, .093] [−.177, .077] [−.031, .208] [−.254,−.015]

yt−1 − yt−12 > 0.302

Variable Intercept yt−1 yt−2 yt−3 yt−4 yt−5 yt−6

β̂ .086 .241 .241 .123 −.026 −.020 −.084
Standard error (.032) (.101) (.080) (.090) (.085) (.085) (.084)
95% confidence [.013, .151] [.006, .441] [.085, .414] [−.053, .318] [−.197, .158] [−.199, .160] [−.272, .090]

Variable yt−7 yt−8 yt−9 yt−10 yt−11 yt−12

β̂ −.151 −.035 .092 .103 −.114 −.412
Standard error (.071) (.78) (.089) (.085) (.078) (.085)
95% confidence [−.361, .004] [−.202, .136] [−.087, .276] [−.064, .314] [−.267, .056] [−.608,−.217]

power. This suggests that the differences between the two regimes pertain to the low frequencies, and a
useful subject for future research is how to incorporate this restriction into estimation and testing procedures.

6 Conclusion

This paper has developed new methods of inference for Threshold Autoregressive models. We have shown
how to test for threshold effects, estimate the threshold parameters, and construct asymptotic confidence
intervals for the threshold parameters. We have used these confidence intervals to improve the
confidence-interval construction for the regression-slope parameters. An application to the U.S.
unemployment rate illustrated how these techniques may be used in practical applications.
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Figure 5
Spectral density by regime.
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Appendix: Proof of Theorem 1

We simply need to verify the following conditions, which allow us to invoke Theorems 1 and 2 of Hansen
(1996b). For some s > 1 and δ > 0,

1. yt is strictly stationary with β-mixing coefficients βm satisfying β(s−1)/2s
m = O

(
m−(1+δ)

) ;
2. E (et | Ft−1) = 0;
3. E

∣∣yt

∣∣2s
<∞ and E |et |2s <∞;

4. f (γ ), D(γ ), and Ds(γ ) = E
((

x ′t xt

)s | yt−d = γ
)

are continuous at γ = γ0;
5. f (γ0) > 0;

6. (α − β)′D (α − β) > 0;

7. P
(
yt−d ∈ 0

)
< 1.

Chan (1990b) gives conditions for the strict stationarity of TAR processes. In the discussion following
Theorem A1.11 (p. 464), he shows that under Assumption 1, Parts 1 and 2, our TAR process yt is strictly
stationary and geometrically ergodic. The latter condition implies absolute regularity with exponentially
declining coefficients, so Condition 1 is satisfied.

Condition 2 is satisfied since et is iid and mean zero. Condition 3 follows directly from the linear structure
of yt , Minkowski’s inequality, and the assumption of finite 2+ δ moments for et . Condition 4 holds because et

is iid with a continuous density. Condition 5 holds by the assumption that f (γ ) is everywhere positive.
Condition 6 is guaranteed by Assumption 1, Part 3. Since the support of et is the entire real line, similarly, the
support of yt is the entire real line. Condition 7 follows as 0 is a proper subset of R .
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