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1 Introduction

Conditional density functions are a useful way to display uncertainty. This paper investigates nonpara-

metric kernel methods for their estimation. The standard estimator is the ratio of the joint density

estimate to the marginal density estimate. Our proposal is to instead use a two-step estimator, where

the first step consists of estimation of the conditional mean, and the second step consists of estimating

the conditional density of the regression error. If most of the dependence is captured by the conditional

mean, the second step will require less smoothing, thereby reducing estimation variance.

Conditional density estimation was introduced by Rosenblatt (1969). A bias correction was proposed

by Hyndman, Bashtannyk and Grunwald (1996). Fan, Yao and Tong (1996) proposed a direct estimator

based on local polynomial estimation; see also Section 6.5 of Fan and Yao (2003). Bandwidth selection

rules have been proposed by Bashtannyk and Hyndman (2001), Fan and Yim (2004), and Hall, Racine

and Li (2004). The related problem of conditional distribution estimation is examined in Hall, Wolff

and Yao (1999). Other papers have used conditional density estimates as an input to other problems,

including Robinson (1991), Tjostheim (1994), Polonik and Yao (2000) and Hyndman and Yao (2002).

Our two-step conditional density estimator is partially motivated by the two-step conditional vari-

ance estimator of Fan and Yao (1998). They showed that two-step estimation is asymptotically efficient

since the first-step conditional mean estimate does not affect the asymptotic distribution of the second-

step variance estimator. We show here that this property also applies to conditional density estimation.

Our analysis is confined to the case of a real-valued conditioning variable. The generalization to the

case of vector-valued conditioning variables should be straightforward, so long as the conditioning set

for the conditional mean and conditional density are identical. However, if the conditional density of the

regression error has a reduced conditioning set relative to the conditional mean, the analysis changes.

(For example, if the conditional mean has two variables and the conditional error density only one.)

In this case the second-step estimator may not be asymptotically independent of the first-step. More

importantly, it appears that the two-step estimator may achieve an improved convergence rate relative

to the conventional direct estimator. This analysis is more involved and remains to be completed.

Our two-step estimator could also be generalized to three steps, where an intermediate step estimates

the conditional variance. We expect the qualitative analysis to be similar, and conjecture that there

will be further improvements in estimation efficiency. This work remains to be completed.

Furthermore, our discussion is based on local average estimates. Alternatively, the mean, variance,

or density can be estimated using local linear estimators. This should be explored, as local linear

estimators have better bias properties than local averages (and thus have improved efficiency) when

there is non-trivial dependence. Other than changes in the bias expressions, however, we expect that

no important changes will arise in the theory. Again, this work remains to be completed.

The organization of the remainder of the paper is as follows. Section 2 introduces the framework,

Section 3 the one-step estimator, Section 4 the new two-step estimator, and Section 5 compares their

asymptotic biases. Section 6 discusses cross-validation for bandwidth selection. Section 7 presents

simulation evidence, and Section 8 an application to U.S. GDP. Proofs are presented in the Appendix.
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2 Framework

The observables {Yi,Xi} in R × R are strictly stationary and strong mixing. Let f(y, x) and f (y | x)
denote the joint and conditional density functions, and let f(x) denote the marginal density of Xi. The

goal is estimation of f (y | x) .
Our estimators will be based on kernel regression. Let K(x) : R→ R denote a bounded symmetric

kernel function and set σ2K =
R
R u2K(u)du and R(K) =

R
RK(u)2du. For a bandwidth h let Kh(u) =

h−1K (u/h) . Define the derivatives

f (r) (x) =
∂r

∂xr
f (x)

f
(r)
(s) (y | x) =

∂r+s

∂yr∂xs
f (y | x) .

3 One-Step Estimator

Let h1 and h2 be bandwidths. Standard kernel estimators of f(y, x), f(x) and f (y | x) are

f̃(y, x) =
1

n

nX
i=1

Kh2 (x−Xi)Kh1 (y − Yi)

f̃(x) =
1

n

nX
i=1

Kh2 (x−Xi)

and

f̃ (y | x) = f̃(y, x)

f̃(x)
=

nX
i=1

Kh2 (x−Xi)Kh1 (y − Yi)

nX
i=1

Kh2 (x−Xi)

.

Asymptotic approximations show that it it optimal for estimation of f (y | x) to set h1 = c1n
−1/6

and h2 = c2n
−1/6 for c1 > 0 and c2 > 0. Under standard regularity conditions the conditional density

estimator has the asymptotic distribution

n−2/6
³
f̃ (y | x)− f (y | x)

´
→d N

¡
θ1, σ

2
1

¢
where

θ1 =
σ2K

2
√
c1c2

³
c21f

(2) (y | x) + c22f(2) (y | x) + 2c22f(1) (y | x) f (1) (x)
´

and

σ21 =
R(K)2f (y | x)

c1c2f (x)
.

Observe that the rate of convergence is O
¡
n−1/3

¢
, the same as for bivariate density estimation. It

slower than the O
¡
n−2/5

¢
rate obtained for univariate density estimation and bivariate regression.
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4 Two-Step Estimator

Define the conditional mean

m(x) = E (Yi | Xi = x)

so that

Yi = m (Xi) + ei

and ei is a regression error. Letting g (e | x) denote the conditional density of ei given Xi = x, we have

the equivalence

f (y | x) = g (y −m(x) | x) .

From this equation we can see that an alternative method for estimation of f is through estimation of

g and m.

Let b0, b1 and b2 be bandwidths The Nadaraya-Watson estimator of m(x) is

m̂ (x) =

nX
i=1

Kb0 (x−Xi)Yi

nX
i=1

Kb0 (x−Xi)

with residuals

êi = Yi − m̂ (Xi) .

A second-stage estimator of g is

ĝ (e | x) =

nX
i=1

Kb2 (x−Xi)Kb1 (e− êi)

nX
i=1

Kb2 (x−Xi)

.

Together we obtain the two-step estimator

f̂ (y | x) = ĝ (y − m̂(x) | x)

=

nX
i=1

Kb2 (x−Xi)Kb1 (y − m̂(x)− êi)

nX
i=1

Kb2 (x−Xi)

.

Assume that b0 = a0n
−1/5, b1 = a1n

−1/6 and b2 = a2n
−1/6

Theorem 1
n−2/6

³
f̂ (y | x)− f (y | x)

´
→d N

¡
θ3, σ

2
3

¢
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where

θ2 =
σ2k

2
√
a1a2

³
a21g

(2) (e | x) + a22g(2) (e | x) + 2a22g(1) (e | x) f (1) (x)
´

with e = y −m(x) and

σ22 =
R(K)2f (y | x)

a1a2f (x)
.

This result states that the asymptotic distribution of the two-step estimator is unaffected by the first

estimation step. The bandwidth b0 does not enter the first-order approximation, and the distribution

is the same as when the mean m(x) and errors ei are known without estimation. This occurs because

the conditional mean estimator m̂(x) converges at the faster rate of O
¡
n−2/5

¢
.

In the special case that g (e | x) = g(e) does not depend on x, then it is optimal to set b2 = ∞. In

this case we find that the convergence rate improves to O
¡
n−2/5

¢
.

n−2/5
³
f̂ (y | x)− f (y | x)− θ2

´
→d N

¡
θ2, σ

2
2

¢
5 Bias Comparison

Note that the scaled f̂ and f̃ have differing biases. We can compare the latter by observing that

f (2) (y | x) = g(2) (e | x)

f(1) (y | x) = g(1) (e | x)− g(1) (e | x)m(1)(x)

f(2) (y | x) = g(2) (e | x)− g(1) (e | x)m(2)(x) + g(2) (e | x)
³
m(1)(x)

´2
.

Therefore

θ1 =
σ2kc

2
1

2
√
c1c2

g(2) (e | x) +
σ2kc

2
2√

c1c2

³
g(1) (e | x)− g(1) (e | x)m(1)(x)

´
f (1) (x)

+
σ2kc

2
2

2
√
c1c2

µ
g(2) (e | x)− g(1) (e | x)m(2)(x) + g(2) (e | x)

³
m(1)(x)

´2¶
Unlessm(1)(x) = 0, θ1 has more components than θ2, and will typically be larger (for equal bandwidths).

Thus f̂ has lower bias than f̃ , enabling the selection of a larger bandwidth scale a2 for f̂ than b2 for f̃ ,

reducing variance and mean-squared-error.

6 Bandwidth Selection

Fan and Yim (2004) and Hall, Racine and Li (2004) have proposed a cross-validation method appropriate

for nonparametric conditional density estimators. In this section we describe this method and its
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application to our estimators. For an estimator f̃ (y | x) of f (y | x) define the integrated squared error

I =

Z Z ³
f̃ (y | x)− f (y | x)

´2
f(x)dydx

=

Z Z
f̃ (y | x)2 f(x)dydx− 2

Z Z
f̃ (y | x) f (y | x) f(x)dydx+

Z Z
f (y | x)2 f(x)dydx

= I1 − 2I2 + I3.

Note that I3 does not depend on the bandwidths and is thus irrelvant.

Ideally, we would like to pick the bandwidths to minimize I, but this is infeasible as the function

I is unknown. Cross-validation replaces it with an estimate based on the leave-one-out principle. Let

f̃−i (y | x) denote the estimator f̃ (y | X) with observation i omitted. The cross-validation estimators

of I1 and I2 are

Î1 =
1

n

nX
i=1

Z
f̃−i (y | Xi)

2 dy

Î2 =
1

n

nX
i=1

f̃−i (Yi | Xi) .

We then define the cross-validation function as

Î = Î1 − 2Î2.

The cross-validated bandwidths are those which jointly minimize Î.

For the one-step estimator these equal components equal

Î2 =
1

n

nX
i=1

X
j 6=i

Kh2 (Xi −Xj)Kh1 (Yi − Yj)X
j 6=i

Kh2 (Xi −Xj)

and

Î1 =
1

n

nX
i=1

P
j 6=i
P

k 6=iKh2 (Xi −Xj)Kh2 (Xi −Xk)
R
Kh1 (y − Yj)Kh1 (y − Yk) dy³P

j 6=iKh2 (Xi −Xj)
´2

=
1

n

nX
i=1

P
j 6=i
P

k 6=iKh2 (Xi −Xj)Kh2 (Xi −Xk)K√2h1 (Yk − Yj)³P
j 6=iKh2 (Xi −Xj)

´2 ,

the second equality when K(u) = φ(u), the Gaussian kernel.

For the two-step estimator we suggest selecting the bandwidths in two steps. First, the bandwidth b0
may be selected by least-squares cross-validation. Second, (b1, b2) may be selected by using the method

outlined above.
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7 Simulation Evidence

The performance of the nonparametric estimators were compared in a simple stochastic setting. The

data are generated by the process

xi ∼ N(0, 1)

yi | xi ∼ N

µ
β1xi,

1 + β2x
2
i

1 + β2

¶
.

1000 samples of size n = 100 were generated. We vary β1 among 0.1, 1, and 2, and β2 among 0.1 and 1.

On each sample, the one-step estimator f̃ (y | x) and two-step estimator f̂ (y | x) were calculated,
using a Gaussian kernel. We measure accuracy by mean integrated squared error

I(f̃) = 100×E

Z Z ³
f̃ (y | x)− f (y | x)

´2
f(x)dydx

where the integrals are approximated by a 50× 50 grid on (y, x).
The estimators depend critically on the bandwidths h = (h1, h2) and b = (b0, b1, b2). For our first

comparison, we use the infeasible oracle bandwidth. This is the bandwidth which minimizes the finite

sample MISE. This enables a comparison of the estimation methods free of dependence on bandwidth

selection methods.

For the two estimators Table 1 reports the MISE and the oracle bandwidths. The results are as

expected. For the case of small conditional mean effect (β1 = 0.1), then the two estimators perform

similarly in terms of MISE. However, if the conditional mean effect is non-trivial, then the two-step

estimator f̂ has much smaller MISE. The reduction in MISE is as much as 50%.

Table 1
Mean Integrated Squared Error Using Oracle Bandwidth

n = 100

β1 β2 I(f̃) I(f̂) h1 h2 b0 b1 b2

0.1 0.1 0.59 0.56 .46 1.64 1.16 .47 2.61

1.0 0.1 1.46 0.82 .57 .35 .38 .48 1.34

2.0 0.1 2.15 1.05 .64 .21 .29 .50 1.09

0.1 1.0 1.18 1.18 .44 .66 8.49 .44 .66

1.0 1.0 2.01 1.39 .49 .32 .51 .45 .58

2.0 1.0 2.88 1.57 .56 .20 .37 .46 .53

For our second comparison, we use data-dependent bandwidths. For the one-step estimator f̃ we

use the cross-validated bandwidth. For the two-step estimator f̂ we use sequential bandwidths. The

bandwidth b̂0 is selected by least-squares cross-validation for the mean, and (b̂1, b̂2) are selected by

conditional density cross-validation using the estimated residuals.
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Table 2 reports the MISE for the two estimators. It also reports the median data-dependent band-

widths. The qualitative results are similar to those for the optimal bandwidths, with the notable change

that the improvement of the two-step estimator relative to the one-step estimator has been reduced.

For the cases with small conditional mean effect (β1 = 0.1) the MISE is even somewhat higher for f̂

than for f̃ , but in the other cases f̂ has much lower MISE. This suggests that further investigation into

bandwidth selection may yield further improvements.

Table 2
Mean Integrated Squared Error Using Data-Dependent Bandwidths

n = 100

β1 β2 I(f̃) I(f̂) ĥ1 ĥ2 b̂0 b̂1 b̂2

0.1 0.1 1.07 1.26 .48 1.48 1.27 .46 4.37

1.0 0.1 1.96 1.34 .61 .39 .38 .44 4.02

2.0 0.1 2.63 1.84 .69 .23 .27 .43 2.21

0.1 1.0 1.71 1.96 .44 .77 1.27 .42 .89

1.0 1.0 2.59 2.28 .53 .38 .40 .41 .97

2.0 1.0 3.44 2.36 .60 .22 .30 .41 .94

8 Application to U.S. GDP Growth

Our first illustration is a time-series application. Let Yt denote U.S. quarterly real GDP and let yt =

100(ln(Yt) − ln(Yt−1)) denotes its growth rate. We are interested in estimation of the one-step ahead
conditional density f(yt | yt−1). Due to strong evidence of a shift in variance in the early 1980s, we use
the sample period 1983:1-2004:3 which results in a small sample.

First, for a baseline we take the linear Gaussian model, for which least-squares yield the estimate

f̂0(yt | yt−1) = φ0.5 (yt − .5− .4yt−1) .

Second, we estimate f(yt | yt−1) using the one-step estimator with cross-validated bandwidth, and
let this estimate be denoted as f̂1(yt | yt−1). The cross-validated bandwidths are h1 = .26 and h2 = .20.

Third, we estimate the conditional density using the two-step estimator with sequential cross-

validated bandwidth, and denote this estimator as f̂2(yt | yt−1). The cross-validated bandwidths are
h0 = .15, h1 = .21 and h2 = 592. The latter value of h2 means that cross-validation eliminates the

conditional smoothing in the second step, so the estimated conditional density only depends on yt−1

through the estimated conditional mean. This is not surprising due to our application to a small sam-

ple. This also highlights an important distinction between the one-step and two-step estimators, as the

former does not have this flexibility.
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Figures 1 through 4 display the three density estimates as a function of yt for four fixed values of

yt−1. In general, the three estimators differ from one another. In particular, the inefficient one-step

estimator appears to be mis-centered and over-dispersed in Figure 1 (yt−1 = .2), and in all cases has a

thicker right tail than the two-step estimator.

9 Application to Wage Distrbiution

Our second illustration is a cross-section application, the conditional density of log-wages given age.

For individual i let Yi denote log wages and Xi denote Age. We take our data from the 1995 Current

Population Survey, March Supplement. Our sample consists of the 2128 men aged 18 to 65 who are

working (not self-employed) with positive reported earnings who have a high school diploma but no

college education.

Again, we estimate f(y | x) using the one-step and two-step estimators with cross-validated band-
widths, denoted as f̂1(y | x) and f̂2(y | x). The one-step cross-validated bandwidths are h1 = 0.104 and
h2 = 2.401. The two-step cross-validated bandwidths are b0 = 2.07, b1 = 0.082 and b2 = 4.87. As in the

prior application, b2 > h2, meaning that less smoothing is done in the second step than by the one-step

estimator.

Figures 5 through 8 display the two density estimates as a function of y for four fixed age levels,

x = 25, 35, 45 and 55. The two estimators differ from one another, with the two-step estimator typically

more peaked.
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10 Appendix

The proofs contained here are incomplete sketches, and omit regularity conditions.

We first state two results from Hansen (2004).

Lemma 1 Let

Ĝ(x, z) =
1

h1h2n

nX
i=1

ψ (Yi,Xi, Zi)G1

µ
x−Xi

h1

¶
G2

µ
z − Zi

h2

¶
.

Under regularity conditions

sup
x∈R,z∈R

¯̄̄
Ĝ(x, z)−EĜ(x, z)

¯̄̄
= Op

Ãµ
logn

h1h2n

¶1/2!
.

Let δn = (logn)
−1/2 and define the set

Sn =

½
x ∈ R : f(x) ≥ δn and

¯̄̄̄
d3

dx3
m(x)

¯̄̄̄
≤ δn

¾
.

Lemma 2 Uniformly for x ∈ Sn

m̂(x)−m(x) = f(x)−1
1

n

nX
i=1

Kb0 (x−Xi) ei−b20σ2kf(x)−1
³
f (1)(x)m(1)(x) +m(2)(x)

´
+Op

³
(logn)n−3/5

´
.

Define

ĝ∗ (e | x) =

nX
i=1

Kb2 (x−Xi)Kb1 (e− ei)

nX
i=1

Kb2 (x−Xi)

.

Lemma 3 Uniformly for e, x ∈ R× Sn

ĝ (e | x)− ĝ∗ (e | x) = Op((logn)
1/2 n−2/5)

Proof. Observe that

ĝ (e | x)− ĝ∗ (e | x) = B−1n An

An =
1

n

nX
i=1

Kb2 (x−Xi) (Kb1 (e− êi)−Kb1 (e− ei))

Bn =
1

n

nX
i=1

Kb2 (x−Xi) .

Since

EKb2 (x−Xi) = f(x) +O(b22) = f(x) +O
³
n−1/3

´
10



then using Lemma 1, uniformly in x ∈ R

Bn = f(x) +O
³
n−1/3

´
+Op

Ãµ
logn

b2n

¶1/2!
= f(x) +Op

³
n−1/3

´
and by a Taylor expansion, uniformly for x ∈ Sn

B−1n − f(x)−1 = Op

³
δ−2n n−1/3

´
.

Next, to decompose An, first observe that by a Taylor expansion

Kb1 (e− êi)−Kb1 (e− ei) ' K
(1)
b1
(e− ei) (ei − êi)

=
1

b21
K(1)

µ
e− ei
b1

¶
(m̂ (Xi)−m (Xi)) .

Second, by Lemma 2, uniformly in i

m̂ (Xi)−m (Xi) = f (Xi)
−1 1

nb0

nX
j=1

K

µ
Xi −Xj

b0

¶
ej

−b20σ2kf(Xi)
−1
³
f (1)(Xi)m

(1)(Xi) +m(2)(Xi)
´

+Op

³
(logn)n−3/5

´
.

Together

An ' 1

n

nX
i=1

Kb2 (x−Xi)
1

b21
K(1)

µ
e− ei
b1

¶
⎡⎣f (Xi)

−1 1

nb0

nX
j=1

K

µ
Xi −Xj

b0

¶
ej − b20σ

2(K)f(Xi)
−1f (1)(Xi)m

(1)(Xi) +Op

³
(logn)n−3/5

´⎤⎦
=

1

n2b0b21b2

X
1≤i6=j≤n

K

µ
x−Xi

b2

¶
K(1)

µ
e− ei
b1

¶
K

µ
Xi −Xj

b0

¶
f (Xi)

−1 ej

+
K(0)

n2b0b21b2

nX
i=1

K

µ
x−Xi

b2

¶
K(1)

µ
e− ei
b1

¶
f (Xi)

−1 ei

− b20σ
2
k

nb21b2

nX
i=1

K

µ
x−Xi

b2

¶
K(1)

µ
e− ei
b1

¶
f(Xi)

−1f (1)(Xi)m
(1)(Xi)

− b20σ
2
k

nb21b2

nX
i=1

K

µ
x−Xi

b2

¶
K(1)

µ
e− ei
b1

¶
f(Xi)

−1m(2)(Xi)

+
1

nb21b2

nX
i=1

K

µ
x−Xi

b2

¶
K(1)

µ
e− ei
b1

¶
Op

³
(logn)n−3/5

´
= A1n +A2n +A3n +A4n +A5n
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say. We now examine the four terms on the right-hand-side, in reverse

First, observe that

E
1

b21b2

µ
K

µ
x−Xi

b2

¶
K(1)

µ
e− ei
b1

¶¶
=

1

b21b2

Z Z
K

µ
x− u

b2

¶
K(1)

µ
e− v

b1

¶
g (v | u) f(u)dvdu

=
1

b1

Z Z
K (u)K(1) (v) g (e− b1v | x− b2u) f (x− b2u) dvdu

= −
Z

K(1) (v) vg(1) (e | x) f(x)dv +O
¡
b21
¢
+O

¡
b22
¢

= g(1) (e | x) f(x) +O
³
n−1/3

´
Thus using Lemma 1

A5n =

Ã
g(1) (e | x) f(x) +O

³
n−1/3

´
+
1

b1
Op

Ãµ
logn

b1b2n

¶1/2!!
Op

³
(logn)n−3/5

´
= Op

³
(logn)n−3/5

´
Second,

E
b20
b21b2

K

µ
x−Xi

b2

¶
K(1)

µ
e− ei
b1

¶
f(Xi)

−1f (1)(Xi)m
(1)(Xi)

=
b20
b21b2

Z Z
K

µ
x− u

b2

¶
K(1)

µ
e− v

b1

¶
f (1)(u)m(1)(u)g (v | u) dvdu

= b20f
(1)(x)m(1)(x)g(1) (e | x) +O

³
n−2/3

´
= O(n−2/5)

so by Lemma 1

A3n = O(n−2/5) +
b20
b1
Op

Ãµ
logn

b1b2n

¶1/2!
= Op(n

−2/5)

Third, similarly,

E
1

b0b21b2
K

µ
x−Xi

b2

¶
K(1)

µ
e− ei
b1

¶
f (Xi)

−1 ei = O

µ
1

b0

¶
Thus

EA2n = O

µ
1

nb0

¶
= O

³
n−5/6

´
and

A2n = O
³
n−5/6

´
+

1

nb0b1
Op

Ãµ
logn

b1b2n

¶1/2!
= O

³
n−5/6

´
.

Finally, we turn to A1n. Note that EA1n = 0. A tedious argument [to be completed] bounds E(A21n).
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Together, we have An = Op(n
−2/5) and hence

ĝ (e | x)− ĝ∗ (e | x) =
³
f(x)−1 +Op

³
δ−2n n−1/3

´´
Op(n

−2/5)

= Op((logn)
1/2 n−2/5)

¥

Proof of Theorem 1. By Lemma 3,

f̂ (y | x) = ĝ (y − m̂(x) | x)
= ĝ∗ (y − m̂(x) | x) +Op((logn)

1/2 n−2/5).

By a Taylor expansion

|ĝ∗ (y − m̂(x) | x)− ĝ∗ (y −m(x) | x)| ≤ sup
e,x

¯̄̄̄
∂

∂e
ĝ∗ (e | x)

¯̄̄̄
|m̂(x)−m(x)|+Op((logn)

1/2 n−2/5)

= Op((logn)
1/2 n−2/5)

Hence

f̂ (y | x) = ĝ∗ (e | x) +Op((logn)
1/2 n−2/5)

with e = y −m(x) and therefore

n−2/6
³
f̂ (y | x)− f (y | x)

´
= n−2/6 (ĝ∗ (e | x)− g (e | x)− θ2) +Op((logn)

1/2 n2/6−2/5)

→d N
¡
θ2, σ

2
2

¢
as the asymptotic distribution of ĝ∗ is well known. ¥
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