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This paper studies the asymptotic properties of instrumental variable (IV) estimates of
multivariate cointegrating regressions and allows for deterministic and stochastic regressors as
well as quite general deterministic processes in the data-generating mechanism. It is found that
IV regressions are consistent even when the instruments are stochastically independent of the
regressors. This phenomenon, which contrasts with traditional theory for stationary time series,
is a beneficial artifact of spurious regression theory whereby stochastic trends in the instruments
ensure their relevance asymptotically. Problems of inference are also addressed and some promis-
ing new theoretical results are reported. These involve a class of Wald tests which are modified
by semiparametric corrections for serial correlation and for endogeneity. The resulting test statistics
which we term fully-modified Wald tests have limiting x? distributions, thereby removing the
obstacles to inference in cointegrated systems that were presented by the nuisance parameter
dependencies in earlier work.

Some simulation results are reported which seek to explore the sampling behaviour of our
suggested procedures. These simulations compare our fully modified (semiparametric) methods
with the parametric error-correction methodology that has been extensively used in recent empirical
research and with conventional least squares regression. Both the fully-modified and error-
correction methods work well in finite samples and the sampling performance of each procedure
confirms the relevance of asymptotic distribution theory, as distinct from super-consistency results,
in discriminating between statistical methods.

1. INTRODUCTION

Economic time series are widely believed to possess certain non-classical properties which
invalidate the routine application of many standard statistical procedures. The first of
these is the joint dependence of most aggregate time series. In dealing with this complica-
tion econometricians produced the body of statistical theory that is now known as
simultaneous equations and involves methods such as instrumental variables (IV) and
full-information maximum likelihood (FIML).

The second non-classical property is non-stationarity. Until recently non-stationarity
has been dealt with in practice largely by trend elimination through pre-filtering and more
often than not it has simply been ignored in theoretical developments. The last few years
have seen major research efforts to alleviate these shortcomings. Problems of estimation
and inference in regression models with autoregressive unit roots have been examined
in some detail. In such models a complete theory of regression is well within reach. The
approach developed in earlier work (Phillips (1986a, 1987) and Phillips and Durlauf
(1986)) has proved especially fruitful. It is used in two recent papers by Park and Phillips
(1988, 1989) to construct a general asymptotic framework for multivariate regressions
with integrated processes of different orders allowing for drifts, trends and cointegration.
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Related work has been done on the subject by other researchers, notably Stock (1987)
and Sims, Stock and Watson (1987).

The present paper follows the framework of Park and Phillips (1988, 1989). Our
primary objective is to extend the results in these papers to allow for IV regressions. In
doing so, we allow for deterministic as well as stochastic instruments. We also permit
quite general deterministic processes in the data-generating mechanism. It is found that
the Park-Phillips results extend quite readily to the new models and estimators. However,
some results stand out as being of particular interest.

First, we discover that an IV cointegrating regression leads to consistent estimates
even when the instruments are stochastically independent of the regressors. This
phenomenon may strike some as surprising since with stationary time series stochastically
independent instrumental variables clearly fail to satisfy the asymptotic relevance condi-
tion for consistency. However, for integrated regressors the individual stochastic trends
of a set of instruments are sufficient to ensure that the relevance condition holds even
when the instruments are independent. This outcome is, of course, an artifact of spurious
regression theory—see Phillips (1986a) for details. Indeed, the very correlation that gives
rise to spurious regression also ensures the validity of the relevance condition for indepen-
dent instruments in IV regressions.

Second, problems of inference in IV regressions are studied—with some promising
theoretical results. Earlier work has shown up the importance of second-order asymptotic
bias effects in least squares cointegrating regressions (see the asymptotic theory in Phillips
and Durlauf (1986), Stock (1987) and the simulation findings in Banerjee et al. (1986)).
Given the original objective of IV regression in the context of simultaneous equations it
is of special interest to determine the extent to which suitable instruments can help to
solve this problem in the present context. Our analysis shows that instruments are not
themselves sufficient to eliminate the bias effects asymptotically when there is endogeneity
in the regressors. Instead, we suggest an alternative semiparametric correction which
does lead to asymptotically median-unbiased estimators. The correction may be employed
in OLS or IV regressions. The modified estimators form the basis of what we call fully
modified Wald tests. These are Wald statistics for testing general linear hypotheses about
the coefficients in a cointegrating regression. Their asymptotic distributions are x> and
traditional methods of inference are therefore applicable provided the correct
modifications to conventional Wald tests are used. These results provide a major extension
of the Park-Phillips analysis and help to solve the inference problem in cointegrating
regressions.

The new results mentioned above provide an alternative to the optimal inference
procedures considered recently in Phillips (1988b). The later are based on full maximum
likelihood estimation (MLE) of the cointegrated system and require complete specification
and estimation of the system, typically but not exclusively in error-correction mechanism
format. Such full MLE procedures are parametric in nature. The procedures in the
present paper rely on semiparametric corrections. They are of the type that were developed
originally in Phillips (1987) for unit root tests. In the present IV multivariate setting they
are more involved and require two levels of correction: one serial correlation correction
as in Phillips (1987); and a second long-run endogeneity correction.

The paper is organized as follows. Section 2 outlines the models and discusses some
background theory. Section 3 describes the estimators that are studied and develops an
asymptotic theory for the estimated coefficients in the case of both deterministic and
stochastic instruments. Section 4 considers Wald tests of linear hypotheses about the
coefficients and gives a general asymptotic theory. Block tests are also studied and
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particular attention is given to characterizing the parameter dependencies in the limit
distributions. Section 5 develops some new statistics called fully-modified Wald tests
which are asymptotically distributed x* criteria. Section 6 reviews some experimental
evidence with these new procedures and reports the results of a simulation study that
compares our fully-modified semiparametric methods with the error-correction model
(ECM) methodology that is now popular in empirical research. This section is inspired
by the recent analytical investigation in Phillips (1988¢) of the methodological prescrip-
tions outlined in Hendry and Richard (1982, 1983) for empirical time-series research.
Some conclusions and suggestions for further work are given in Section 7.

Our notation follows that of earlier papers in this sequence. We use the symbol “="
to signify weak convergence, the symbol “="" to signify equality in distribution and the
inequality ““> 0” to signify positive-definite when applied to matrices. Stochastic processes
such as the Brownian motion W(r) on [0, 1] are frequently written as W to achieve
notational economy. Similarly, we write integrals with respect to Lebesgue measure such
as [, W(s)ds more simply as [, W. Vector Brownian motion with covariance matrix Q
is written “BM(Q)”. We use |A| to represent the Euclidean norm tr (A’A)"? of the
matrix A, O(n) to denote the orthogonal group of order n and I(1) and I(0) to signify
time series that are integrated of order one and zero, respectively. Finally, all limits given
in the paper are as the sample size T > o unless otherwise stated.

2. MODELS AND BACKGROUND THEORY
We shall be working with an n-dimensional time series {y,}o partitioned as

Yi=16 Y26, Y305 n=n;+n,+n;, n;=n, (1)

n n, ny

and generated by the system

V1= Ay +11ky +uy, (2)
Ay, =uy, : (3)
Ays. = us,. (4)

The initialization of this system is at t=0 and y, may be any random variable. The
innovation vector u, = (uy,, uj,, u%,)' is taken to be strictly stationary and ergodic with
zero mean, finite covariance matrix >0 and continuous spectral density matrix f,, (1)
with Q=27f,,(0). Unless otherwise stated we shall suppose that 02>0. We further
assume that the partial sum process constructed from u, satisfies the multivariate invariance
principle

T2y =B(r)=BM(Q), O0<r=1, (5)
where [ ] denotes “integer part.” We decompose the “long run” covariance matrix ()
as follows:

Q=3+A+A'
where
2=E(uu), A=, E(uoul);
and we define
A=Z+A.
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Explicit conditions under which (5) holds are discussed in detail in earlier work—see
Phillips (1988a) for references and a review. We partition B, 2, 2, A and A comformably
with u,. Thus, in the case of ) we write
Qll Qél Q;l
Q=Q; Q2 Q3 |

931 932 Q33
The vector k,, in (2) is a subvector of
ki= (ki ka); m=my+my, my=n, (6)
mm

which is a deterministic function of time. In the most common applications k;, will
consist of a constant, a time trend or a simple polynomial trend. In such cases estimates
of the matrix A in (2) that are discussed in this paper are invariant to the replacement
of (3) and (4) by the alternative generating mechanisms

Ay, =T1L,Ak, + u,, 3"

Ay;, =TI;Aky, + us,. 4)

In some cases it is convenient to work with a triangular array {{y,r}/-1}7-, in place

of y,. This allows us the additional flexibility of using deterministic functions, kr,, which

are also indexed by the sample size T. It is then possible to accommodate such determinis-
tic functions as the sinusoidal trends

{tPsin(At/T), " cos (At/T); i=1,...,I;j=1,...,J}
Given some such vector k;, we assume the existence of a diagonal matrix of weights
81> 0 satisfying || 87| >0 and a vector of functions k( ) for which
lim Sup .o SUP, SUP(r—1)/ T=r<t/T |6rkr — k(r)||=0 @)
and
1
J kk'>0. (8)
0

We partition 8 conformably with k as 81 =diag (8,r, 7). When we need only work
with single indexed deterministic functions like k,, we shall drop the additional subscript
but continue to assume that (7) and (8) hold. We shall not overburden the notation when
we do use ky, by insisting also on triangular array notation for y, and u,. The extensions
to the underlying ‘theory that are needed to accommodate this generalization are rather
obvious. For example, we may conveniently replace (5) by a functional CLT for triangular
arrays.

3. ESTIMATION THEORY

Our framework and approach is related closely to that of earlier work on OLS procedures.
Two IV estimators in a regression on (2) will be considered. The first uses the vector

zy=(y3, k1) )

as instruments; and the second uses k, (or kr, as the case may be) as in (6). We shall
call these, in brief, the IVZ and IVK estimators, respectively. If we rewrite (2) as

Y1 =I'x, +u,,
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where
I=(AID),  x=( ki),
standard regression theory supplies the following formulae
f=ETna)ETxx)™
I'=Eins)Ei™
T=Eins)EEE)™
where here and elsewhere in the paper we use “+”, “~” and “-” affixes on the parameter

matrices (including the submatrices of B) to signify OLS, IVZ and IVK estimators,
respectively. In the formulae above

X = (Vai, k1o)'

X, = (¥20, k10)'
Vo= E1yz)(E{22) 7'z,
Vo= Eip2k) (1 kk) 'k,

As in Park and Phillips (1988), the limit distributions of these estimators may be
expressed rather conveniently in terms of the functional

f(B,M,E)= (Ll dBM’+E)(J: MM’) B (10)

where B is a vector Brownian motion and M is a stochastic process obtained from B by
a suitable Hilbert projection. Since the coefficient estimates will converge at different
rates, we define the weight matrix

I, TV? 0]
Wr=| ™ .
T [ 0 &1

Theorem 3.1. (a) TY¥['-T)Wy=>f(B,,J,,(A5,0), (b) T*@-D)w,=
f(By, Jo, (A5, F%,0)), (c) T3 ~T)Wr=>f(B,, J»,0) where
Jo(r) = (Bx(r), ky(r))'
Jo(r) = (By(r), ki(r))’
Jo(r) = (B5(r), kiy(r))
B,(r)= : BZZ’(J] ZZ'>_IZ(r)

J 0

By(r)= lek’(I kk’)—lk(r)

J0

1 1 -1
F = B;*B;r'(j B;*B;*')

JO 0

Z(r)=(By(r)', k()

B*(r)=B(r)— Il Bk;(J’l k,k{)_lkl(r).

0 [
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Remark (a). All three estimators of I' are consistent. The result is of special interest
in the case of the IVZ estimator A of the submatrix A. This is because consistency holds
irrespective of the properties of the instruments y;,. For example, y;, may comprise a
set of spurious instruments which are statistically independent of the regressors y,, in
(2). At first this appears surprising because in the case of stationary time series such
instruments would fail the usual relevance condition asymptotically. But here, since both
processes are I(1), we find

1
T—2E;ry2’y§’=>J’ B,B; (11)
0

and, moreover, since n;= n, we have

1
(C1) rank (J Bng) =n, as.
0

as shown in Lemma (A3) and the remark following Lemma (A3) in the Appendix. Result
(11) arises in spurious regression theory—see Phillips (1986a)—and is a manifestation
of the fact that two independent I(1) processes appear correlated even in the limit because
they both carry stochastic trends. In effect, the consistency of the IVZ estimator Aisa
beneficial artifact of spurious regression theory. Ittells us that we can generate a stochastic
trend from purely random numbers and still obtain consistent estimates by using the
resulting (1) series as instruments for y,, in (2).
Note that the orthogonality condition for consistency also holds because

(€2) T_2Z;ru],y§,—p> 0,

again irrespective of the properties of I(1) process ys,.
A is consistent for similar reasons. Since the regressor y,, has a stochastic trend we
find that

1
i Y2:k2r521=>J B;k;. (12)
0
and by Lemma (A3) in the Appendix

1
(C3) rank (J. szg) =n, as.
0

so that the relevance condition for the instruments k, is again satisfied. Thus, any
deterministic regressor retains an asymptotic correlation with a stochastic trend upon
appropriate standardization.

Remark (b). The processes that appear in the limit distributions given in Theorem
3.1 bear a close relationship in form to the time series that are used in the construction
of the estimates. In particular, the Euclidean projections that appear in the formulae for
I' and T are replaced by Hilbert projections in the limit distributions. This relationship
between finite sample regression formulae and limit theory has been noted and discussed
in earlier work—see Phillips (1988a) for details. Here the projections are superposed
because of the multiple regressor nature of (2) and the use of instruments. Thus 52 is
the projection in L,[0, 1)™ of B, onto the subspace spanned by the elements of 1,,® Z'.
B, in turn, is the projection in L,[0, 1)" of B onto the subspace spanned by the elements
of I, ®k'. These limit processes are the function space analogues of the time series X5,
and j,, respectively. Our understanding of the limit distributions in Theorem 3.1 is
enhanced by noting these similarities.
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Remark (¢). The expressions A,, and F¥A;, that appear in the limit functionals
in (a) and (b) of Theorem 3.1 are second-order bias effects. We use the terminology
“second-order” because the consistency of the estimates is, of course, unaffected.
However, the bias does influence the centring of the limit distribution and is normally
indicative of the presence of bias in finite sample which can be substantial. The bias
effect arises because of the contemporaneous and serial dependence of the regressor and
its instruments (y,, and y;,) in the case of the estimators A and A. Note that since
deterministic instruments k,, are used for y,, in A and these are asymptotically uncorre-
lated with the regressor error u,, in (2) no second-order bias effect is present in this case.

As in Park and Phillips (1988) these bias effects may be consistently estimated and
eliminated. In what follows we use A and A to denote consistent estimates of A constructed
from OLS and IVZ regression residuals respectively. (The construction of such estimators
is discussed in Park and Phillips.) Next we define the “bias-corrected” estimators

f*=[=7y,x)— T(%,0)1(ETxx) ™"
[*=[27y,2,— T84, 0)1ET z2)) T zx)) (ET %) "

The resulting limit distributions no longer involve the non-centralities.
Theorem 3.2. (a) TV*({™*—T)Wr=f(B,, J,,0), (b) TV*([*-T)Wy=£(B,, J,, 0).

Remark (d). Results for OLS that are equivalent to part (a) of Theorem 3.1 are
given by Park and Phillips (1988, Theorem 3.3). The present result applies for rather
general deterministic regressors and this is reflected in the definition of the Gaussian
process B*. The Park-Phillips results were obtained explicitly for the case of a drift and
time trend in (2).

Remark (e). Theorem 3.1 and 3.2 hold as stated when y,, and ys, are gengrated by
(3) and (4). If the alternative generating mechanisms (3’) and (4') apply then II, il and
IT are still consistent estimators but they have different limit distributions. The differences
are caused by the fact that under (3') and (4') y,, and y;, have elements which are in
general dominated by the deterministic rather than the stochastic trends. In the case of
the coefficient estimates A, A and A the deterministic trends are eliminated by projection
because k,, is also present in (2). However, the effect of the deterministic trends on y,,
and y;, must be allowed for in the estimation of II. From (3') we have

Y2e = Sp + (ki — k1o) + ¥20
where
Sor =2y
Define the weight matrix W% by

W* _[I,,ZT_I/2 _H2T—l/2] -1
T s

0 &1
so that

W*—l (y2r) — ( T_1/252r+0p(1))
T \ky, 8,7ky, ‘

Standard manipulations reveal that Theorems 3.1 and 3.2 now hold as stated if W%
replaces Wr.
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4. HYPOTHESIS TESTING
4.1. General theory

The limit theory presented in Theorems 3.1 and 3.2 is nonstandard. The distributions
belong to the limiting Gaussian functional (LGF) family explored in Phillips (1989). In
general, these limit distributions cause problems for statistical inference through their
dependence on many nuisance parameters and their nonstandard nature. In particular,
traditional methods of inference which rely on t- and F-ratios and Wald tests are not
useful without modification in this context. Earlier work, commencing with Phillips’
(1987) unit root tests, showed how to perform such modifications. A fairly general theory
in the linear model was formulated in Park and Phillips (1988). This section shows how
to extend the theory in Park-Phillips to the present IV set up. As far as possible we shall
use the Park-Phillips notation to facilitate reference to that work.

We start by considering the following linear hypotheses about the coefficient matrix
I'=[A,II] in (2):

Hy,: RvecI'=r

where R (g X n, X (n,+m,)) has rank g. To the extent that the diagonal elements of W
differ in orders of magnitude (associated with differing asymptotic behaviour in the
elements of k,, and y,,), we are effectively restricted in asymptotic tests to tests of separable
restrictions, i.e. about A alone, or individual columns of II. Thus if we rewrite H, as

H,: R'vec(I)=r

where R=R"K and K is the commutation matrix of order n,(n,+ m,), then R* must
be block-diagonal across columns of I' which are of different orders. For example, if the
model is

Yi: = Ay, +wt +uy,
then the hypothesis
Hy: A=A, 7=,
may be mounted, but the hypothesis
Hy: A+w=r (n,=m,=1)

cannot be tested using our asymptotic theory.
H,is frequently tested in traditional regression models by the following Wald statistics

Gr(T, V)=(RvecT—r)[R(V®M)R']"'(RvecT—r) (13)
In these formulae we employ the generic notation
r=florT
M=M,Mor M
where
M=ETxx)™, M=@ETEE)7, M=)
and

V=i11 or Q; where Q,, =ﬁn, ﬁn or Qn- (15)

Here in and Q,, are consistent estimators of =,, and (},,, respectively. When V = ﬁ’.,,
the G statistics are formulated in the conventional manner for linear regression. As
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shown in Park and Phillips (1988) the formulation with V=Q,, is more useful in
regressions with I(1) processes since it is the long-run. covariance matrix Q,, upon which
the asymptotic distributions depend. Consistent estimation of (), is discussed elsewhere—
see Phillips and Durlauf (1986), Newey and West (1987) and Andrews (1988). We use
the notation Ql, , Q“ and Q,, in (15) to signify estimates of Q,; that are based on OLS,
IVZ and IVK residuals from (2), respectively.

To simplify the presentation of the asymptotic theory for the G-statistics we use the
following functional from Park and Phillips (1988):

1

gr(B, M, E)=vec (f(B, M, E))’R’{R(Q,,@(J MM’) _I)R’}_IR vec (f(B, M, E)).

0
The non-centrality parameters which appear in the limit representations for fandT (see
Theorem 3.1) also arise in G-statistics constructed from these estimates, just as in the
theorems of Park and Phillips. These distributions are less useful for inference than those
based on estimators which have less nulsance parameter dependencnes We examine,
therefore, the “bias-corrected” estimators [* and I"™* rather than " and T". The limit theory
is as follows:

Theorem 4.1. Under H,

(a) GR(F Qll)=>gR(Bla Jos 0)
(b) GR(F Qll):gR(Bl,Jz, 0)
(c) GR(F’ Qn)=>gn(31 ’ Jz, 0).

Remark (a). Theorem 4.1 extends the Park-Phillips theory in several ways. First,
it allows for the presence of general deterministic regressors rather than a constant and
a time trend. Second, it provides for general restrictions on the II coefficients rather than
simple block tests. Finally, it accommodates general instrumental variable regressions as
well as least squares.

Remark (b). Theorem 4.1 examines tests of linear hypotheses, but the results easily
extend to general non-linear hypotheses of the form h(I'y) =0 provided h(-) is con-
tinuously differentiable and 6h(Iy)/3d vec T satisfies the block diagonality and rank condi-
tions discussed above for R.

Remark (c). The limit distributions given in Theorem 4.1 depend in general on the
matrices R and (). This parameter dependency is analogous to that which one typically
finds in the finite sample distributions of multivariate tests—see Phillips (1986b) for an
analysis of this problem with respect to Wald tests in the conventional multivariate linear
model. However, here the problem persists asymptotically with the result that the statistics
cannot be used to mount tests that are asymptotically similar, i.e. have the same size
asymptotically for all values of the nuisance parameters. Some reductions in the parameter
dependencies can be achieved in certain special cases as we shall now illustrate.

4.2. Block Tests

We will constrain the analysis to the special case R = diag (1,,, 0), so that the hypotheses
tested are of the form Hy: A= A,. In this case the limit distributions given in Theorem
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4.1 have a manageable and intuitively interesting parameterization. Working from part
(a) of Theorem 4.1 we find

1 1 -1 1
gR(Bl’ J2,0)=81(Bl, B;‘,O):(I dB;®B>2‘”>{ 1_11®<J B;‘B;") }(J dBl®B;k)'
0 0 0
(16)

Observe that
1

1 1
I var{dB1®B§|B§(s),s§r}=I Q,1®B§B§’=Q”®J‘ B¥B¥'
0 , 0

0

so that this random matrix is a natural metric for the quadratic form (16).
To simplify (16) we transform coordinates as follows. Define the processes

B a0 '[Bl]
= =BM(V
[Bz] [ 0 0»"lLB, V)

and
1 1 -1
B§=52_J‘ sz;( klk;) kl
0 Jo
where
V_[ I :1‘/20120;2‘/2]_[ I 912] ca
05,720,051 I Q, I7 Y-

Using Lemma 3.1 of Phillips (1989) we may write
B, =Q,B,+(I- P12)I/2 W,
where
P =010 =011°0,,02 0,04,

and W,= BM(I,) is independent of B,. Next we assume that n,= n,, that Q,, has full
rank n, (both assumptions will be relaxed later) and transform

B,>H'B,=W,
BY~ H'Bf = Wi

where

H=[H,, H,]e0(n,)
and

H,=0:,(21205) "7 =Q,, P, ">
Then

912§2=912HH'52=[P%2 0] W,. (17)

The quadratic form (16) now reduces as follows:

1 1 -1 1
g,(Bl,B;*,o>=(f dBi®B§’){I®(I 13;*1_9;*') }(J d&@g:)
0 0 0
1 1 -1 1
([ sn o1 Y[ o)
0 0 0
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and
B, = (I‘P12)1/2W1+[P%2 O]Wz-
Thus
gI(Bl’B;k’ 0)=h(Bl, W;:) (18)

where

1 1

h(B, M)=(J dB'®N(M)’>(I dB®N(M)>

0 0

and

1 -1/2
N(M)=(J MM’) M.
0

A final rotation of W by diag (Q, Q, I), where Q is the orthogonal matrix of latent vectors
of P,,, diagonalizes P,,, leaving only the latent roots.

In the above we have assumed that Q,, (or equivalently (),,) has full column rank.
If rank (Q,,) =p < n, we simply rotate coordinates in R™ so that the leading submatrix
of Q,, has full column rank. The result stated above in (18) still applies but now Py, is
of course a singular matrix. The rotation in R™ transforms P, to the block diagonal form

P, =diag (P;>, 0),

where P, is p X p. The distributional result (18) is the same whether we use this reduction
or simply (18) as stated. Analogous problems arise when n, > n, since P,, is then always
singular.

These considerations now lead us to the following formal statement. The proofs for
IVZ and IVK are similar to those for OLS. The interested reader is referred to our
working paper (Phillips and Hansen (1988)) for details of the proofs and the necessary
constructions.

Theorem 4.2. Under H,,
(a) OLS: g,;(B,, B¥,0)=h(W,, W%) where if n,=Zn,,
Wy =(I-Ap) 2 W, +[A12, 01W,
A, =diag {latent roots of P, =Q,,Q,}
and if n,<n,,
[0 O[]
A, =diag {latent roots of P,;=Q,,Q,,}.
(b) IVZ: g/(B,, B%,0) =g, =h(B,, BY)

B, = (I—QT29§1—913Q31)1/2 W1+Q;k2W2+913 W,
I};‘ = (1_923932)1/2 W’zk"'(_)z:» ng
Q;kl = (I _923932)_1/2(921 _923931) = Q;kz'
1 1 -1
Wi = J W’{’W;“’)(J Wi W;“’) Wi
0 0
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(c) IVK: g;(B,, B¥,0)=h(W,, W$)

1 1 -1
W;"=( J W;"k%")(j k’{k’z’") %
0 0
1 1 -1
kz_j kzk;(J klk;) kl'
0 0

W(r)= (Wi, W3, W3)'= BM(I,)

n

k3

In (a), (b) and (c),

W*(r) = wm—f Wk(f klk;)_lkl(r)

0 0

-1/2 -1/2
Qb =Qaa/ Qabeb/ .

. Corollary 4.3. (a) If Q3,=0 and Q3,=0 then g = h(B,, B¥)=h(W,, W¥) where
W, and W% are defined in parts (a) and (b) of Theorem 4.2. (b) If Q;,=0 and if y,, and
3. are cointegrated then g, = x> ...

Remark (a). Result (a) of Theorem 4.2 generalizes Lemma 5.6 in Park and Phillips
(1988). Observe that when P;, =0 we have

1 1
g(B,, BE"; 0)=(J dW{@Né)(“' dWl®N2>
0

0
— .2
= Xnyn,

where N,= N(W%) since

1

1
J. dWl®NZE N(O, I®J NzNé) = N(O, Inlnz)'

0 0

On the other hand when P,, =1 we have

1

1
gi(B,, B¥; 0)= (J dW£1®N§)(J dW21®N2>-
0

0
where W, =[1I, 0]W,. Since N,= N(W,) the limit distribution in this case is a form of
unit root distribution. In general, the limit distribution may be regarded as depending
on a matrix linear combination of a *“‘unit root” type of stochastic integral and an
independent multivariate normal variate. The weights in this linear combination are
delivered by the matrix coefficient of determination P,,.

Remark (b). Theorem 4.2 shows that the asymptotic dependence on nuisance
parameters is more complicated for IVZ based statistics than for those based on OLS.
In general, we find that the limit distribution depends on the long-run covariance structure
of the innovation processes that drive the structural equation, the regressors and the
instruments. Simplifications in the dependence occur as this covariance structure itself
simplifies. Some leading cases are given in the corollary.
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Remark (¢). The condition Q3, =0 may be interpreted as a second-order orthogonal-
ity condition for the instruments. Note that the first-order orthogonality condition (C2)
discussed earlier ensures the consistency of the IVZ estimator A. The second-order
condition Q;, =0 sets the long-run correlation between the equation errors and the
instrument errors to zero. The effect of this second-order orthogonality is to reduce
parameter dependencies in the limit distribution g;,. When Q,,=0, as in part (a) of
Corollary 4.3, the instruments are, in effect, long-run uncorrelated with the equation
errors and the regressor errors. In this case it is only the stochastic trend in the instrument
vector y;, that does the work of an instrument and the only parameter dependency in
the limit distribution g; that is left is P,,, the long-run coefficient of determination between
the equation errors and the regressor errors. When P, =0 the regressors behave in the
long run as if they were exogenous and we find g, = x3 ,...

Remark (d). When y,, and y;, are cointegrated, the limit Brownian motions B,
and B; are related by the equation

Bz = 9239531 B3 = GB3 , Ssay.

This may occur when y;, has been chosen to fulfill the classic role of an instrument in
simultaneous equations theory in which a “reduced form” equation for y,, would have
the form

V2= Gys, +11 Ak, + vy, 03, = 1(0) 3"

in place of (3) or (3'). We observe that in this case the covariance matrix () is singular.
Corollary 4.3 part (b) gives the special case when Q5, =0. In this case, since Q,, =0
also, we find that y,, and y,, are in effect long run exogenous and hence g, = xf,l,,z as given.

Remark (e). When n,=1 the limit distribution given in Theorem 4.2 has been
tabulated in the preprint of Park and Phillips (1988) for the cases n,=1, 2, 3 and with
the deterministic regressors k,, =1, kj,=(1, t). The tabulations are given for a grid of
values of the scalar coefficient P, = p,, over the interval 0<p,,<1. Such tabulations do
not seem to be very useful in the general case given here. They would involve the matrix
of coefficients P,, (or rather its latent roots) in the OLS case and even more involved
dependencies in the IVZ case. As a result, another approach will be explored in the next
section.

Remark (f). Hall (1989) has advocated using lagged values of the dependent
variable as instruments to construct a univariate unit root test in models with finite-order
MA errors. This is covered by our own framework and is equivalent to setting n, =n, =1,
Y2¢=Y11-1, Y31 = Y1—« for some k> I (when the errors are MA(/)). This implies B, = B, =
B, = B; and Theorem 4.2(b) then yields

g1 = h(Bs, BY) = h(W, W¥)

where W= BM(1). The functional h(W, W*) gives the asymptotic distribution of the
squared value of the Dickey-Fuller ¢-statistic allowing for general deterministic trends
in the regression (see Quliaris, Park and Phillips (1989)).

5. ASYMPTOTIC x* CRITERIA

The source of the nuisance parameter dependencies in the limit distributions studied in
the previous two sections is the dependence between the limit Brownian motions B, and
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B,. This dependence may, in turn, be interpreted as a form of conventional simultaneous
equations bias arising from the endogeneity of the regressors y,, in (2). However, as we
have seen from the analysis of the IVZ statistics, traditional methods of dealing with this
bias, like instrumental variables, do not eliminate it. The only case so far studied in
which the dependency disappears occurs when the regressor y,, is exogenous—a case
where simultaneous methods are hardly necessary.

This problem has recently been studied in Phillips (1988b). It is shown there that
the dependencies in the limit distributions are removed when full maximum likelihood
methods of estimation are employed. In the present context this requires joint estimation
of (2) and (3) and this includes full estimation of the generating mechanism of the
innovations. In the present section we develop a nonparametric procedure that is
asymptotically equivalent to full maximum likelihood.

Let ) be any consistent estimator of ) and define:

+ _ -1
Uy, =ty — Q0% Uy,
+ _ -1
Y1ie=Y1e— Q12Q3 Uy,
At _ A A _q
V1e=y1— Q1205 Ays,.

[UE] _ [I _len;‘zl][uu] =7
= = JbbUpe
u2, 0 I u21

which has long-run covariance matrix

Note that

Q4. 0
Q+ =J Q J; =[ 11-2 ]
bb bb32bbYJ bb 0 Qs
where
Qll-2=QII_QI2Q;2lQ21

and where we use the subscript “b” to signify that subscripts “1”” and *“2” are taken
together.
Now define the following estimators of I based on j;,:

I = @5 (S xx)) ™
M=) Eizx)™
and the modified (bias-corrected) estimator
f*=[2]5xi - TUhs, 01ETxx) ™
where
jlb =[1, _ﬂlzﬁz_zl]-
In the case of the IVZ estimator we need also to consider the effects of the instrument
innovations u;,. Accordingly we define
Uy = — 0,00 Ug,
V1o = V1= QaQ g tie
=y 01Ot Ay
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[“Tr] _ [I _Qlaga_z::l[ult] —J
Uy 0 I Uy -

which has long-run covariance matrix

We have

Q+=mJ'=[Q“'“ 0 ]

0 Q.
with
Qyy..=0 _QlaQa_z:Qal .
In these formulae we use the subscript “a” to signify elements corresponding to “2” and
“3” jointly. We further define
I =iy Eis) ™
I = (2750 % — TUoeBse, 01T 220) 7 (B zx)(ET5) ™
where
jlc =[1 _ﬁlaﬁ;al
and “c” signifies ““1” and “a” taken together.

From these new estimators of I' we construct the following G-statistics using the
formulae as given in (13) and (14):

Gr = Gr(['"*,11.2), Gr(T*, Q1y.2), Gr(T**, 011.0)
We call these new G-statistics fully modified Wald tests. We have:

Theorem 5.1. Under Hy, Gr=>x>.

Remark (a). Theorem 5.1 shows that the fully modified Wald tests behave as
asymptotic x* criteria. This greatly facilitates statistical testing and eliminates the diffi-
culties of nuisance parameter dependencies that were discussed in earlier sections.

Remark (b). The results in Theorem 5.1 are equivalent to those of Wald tests based
on full maximum likelihood estimation of (2) and (3). The latter, which is discussed in
detail in Phillips (1988b), requires formulation and full estimation of the error-generating
mechanism for u,. The present tests avoid this by the use of a nonparametric consistent
estimate of the long-run covariance matrix (). This estimate is used to purge the error
u,, in the regression equation (2) of its dependence on the error processes that drive the
regressors y,, and the instruments y;,.

Remark (c). Note that when wu, is iid N (0, Q) we have
E(“ul“z:)-_‘ﬂlzﬂz_zl“z: (19)
and
uy,=uy, — 0,05 uy,=N(0,Q,.5).
The estimator A* is “bias-corrected” (asymptotically) and takes into account (19). In
fact (19) is eliminated asymptotically by using the nonparametric estimate
ﬁlZﬁ > Ay,
Maximum likelihood methods, on the other hand, explicitly take (19) into account since
the likelihood conditional on u,, involves (19) directly. As discussed in Phillips (1988b)
this is equivalent in the present simple case to including Ay,, as a regressor in (2).
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6. EXPERIMENTAL EVIDENCE
6.1. IV, bias-corrected and fully-modified estimators: a review of existing evidence

We have published separately (see Hansen and Phillips (1989)) a study of the small
sample properties of instrumental variable, Park-Phillips bias corrected, and our fully-
modified estimators via Monte Carlo simulation methods. The Data Generating Process
(DGP) used in that study was adopted from the study of Banerjee et al. (1986). We tried
six different estimation methods:

[1] OLS,

[2] Cointegrated instruments,

[3] Spurious I(1) instruments,

[4] Spurious deterministic instruments,

[5] Park-Phillips bias corrected, and

[6] Fully modified.

Sample size was fixed at 100 and we varied three parameters, controlling long-run
endogeneity, serial correlation, and the signal-to-noise ratio.

Comparing the uncorrected estimates [1]-[4], OLS performed best (in terms of
minimum mean squared errors) for high signal-to-noise ratio, while the IV techniques
performed better for low signal-to-noise ratios. The bias-corrected least squares technique
dominates these estimators, but was in turn itself dominated by the fully-modified
procedure.

The paper cited above also compared the distributions of estimated ¢-statistics for
OLS, Park-Phillips, and fully-modified procedures. The difference is dramatic: while the
variance of the Park-Phillips ¢-statistics ranged from 8 to 11, the variance of the fully-
modified ¢-statistic ranged from 2 to 3.

These results support the asymptotic theory developed in Sections 3 and 4 that IV
techniques, even with “spurious” instruments, can be used in I(1) cointegrating
regressions, yet the problems caused by endogeneity persist in IV estimation. On the
other hand, the fully-modified statistics developed in Section 5 were found to perform
rather well in these simulations and seem promising as candidates for empirical research.

6.2. Fully modified semi-parametric estimation and Hendry error-correction parametric
estimation

(i) Asymptotics

In a recent paper, Phillips (1988¢) has compared our fully-modified estimation procedure
to the single equation error-correction methodology advocated by David Hendry in
empirical time-series research. For an exposition of the latter we refer the reader to two
articles by Hendry and Richard (1982, 1983). In this methodology, the starting point is
a general unrestricted single equation regression of the form

YIt=ﬁ,yzt+';',xt+ﬁ"x- (20)

To relate this format to our own model we set n, =1, 7=0 and ignore possible trend
components (k,,) in the fitted regression for ease of exposition. Elements of x, are chosen
parsimoniously to render the residual w, effectively orthogonal to lagged variables. We
take a stylized version of this method in which (20) has the explicit form

Y= 5'}'2: +an=1 ';';mA.VI:—m +an=o &amAYZt—m + Wt- (21)
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If p>o and p/ T -0 as T- oo then (21) is an empirical attempt to asymptoticélly
fit the following regression with distributed lags of infinite order

Y= aly2t +Z:=1 Y’thJ’n#m +z:=o ‘yIZmAyZit—m + Nts (22)
where 7, is orthogonal to the past history of {Ay,,_,} and {Ay,}. If

w = ( ult) _ (ylr _a'y2:>
' U, Ay,,

u = 51"'210:1 Oce—k=5,+0(L)e,_,

is generated by

with

!’
On 0

E(g,)=0, E(8,£;)=|: ], E(g£5)=0, t#s

oy 2y
then 7, is given by
M= € _05122_2152:
and the process & =(m,, u5,)’ has long-run covariance matrix
O11-2 011.20(1)
z"fff(o)z[au.zoz,(l) 0 ]
where

[6u(D) 6i(D)
”(L)‘[ozl(L) ozz(L)]'

The partial-sum process constructed from &, then has the following asymptotic behaviour:

B,(n) _
5 (r)) = BM(27f(0)).

We now see that least squares on (21) gives rise to the limit theory

1 -1 1
0 0

1 -1 1 1

0 0 0

T—l/ZZETr]§t=>(

where
W(r)= BM(0'1_11~2_ 921(1)’9521021(1))

and is independent of B,. In the special case for which 6,,(1) =0 (23) is a mixture normal
and 4 is asymptotically median unbiased. In general, however, (23) has a “unit root”
distributional component that imports both bias and inefficiency into the limit distribution.
As shown in Phillips (1988¢), of the two single-equation strategies for the estimation
of the cointegrating vector only the semi-parametric fully modified estimator given in
Section 5 achieves the asymptotic efficiency of systems maximum likelihood. The para-
metric Hendry approach comes very close to attaining the same asymptotic behaviour
but will, in general, be both biased and inefficient (i.e. not equivalent to full maximum
likelihood on the system). Asymptotic theory may be misleading in small samples. One
may expect, for instance, that a parametric procedure may be superior in spite of its
asymptotic bias because of poor finite sample performance of the semi-parametric pro-
cedure. We now turn to Monte Carlo methods to make an assessment of these issues.
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(ii) Finite sample simulations
The data generating process we used was
1= Ayt tuy,

Y20 = Y21t Uy, t=1,...,T

Uy
=u,=¢g+0¢_,,
U,

a=2, =0, T=50

B [0-3 —0-4] 2_[ 1 0'21]

“le, 06) T los 1
and allowed 6,, and o, to vary. This example is analyzed in Phillips (1988¢) and is a
special case of the general model discussed above. The asymptotic theory depends
critically upon the parameter 6., .

We calculated the distributions of estimates and t-statistics for the cointegrating
parameter obtained by OLS, Hendry and fully-modified methods. The nuisance para-
meters for the fully-modified procedure were estimated with a Bartlett triangular window
of lag length 5, using the OLS residuals #,, to calculate 021 and An For the OLS
t-statistic we used the long-run covariance estimate Q“ to facilitate comparisons. For
the Hendry procedure we included in the regression the covariates (Ay,,, Aya—1, AVar—2,
Ayi._1, Ayi,—»). The fact that five covariates were chosen was designed to coincide with
the choice of 5 lags for the fully modified semi-parametric corrections. (In the latter, the
two-sided nature of the covariance matrix estimates generates eleven parameters. The
triangular window, however, reduces the effective window size to one-half of eleven, or
5-5.) No attempt was made to alter these choices once the experiment had been started.
This may be somewhat unfair to the Hendry procedure where judgment on p in (21) is
part of empirical practice.

The results are summarized in Tables I and II, and Figures 1 through 4. Table I
records the Monte Carlo means and standard deviations of (4 — a) for the ordinary least

g =iid N(0, ).

We set

TABLE 1
Mean (standard deviation) of 4 —a

6,,=0-8 0,,=0-4 0,,=0-0

05, =-0-8

OLS —0-137 (0-125) —0-090 (0-089) —0-055 (0-061)

ECM —0-062 (0-106) —0-021 (0-066) —0-003 (0-041)

FM —0-025 (0-127) —0-028 (0-079) —0-025 (0-052)
0y =—0-4

OLS —0-067 (0-081) —0-057 (0-079) —0-040 (0-061)

ECM —0-051 (0-086) —0-030 (0-077) —0-007 (0-060)

FM —0-042 (0-094) —0-027 (0-081) —0-015 (0-063)
0y, =0-4

OLS —0-024 (0-040) —0-020 (0-046) —0-011 (0-050)

ECM —0-023 (0-046) —0-019 (0-053) —0-009 (0-060)

FM —~0-023 (0-048) —0-012 (0-052) 0-004 (0-060)
05, =08

OLS —0-015 (0-025) —0-010 (0-028) —0-004 (0-036)

ECM —0-009 (0-024) —0-008 (0-030) —0-005 (0-039)

FM —0-016 (0-028) —0-005 (0-030) 0-015 (0-043)
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TABLE II

0,,=0-8 0,,=0-4 6,,=0-0

03, =-08

OLS —1-616 (1-268) —1-240 (1-105) —0-930 (1-00)

ECM —1-259 (2-040) —0-563 (1-701) —0-078 (1-40)

FM —0-388 (1-432) —0-449 (1-092) —0-456 (0-896)
0y, =—0-4

OLS —1-156 (1-32) —0-986 (1-25) —0-754 (1-149)

ECM —1-058 (1-69) —0-636 (1-57) —0-163 (1-388)

FM —0-729 (1-49) —0-516 (1-35) —0-335(1-193)
0;,=0-4

OLS —0-711 (1-19) —0-520 (1-21) —0-267 (1-24)

ECM —0-664 (1-29) —0-478 (1-34) —0-213 (1-37)

FM —0-606 (1-26) —0-267 (1-30) 0-096 (1-36)
0,5, =08

OLS —0-575 (0-955) —0-302 (0-979) —0-098 (1-04)

ECM —0-445 (1-15) —0-339 (1-25) —0-184 (1-36)

FM —0-519 (0-922) —1-102 (0-962) —0-418 (1-12)

Bias
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OLS
ECM

—-— FM

e — — -

FIGURE 1

0.3

squares (OLS), Hendry error-correction (ECM) and fully-modified (FM) estimators. (All
simulations used 30,000 replications.) In general, OLS is the most biased estimator. Both
the ECM and FM procedures perform well. As predicted, the ECM displays moderate
bias for 6,, =0-8, yet is virtually unbiased at ,, =0. The fully-modified procedure shows
a small but persistent bias in finite samples and seems generally preferable to the ECM

method.
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T-Statistics
0.6
0.5
OLS
ECM
-—+— FM
0.4 4
0.3+
0.2
0.1
0.0 T
-6 4 6

FIGURE 4

Figures 1 and 2 display estimated probability density functions (pdf’s) for the
estimators for o,, = —0-8 (6,, =0-8 in Figure 1 and 6,, =0 in Figure 2.) These densities
were estimated using a normal kernel with a bandwidth of 0-2. Readers can see how the
distributions display thick left tails and are fairly peaked at the mode. In Figure 1
(6,,=0-8), the FM distribution is better centred than the ECM; the reverse applies in
Figure 2 (0,,=0). This reinforces the theoretical results above. Thus, 6,,=0 is an
important pre-condition for the Hendry ECM method to work well in large samples. But
when this condition does hold, the parametric nature of the ECM method gives it a
natural advantage over our semi-parametric approach.

In Table II are recorded the means and standard deviations of the distributions of
the t-statistics. FM performs better than ECM in both bias and standard deviation for
0,, #0. When 6,, =0, however, the ECM t-statistic is less biased (for o,, <0) but its
variance is still substantially higher. This is due to the fact that the inclusion of a limited
number of lag terms has not fully eliminated serial correlation in the residuals. The FM
procedure, in contrast, achieves a distribution which roughly approximates a biased
standard normal. Figures 3 and 4 display estimated pdf’s for the ¢-statistics under
0, =—0-8 and 6,,=0-8 and 0. These estimates used a normal kernel with a bandwidth
of 0-4. The figures show clearly the bias effect in the ECM distribution for 6,,> 0, its
excessive variance for all parameter values, and the relatively successful performance of
the FM t-statistic.

Overall, both the Hendry error-correction and the fully-modified estimators seem to
work quite well, considering that the sample size used is only 50. This is encouraging
support for the use of asymptotic theory in integrated regressions. Some skepticism about
the usefulness of asymptotic theory has emerged over the past few years after early
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simulation studies (such as Banerjee et al. (1986)) found that the super-consistency of
OLS in cointegrating regressions was misleading in small samples. The implication of
such studies was that asymptotic theory seemed to provide poor approximations in sample
sizes that are typical in economic data. Our simulations reveal that the reverse is true.
Asymptotics are not only relevant but also seem to provide good discriminatory power
among differing statistical procedures even for samples as small as 50. The key ingredient
in our analysis is a fully developed asymptotic distribution theory. Super-consistency in
itself provides little useful information about sampling behaviour. Now that a limit
distribution theory has been worked out, however, it seems fair to conclude from our
simulations that it provides a reliable general guide to sampling performance, points to
the most influential parameters and helps in selecting estimators and tests.

7. CONCLUSIONS AND FURTHER WORK

The present paper helps to complete the programme of study initiated in Phillips and
Durlauf (1986) and Park and Phillips (1988, 1989). Our attention has concentrated on
problems of statistical inference in multivariate linear regressions with integrated pro-
cesses. By developing a theory which accommodates quite general IV estimators we have
been able to isolate the sources of nuisance parameter dependencies in the limit distribu-
tions that have persisted in earlier work and have been an obstacle to the development
of operational inferential procedures. These obstacles are resolved in the present treatment
through semiparametric corrections that lead to a class of fully modified Wald tests. The
new statistics have limiting x> distributions under the null and therefore greatly facilitate
inference in I(1) regression models. In effect, the new tests provide a semiparametric
version of the optimal inference procedures (based on maximum likelihood methods)
that have been developed in other ongoing work—see Phillips (1988b).

Our methods also provide a partial alternative to the ECM methodology that is of
growing popularity in empirical research and that has been developed over a number of
years in the research of Hendry (1986, 1987). The ECM methodology is parametric in
nature and has proved successful in a variety of empirical applications. As shown in
Phillips (1988c¢), there is a close relationship between our semiparametric fully-modified
methods and the parametric ECM approach. So close, in fact, that the methods are
asymptotically equivalent in some cases. In other cases (characterized by feedback among
the innovations) our fully-modified methods are preferable in terms of asymptotic
behaviour. The simulations that we report here in Section 6 show that these conclusions
from asymptotic theory carry over remarkably well in finite samples.

Our focus of interest in this paper has been multivariate cointegrating regressions.
IV techniques may be usefully employed in other integrated regressor contexts such as
unit root vector autoregressions, tests for unit roots and tests for cointegration. Some of
the ideas and methods suggested here are also applicable in nonlinear models in tests of
nonlinear hypotheses. These are topics that the authors currently have under investigation.

APPENDIX

As noted in the text, the estimators of A in (2) are invariant to the replacement of (3) and (4) with the alternative
generating mechanisms (3’) and (4'). Since estimates of II in (2) are not invariant to this replacement we shall
take (3) and (4) to be the generating mechanisms throughout this appendix. The extra generality that applies
in the case of estimates of A may simply be taken for granted.
The following preliminary result will be useful. Its proof relies on simple manipulations of the type glven
in earher work—see Phillips and Durlauf (1986) and Park and Phillips (1987a). Define x;, = W'x,, ¥, = W7'%,,
WT X, and yf=y,— (21 y:ku)(2 ky .k 11) kll
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Lemma Al
1

~1§ T T2y, —1/2.1 11 .
(a) T7'%; s [Ty, kiér]l=> | W
rk, o

(b) T Vy¥=>B*(r)
(©) xpr=>J(r)
(d) 'fT[Tr]=>'i2(r)

(e) fr[-rr]=>-72(')
1

0 T“/ZETXT.uix:I J,dB} + (A%, 0)

o

1
(® T_'“Elrfnuix@f J,dB} + (A4, F, 0)
[\]

1
(h) T"'/ZE,TiT,u{,:I J,dB;
[}

where
J(r)'=[B(r), k(r)'],  Jo(r) =[By(r), ky(r)'].

Lemma A2. [, JJ'>0 a.s.

Proof. In view of assumption (8), we need to show that

1
I B**B**'>0a.s. (A1)
o

1 1 -
B**(r) = B(r) - J Bk’(J kk’) lk(r).
(1] [

Note that B** is itself a full rank Gaussian process. Indeed
B**(r)= N(0, Qo(r))

1 1 -1
U(f)=r—2(J' (rns)k(s)ds)(J‘ kk’) k(r)
0 0
1 (1 1 -1 1 -1
+J’ J' (slAsz)k(sl)<'[ kk’) k(r)k(r)’(I kk’) k(s,)ds,ds,.
0o Jo 0 0

Define W =Q~Y2B** which is vector “detrended” Brownian motion. Partition W= (W,, W,,... W,)". Each
element W, is independent of the other elements and is identically distributed in an L,[0, 1] Hilbert space with
inner product Ll) 818>. Observe that

| wo o}

n

= Y, Pr{W, lies in the span of (W,,..., W,_;, W,,,,..., W)}
i=1

where

where

=n Pr{W, lies in the span of (W,,..., W,)}
=nE[Pr{W, lies in the span of (W,,..., W,)|(W,,..., W,)}]
=nE[Pr{W, lies in an (n —1)-dimensional manifold of L,[0, 1)}]
=nE[0]=0
which establishes (A1). ||
Proof of Theorem 3.1. This is a simple application of the results in Lemmas (A1), (A2) and the continuous
mapping theorem (CMT). Thus, in the case of (b) we have
T_l/z(f‘ -I)Wr= (T_"ziful.fn)( T_lz;rinx‘%)_l
1 1 -1
:U dB,Jy+ (A4, FH, m](f LJ';) (A2)

o o
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by (d) and (g) of Lemma (A1), joint convergence and an application of the CMT. ||

Remark. Results such as (A2) above rely on the fact that certain random matrices are positive definite

almost surely (a.s.). Here we have
1 -~ 1 1 -1 1
J JZJ§=J‘ JZZ’<J‘ ZZ’) J VALY (A3)
o o o [\]

In view of Lemma (A2) all submatrices of L‘) JJ' are positive definite (a.s.) and in particular

1
I ZZ'>0.
0

The rank of the matrix (A3) therefore depends solely on the rank of L‘) J,Z' since the order condition for IVZ,
viz. ny = n,, is assumed to hold—see (1). Now since

1 1
1 I B,B; I Bk
I hZ'=\7 ;

1 1 ’
° I k,B} J kyk;
0 0

and I:) k, k>0, the rank of (A3) depends on the rank of I(') B¥B¥'. The required result follows from the next
lemma.

Lemma A3.

1
rank (J B;"B;“’) =n,as. (A4)

1
rank (J Bfk;") =n,as. (AS)
where k¥ =k, [, kzki(Ll) k)~

Proof. 'We may write (cf. Phillips (1989) Lemma 3.1)
B(r)= Q5,053 Bf(r) + Q43 W3

1 1 -1
Wi= Wz(’)_J‘ W, k1 (J‘ klk,l) ky,
) 0

and W,= BM(I,)) and is independent of B;, and Q5,3 = 05, — 023037 Q5,. Thus for any ns X n; matrix G,

where

1 1 1
I B;"B;"’G=Q§ZQ3‘3‘J‘ B?B;*’G+Q§§?sj W*B¥'G. (A6)
[\] o [\]

Lemma A2 yields that rank (j(‘) B¥B¥')=n,, a.s. Now set G to equal

1 1 -1/2
G= {J’ J (s1A Sz)Ba"(S.)BS"(Sz)’dsldSz} .
o Jo
Each row of L‘) W;"B;"’G=I:) W,B¥'G is independently distributed as a multivariate normal random vector
with covariance matrix I, , ensuring that the matrix j.') W, B¥'G has rank n, a.s. Moreover, since this matrix is
stochastically independent of the first member on the right side of (A6) we conclude that (A6) has rank n, ass.,
completing the proof of (A4).
To prove (AS) we note that

1 . 1
[* e —ai [ wa:

o o

where W, = BM(I,,). Each row of L') W,k¥' is independently distributed as

1 (1
N(,Q), Q=I I k¥ (r)k¥(s)'(r A 5)drds.
)

o
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Since Q>0 by (8), f; W,k¥' has rank n, and (AS) follows. ||

Remark. In an entirely analogous fashion we have

1

rank (J BZBQ) =n, as.
0
1

rank (J' szg) =n, as.
o

Proof of Theorem 3.2. Again, this is a simple application of the results in Lemma (A1), joint convergence
and the CMT. For example, in the case of (b) we have

Tl/z(r* -T)Wr= (T_l/zz;ruuzlﬂ - (Agla 0)N(T'E ;rZTyzcn)_l
. (T_lz;rzﬂxln)(T_lz;rx.Tl-f’n)_l

{fme([e) [ ) )
(o[ )

n= (T~l/2y3“ ki.8,7)

where

and the result follows immediately. ||

Proof of Theorem 4.1. Since R™ is block diagonal as discussed in the text and Wr is diagonal we have
(Wr®IL,)(RvecL—r)= ( Wr®1,)R vec (L -T)
=(Wr®I,)R" vec(C-T)
=R" vec[(C-T)WrT
=Rvec[(T-T'W,].
Therefore under H,
Gr(L, Q)= (R vecL—r)[R(Q,;®M)R]'(RvecL[-r)
=vec[(C-T) W, R(W7'®L,)[R(Q,,®M)RT(W7'®I,) vec [(L-T) Wr]
=vec[TVXL-T)WrYR'[R(Q,,® TW;MW)R']"'R vec[T~V*( -I) Wr].
Next,

1 -1
TW;MW; = (T WS T xx! w;')":(f Jz!é) (A7)
(1)

where
X =%, %, %
b=J2, 00, 1.
The stated results follow directly from Theorem 3.2, (A7) and the CMT. ||
Proof of Theorem 5.1. We demonstrate the argument by proving Gg (f B ﬁn 2)=> xf,. The other results
follow in a similar way. Observe that
TV2(E —T) Wy = [T 2Zufx, = (Jip B, 01T Sxraxty) ™
— AT 28 (T )™
where

AJy, =003 - 0,035 = 0,(1).
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Therefore

Tl/z(f+* -Wr=Jy, [ T_l/zzub.x'n = (A%, )N T "Zxpyxf) ' + op(l)

1 1 -1
=Ji J deJQ(J' JZJQ)
o o

[J.bB,,
B,

Now note that
] =JysB, = BM(Q},).
Thus J,,B, and B, are independent Brownian motions and

1 1 -1/2
J,,,J' dB,,Jg(J. le§) =N(0,Q,,.,®I).
[\] [\]

Next under H, we have

TV Wr®1I,)(R vec**—r) = R vec [TV/*(**-T) Wy]

1 1 -1
=>RJ [Jldeb®(I 1215) 12].
(1) (1)

1 -1
TR}y, ,® WTMWT)R'=>R(Qll .2®(J 1214) )R'.
0

Also

We deduce that
Gr(**,9,,.,) = (R vec I* — r){R(§};,.,® M)R} (R vec ['**—r)

1 1 -1 1 -1 -1
=>U dB;,J{,,@J;(I sz;> }R'{R(Q,1.2®(I 1215) )R’}
0 0 0
1 1 -1
-R{I Jldeb®(I 1215) Jz}. (A9)
0 0

Observe that conditional on F, = o (B,(r),0=r=1) we have

o [ me ([ ) )] (o {x(mn0([] ) )a})

so that conditional on F, £A9) is Xg. Since this distribution is independent of F, the result holds unconditionally
and we deduce that Gr(I'"™*, Q,,.,)=>x?, as required. ||
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