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Abstract

In this paper we examine tests for cointegration which allow for the possibility of regime
shifts. We propose ADF-, Z -, and Ztype tests designed to test the null of no cointegration
against the alternative of cointegration in the presence of a possible regime shift. In
particular we consider cases where the intercept and/or slope coefficients have a single
break of unknown timing. A formal proof is provided for the limiting distributions of the
various tests for the regime shift model (both a level and slope change). Critical values are
calculated for the tests by simulation methods and a simple Monte Carlo experiment is
conducted to evaluate finite-sample performance. In the limited set of experiments, we find
that the tests can detect cointegrating relations when there is a break in the intercept and/or
slope coefficient. For these same experiments, the power of the conventional ADF test
with no allowance for regime shifts falls sharply. As an illustration we test for structural
breaks in the U.S. long-run money-demand equation using annual and quarterly data.
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1. Introduction

It is now routine for researchers to test for cointegration when working with
multivariate time series. The most widely applied tests are residual-based ones in
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which the null hypothesis of no cointegration is tested against the alternative
that the relation is cointegrated in the sense of Engle and Granger (1987),
meaning that a linear combination of the integrated variables has a stationary
distribution. A large sample distribution theory for this class of tests has been
studied by Phillips and Ouliaris (1990). Rejection of the null hypothesis in this
context implies the strong result that the variables are cointegrated. Acceptance
of the null hypothesis is often taken as evidence of the lack of cointegration.

While these tests and the associated distributional theory are appropriate for
the precise question of no cointegration versus cointegration, there are many
related questions which may appear quite similar, but actually require a differ-
ent set of tests and distributional theory. In this paper we are concerned with the
possibility of a more general type of cointegration, where the cointegrating
vector is allowed to change at a single unknown time during the sample period.
While our null hypothesis (no cointegration) is the same, our alternative hypo-
thesis is different than the conventional tests. Indeed, we extend the class of
models under consideration, since our alternative hypothesis contains the
Engle-Granger model as a special subcase.

The motivation for the class of tests considered here derives from the conven-
tional notion of regime change. In some empirical exercises, a researcher may
wish to entertain the possibility that the series are cointegrated, in the sense that
a linear combination of the nonstationary variables is stationary, but that this
linear combination (the cointegrating vector) has shifted at one unknown point
in the sample. In this context, the standard tests for cointegration are not
appropriate, since they presume that the cointegrating vector is time-invariant
under the alternative hypothesis. A class of residual-based tests for cointegration
are needed which include in the alternative hypothesis the models considered
here.

Specifically, we propose extensions of the ADF, Z,,, and Z, tests for cointegra-
tion. Our tests allow for a regime shift in either the intercept alone or the entire
coefficient vector, and are noninformative with respect to the timing of the
regime shift. This prevents informal data analysis (such as the visual examina-
tion of time series plots) from contaminating the choice of breakpoint. The tests
of this paper can be viewed as multivariate extensions of the univariate tests of
Perron (1989), Banerjee, Lumsdaine, and Stock (1992), Perron and Vogelsang
(1992), and Zivot and Andrews (1992). These papers tested the null of a unit root
in a univariate time series against the alternative of stationarity, while allowing
for a structural break in the deterministic component of the series. In fact, some
results of these papers can be viewed as special cases of our results, when the
number of stochastic regressors is taken to be zero.

The asymptotic distributions of the test statistics are derived. We find that the
asymptotic distributions of the proposed test statistics are free of nuisance
parameter dependencies, other than the number of stochastic and deterministic
regressors. The distributional theory is more involved than the theory for the
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conventional cointegration model (see Phillips and Ouliaris, 1990) due to the
inclusion of dummy variables and the explicit minimization over the set of
possible breakpoints. It should be emphasized that our results are more general
than the other results which have appeared in the literature on breaking trends
and unit roots. Zivot and Andrews (1992) provided a rigorous proof for the
simple Dickey—Fuller statistic in the univariate case, under the assumption of
iid innovations. In contrast, we examine the more cumbersome Phillips Z,
and Z, tests in the multivariate case, while allowing for general forms of
serial correlation in the innovations through the use of mixing conditions. (We
do not, however, examine the most difficult test — the Augmented Dickey—Fuller
statistic.)

Since there are no closed-formed solutions for the limiting distributions,
critical values for up to four regressors are calculated for the tests by simulation
methods. Also, since the computational requirements from recursive calcu-
lations are extremely high, preventing simulations with large sample sizes, we
follow MacKinnon (1991) and estimate response surfaces to approximate the
appropriate critical values. We evaluate the finite-sample performance of the
tests using Monte Carlo methods based upon the experimental design of Engle
and Granger (1987). In a limited set of experiments, we find the tests can detect
cointegrating relations when there is a break in the intercept and/or slope
coefficient. For these same experiments, the power of the conventional ADF test
with no allowance for regime shifts falls sharply.

The tests of the present paper are clearly useful in helping lead an applied
researcher to a correct model specification. Many researchers start a cointegra-
tion analysis with the usual augmented Dickey—Fuller (ADF) test, and proceed
only if the statistic rejects the null of no cointegration. If the model is indeed
cointegrated with a one-time regime shift in the cointegrating vector, the
standard ADF test may not reject the null and the researcher will falsely
conclude that there is no long-run relationship. Indeed, Gregory, Nason, and
Watt (1994) have shown that the power of the conventional ADF test falls
sharply in the presence of a structural break. In contrast, if the tests of the
present paper are employed, there is a better chance of rejecting the null
hypothesis, leading to a correct model formulation.

The tests of this paper are complementary to those of Hansen (1992a) and
Quintos and Phillips (1993). These papers developed tests of the hypothesis
of time invariance of the coefficients of a cointegrating relation. Their null
hypothesis is Engle-Granger cointegration, while our null hypothesis is no
cointegration. The tests of Hansen and Quintos—Phillips are best viewed as
specification tests for the Engle-Granger cointegration model. In contrast, the
tests of this paper are tests for cointegration, and are therefore best viewed as
pre-tests akin to the conventional residual-based cointegration tests.

As an illustration of the techniques, we test for structural breaks in the U.S.
long-run money-demand equation using annual and quarterly data. Qur results
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are consistent with those of Gregory and Nason (1992), who found some
evidence of instability in the long-run relationship.

The organization of the paper is as follows. In Section 2 we develop several
single-equation regression models which allow for cointegration with structural
change. In Section 3 we describe various tests for the null of no cointegration
with power against the structural change alternatives outlined in Section 2.
Section 4 contains the asymptotic distribution theory for the tests. Critical
values are calculated using simulation methods. Section 5 assess the finite-
sample properties of the structural change tests in a simple Monte Carlo
experiment, and Section 6 examines an illustrative empirical example based
upon money demand. Finally, in Section 7 we close with some concluding
remarks.

2. Model

In this section we develop single-equation regression models which allow for
cointegration with structural change. The observed data is y, = (y1,, ¥2:), Where
¥1.1s real-valued and y,, is an m-vector. We commence with the standard model
of cointegration with no structural change.

Model I: Standard cointegration
ylt:ﬂ+“Ty2t+et, t:1’ PERIPN (% (21)

where y,, is I(1) and e, is I(0). In this model the parameters 4 and « describe the
m-dimensional hyperplane towards which the vector process y, tends over time.
Engle and Granger (1987) describe cointegration as a useful model for ‘long-run
equilibrium’.

In many cases, if model 1 is to capture a long-run relationship, we will want to
consider p and « as time-invariant. But in other applications, it may be desirable
to think of cointegration as holding over some (fairly long) period of time, and
then shifting to a new ‘long-run’ relationship. We treat the timing of this shift as
unknown . The structural change would be reflected in changes in the intercept
u and/or changes to the slope .

To model structural change, it is useful to define the dummy variable:

0 if t<[n1],
"1 i > [nt],

where the unknown parameter 7 € (0, 1) denotes the (relative) timing of the
change point, and [ ] denotes integer part.

Structural change can take several forms, of which three are discussed here.
A simple case is that there is a level shift in the cointegrating relationship, which
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can be modeled as a change in the intercept u, while the slope coefficients « are
held constant. This implies that the equilibrium equation has shifted in a parallel
fashion. We call this a level shift model denoted by C.

Model 2. Level shift (C)
V=M ¥ Qe+ Yy te,  t=1,..,n 22

In this parameterization u, represents the intercept before the shift, and u, rep-
resents the change in the intercept at the time of the shift. We can also introduce
a time trend into the level shift model.

Model 3: Level shift with trend (C/T)
Vu=p @t frtalyyte, =1 ..,n (22)

Another possible structural change allows the slope vector to shift as well.
This permits the equilibrium relation to rotate as well as shift parallel. We call
this the regime shift model.

Model 4: Regime shift (C/S)
Yie= 1 + 2 P+ 21 Y2+ 02 V2 Pre T €5 t=1...,n (23)

In this case i, and p, are as in the level shift model, «; denotes the cointegrating
slope coefficients before the regime shift, and «, denotes the change in the slope
coefficients.

The standard methods to test the null hypothesis of no cointegration (derived
in the context of model 1) are residual-based. The candidate cointegrating
relation is estimated by ordinary least squares (OLS), and a unit root test is
applied to the regression errors. In principle the same approach could be used
for testing models 24, if the timing of the regime shift t were known a priori. We
take the view that such break points are unlikely to be known in practice
without some appeal to the data. Indeed much of the debate about whether
there was a regime shift in U.S. GNP around 1929 (as identified in Perron, 1989)
can only be resolved conditional on the data (see Banerjee, Lumsdaine, and
Stock, 1992; Christiano, 1992; Zivot and Andrews, 1992). Similar problems
occur in testing for regime shifts in cointegrated models and so we develop tests
procedures that do not require information regarding the timing of or indeed the
occurrence of a break.

This completes the description of the structural change models under cointeg-
ration. In the next section we analyze some tests designed to detect cointegration
in the possible presence of such breaks.
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3. Testing the null of no cointegration

Hansen (1992a) constructed tests of model 1 against the alternative of model
4. A statistically significant test statistic in this context would be taken as
evidence against the standard cointegration model in favor of the regime shift
model. However, before calculating such a test, an applied econometrician
might wish to apply a conventional test for cointegration, such as the ADF test,
in the context of model 1. If the true process is represented by model 4, and not
model 1, the distributional theory used to assess the significance of the ADF test
statistic is not same. In this section we develop such tests of the null of no
cointegration against the alternatives in models 2-4.

Define the innovation vector u, = A4y, its cumulative process S, = Ziz LU
(so y, = yo + S,), and its long-run variance Q = lim, n~' ES,S,. When u, is
covariance-stationary, Q is proportional to the spectral density matrix evaluated
at the zero frequency.

Our null hypothesis is that model 1 holds with ¢, = I(1) . This implies that
@ > 0. We include this aspect of the null hypothesis in the following regularity
conditions:

Assumptions:

(@) {u} is mean-zero and strong mixing with mixing coefficients of size
— pB/p — PB), and E|u)” < oo for some p > B > 3.

(b) The matrix Q exists with finite elements and Q > 0.

(€) yo is a random vector with E|y,| < cc.

The solution we adopt to handling regime shifts is similar to that of Banerjee,
Lumsdaine, and Stock (1992) and Zivot and Andrews (1992). We compute the
cointegration test statistic for each possible regime shift 7€ T, and take the
smallest value (the largest negative value) across all possible break points. In
principle the set T can be any compact subset of (0, 1). In practice, it will need to
be small enough so that all of the statistics discussed here can be calculated. For
example T = (0.15, 0.85) seems a reasonable suggestion, following the earlier
literature. Although T contains an uncountable number of points, all the
statistics that we consider are step functions on T, taking jumps only on the
points {i/n, i integer}. For computational purposes, the test statistic is computed
for each break point in the interval ([0.15#1], [0.85n]).

We now describe the computation of the test statistics. For each 1, esti-
mate one of the models 2—4 (depending upon the alternative hypothesis under
consideration) by OLS, yielding the residual é,. The subscript ¢ on the
residuals denotes the fact that the residual sequence depends on the choice
of change point 7. From these residuals, calculate the first-order serial
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correlation coefficient

n—1

Z e!ret+1t1 Z err

t=1 ! t=1

The Phillips (1987) test statistics are formed using a bias-corrected version of
the first-order serial correlation coefficient. Define the second-stage residuals

A

a P
Vie = €1 — Pr€t—11

The correction involves the following estimate of a weighted sum of
autocovariances:

o M j
/11: = Z w (M) ')?t(j)a

where

1 »
' == Z "t'j!f)tt’
nL=iy

and M = M(n) is the bandwidth number selected so that M — oo and
M/n> = O(1). This latter requirement may be stronger than necessary, but
simplifies our proof, and should not be taken as a serious implication as
a practical selection guideline. We allow the kernel weights w(*) to satisfy the
standard conditions for spectral density estimators. The estimate of the long-run
variance of ¥,, is

82 = 9.(0) + 27..

In this paper the long-run variance is estimated using a prewhitened quadratic
spectral kernel with a first-order autoregression for the prewhitening and an
automatic bandwidth estimator (see Andrews, 1991; Andrews and Monahan,
1992; for details).

The bias-corrected first-order serial correlation coefficient estimate is given by

n—1 R /n—1
= Z {éitéH' 1t = /“t) / z A12
/=1

t=1

The Phillips test statistics can be written as

Z,(t) = n(p¥ — 1),
/n—l
Z@)=(pr - 1)s., $i=67] Y &
[

The final statistic we discuss is the augmented Dickey-Fuller (ADF) statistic.
This is calculated by regressing Aé,, upon é,_,.and 4¢é,_,,, ..., Aé,_g, for some
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suitably chosen lag truncation K. The ADF statistic is the t-statistic for the
regressor &, .. We denote this by

ADF (1) = tstat(é, - 1.).

These test statistics are now standard tools for the analysis of cointegrating
regressions without regime shifts. Our statistics of interest, however, are the
smallest values of the above statistics, across all values of 1 € T. We examine the
smallest values since small values of the test statistics constitute evidence against
the null hypothesis. These test statistics are

Z¥* = inf Z,(z), (3.1)
1eT
Z* = inf Z,(7), (3.2)
1eT
ADF* = inf ADF(1). (3.3)
1eT

4. Asymptotic distributions

We follow much of the recent literature and give asymptotic distributions for
the test statistics which are expressed as functionals of Brownian motions. This
gives simple expressions for the limit distributions. Since they are not given in
closed-form, however, we use simulation methods to obtain critical values.

The theorem we give below applies to the models discussed in Section 2,
although our formal proof is for a specialized case to minimize space. We also
examine formally only the Z} and Z} tests, since these are more straightforward
to analyze. We expect that the limiting distribution of ADF* is identical to Zf.

The proof of the theorem is contained in the Appendix. Some comments on
the proof method are warranted. If we were fixing t a priori, then the proof
would be a fairly straightforward extension of Phillips and Ouliaris (1990). Our
statistics, however, are a function of every pointwise test statistic, considered as
a function of 7. This requires the distributional results to hold uniformly over z.
This difficulty was rigorously addressed by Zivot and Andrews (1992) in the
context of testing for an autoregressive unit root. They handled the problem
by considering the test statistics as functions of the indicator function ¢,,. Since
the latter is discontinuous (even asymptotically), this required that they avoid
the uniform metric, which complicated their analysis. Their approach also made
the handling of serial correlation (and the appropriate corrections) more diffi-
cult, so their proof only dealt with iid error terms. As an alternative to the
Zivot—Andrews proof method, we construct our proof in such a way as to avoid
reference to the discontinuous function ¢, allowing the use of the uniform
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metric, and allowing for general forms of serial correlation (and the appropriate
corrections).

Theorem. Under the null hypothesis,
1 1
Z¥—, inf [ W.dW, /j' w?
teT g [
and

1 Tt 172
2t —uinf | WV, | [; Wz] [+ ! Do 12,
Q

teT g

where

1 1 -1

Wt(r) = Wl(r) - 5 Wl W;t l:s WZr —ZFI:I WZt(r),
0 0
-11

1
Ky = l:_[ WZrWZTr] 5 WZrWIa
0 0

and W ,.(r) and D, depend on the model. If the residuals are from OLS estimation of
model 2, then

WZr(r) = [1’ %("), W;(r)’]Ta
where @ (r) = {r = t} (the braces { } refer to the indicator function), and

00
D, = .
! (0 1,,,)

If the residuals are from OLS estimation of model 3, then
WZr(r) = [1, r, (ﬂt(r)a VV;(”);IT

0 0
D‘_(o 1,,,)‘

If the residuals are from OLS estimation of model 4, then
Wlt(r) = []a (ﬂt(r)a W;(r)s W;(r) ¢r(")]7

and

and
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Calculating critical values

One standard way in which critical values have been obtained in situa-
tions where no closed-form expressions exist is to simulate a test statistic for a
large sample size for a large number of replications. In the present example, we
are unable to use large sample sizes since the recursive calculations which are
required over the sample are particularly time-consuming on even fast
computers. For instance, with n= 300 and 10,000 replications it took a
GATEWAY2000 486/33C over a week to do the relevant calculations for
the one regressor case (m = 1). To reduce the computational requirements we
adopt a procedure due to MacKinnon (1991). Using 10, 000 replications for
each of the sample sizes n = 50, 100, 150, 200, 250, and 300 we obtain critical
values, Crt(n, p, m), where p is the percent quantile and m is the number of
regressors in the equation (excluding a constant and/or trend). We then estimate
by ordinary least squares for each p and m the response surface

Cri(n,p,m) = Yo + Y n~ ' + error.

Various other functional relations were tried (involving n™ "%, n™% n™>/?) but
this one appeared to have the best fit (R*’s were generally over 0.98). The
asymptotic critical value is taken to be the OLS estimate to. While this
specification of the critical values seemed best overall, estimates of y, changed
on occasion by a factor of 2 under alternative specifications. Results for
p = 0.01,0.025, 0.05, 0.10, and 0.975 and m = 1, 2, 3, 4 are presented in Table 1.
The symbols C, C/T, and C/S refer to breaks in the constant (C) and slope
coefficient (S) as defined in models 2-4.

5. A simple Monte Carlo experiment

In order to gauge the finite-sample properties of the proposed test, we conduct
a simple Monte Carlo experiment based upon the design of Granger and Engle
(1987) and also used in Banerjee, Dolado, Hendry, and Smith (1986). The model
in the absence of structural change is

YVie = I+2 Yo+ & &=pg_y+ ‘91’ S,NNID(O, 1)9
Viu=Yu+th, N =0_-1+w, o~NID@O,1),

where y,, is scalar (m = 1). We first consider the size of the various tests with
p =1, so that the null of no cointegration is true. In Table 2 we report the
rejection frequencies in 2500 replications at the 5% level of significance (we also
did 1% and 10%, and these are available upon request) using critical values
from Table 1. Two sample sizes (n = 50 and 100) are considered. Z¥, Z¥, and
ADF?* are the test statistics defined in Eqgs. (3.1)—(3.3) respectively, and ADF is
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Approximate asymptotic critical values

Level 001 0.025 0.05 0.10 0975
m=1 ADF*, Z*

C —5.13 —483 — 461 —434 ~ 225

C/T — 545 — 521 — 499 —a7 —2m

C/S _ 547 519 — 495 — 468 — 255

Z*

c — 5007 — 4501 — 40.48 —36.19 ~10.63

C/T —57.28 ~ 5209 — 4796 — 4322 —~ 1590

C/S 5717 5132 — 47.04 — 4185 ~13.15
m=2 ADF*, Z*

C — 544 —5.16 —492 — 469 — 261

C/T —5.80 — 551 529 ~ 503 —301

C/S — 597 —573 — 550 —523 312

Z*

C — 5701 —51.41 — 4698 4249 — 1427

C/T — 64.77 — 5857 ~ 5392 — 4894 —19.19

C/s — 6821 — 6328 — 5833 — 5285 1972
m=13 ADF*. Z*

C —577 —5.50 ~ 528 — 502 ~296

C/T — 605 579 - 557 533 —333

C/s —6.51 623 ~ 600 — 575 — 365

Z*

C ~ 63.64 — 5796 — 53.58 — 4865 ~ 1820

/T — 7027 — 6426 ~ 5976 — 5494 —27n

c/s ~ 80.15 — 7391 — 68.94 6342 — 26.64
m=4 ADF*, Z*

C ~ 605 — 580 —5.56 — 531 ~3.26

C/T ~ 636 — 607 ~ 583 ~5.59 —3.59

C/s — 692 —6.64 — 641 —6.17 412

Z*

C ~70.18 —64.41 ~ 59.40 — 5438 — 2204

C/T ~ 76.95 ~70.56 6544 —60.12 —26.46

C/s ~90.35 — 84.00 — 7852 —72.56 ~ 3369

These critical values are based on the response surface

Crt=y,+y, n" " +error,

where Crt is the critical value obtained from 10,000 replications at sample size n = 50, 100,
150. 200, 250, 300. The asymptotic critical value is the ordinary least squares estimate (OLS) of .
Z¥ Z¥ and ADF* are the test statistics defined in Eqs. (3.1)(3.3), respectively. The symbols C, C/T,

and C/S refer to models 2-4, respectively.
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the usual augmented Dickey—Fuller statistic (t = 1). The symbols C and C/T for
the usual ADF refer to regressions with a constant and a constant and a trend.
For ADF* and ADF the lag length K is selected on the basis of a ¢-test following
a procedure similar to Perron and Vogelsang (1992). We set K., to 6 and then
test downward (reducing K) until the last lag of the first difference included is
significant at the 5% level using normal critical values. Typically over all the
experiments including those with regime shifts, K was 0 or 1 but on occasion this
procedure led to lags of 6 being chosen.

From the size experiments (p = 1), we see that the ADF*, ZF, and the
standard ADF tests are all biased away from the null. On the other hand, Z, is
biased towards the null, particularly at sample size n = 50. Also the size
distortion is larger for the ADF* compared to the standard ADF. In light of the
different size properties of the tests, in the remaining experiments where the
variables are cointegrated (with possible breaks), we calculate both nominal and
size-adjusted (in parentheses in the tables) power. The size adjustments are made
on the basis of the p = 1 results of Table 2.

Turning to power in the usual cointegration setting (model 1) we let p = G and
p = 0.5 (Table 2). With p = 0, the Z}¥ and Z¥ have highest size-adjusted power
with the standard ADF and the ADF* being roughly comparable and much
lower. Typically, the addition of the dummy variables lowered the lag length
chosen in these tests. Clearly from the perspective of power, faulty inclusion (i.e.,
including unnecessary regressors to capture breaks that do not exist) is not
a problem. As we would expect, all tests have lower power at sample size n = 50
when the error in the cointegrating regression is serially correlated (see Gregory,
1994). Interestingly with p = 0.5, the power (both nominal and size-adjusted) are
close for all the tests with the exception of the much smaller nominal power for
Z, at n = 50. There is also the tendency with more serial correlation for the
relative power decline to be larger at the smaller sample size for the structural
break tests for cointegration than the standard ADF tests.

We postulate a simple structural break for the intercept and then just the
slope (Table 3),

Vie= U + 0 Y2, + &,

o=, w=oy if < [on],
= U, = if t>[Tn],

& = 0.58,;1 + 191,
Yu=Yatth, #H=H-1+o.

The two errors 9, and w, are uncorrelated and distributed as NID(0,1). Since in
applied work the errors are likely to be serially correlated, we make the break
experiments similar in structure to those in Table 2 with p = 0.5. A break point
occurs at 7 = 0.25, 0.5, and 0.75.
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Table 2
Testing for cointegration with no regime shifts

Vu=1+2y, +e, ¢e=pe_,+38, §~NIDO,1)
Yiu=Vut+n, m=n_,+o, o~NIDQO1)

p=10 p=0 p=05

n=>50 n=100 n=>50 n =100 n =50 n =100
ADF*
C 0.17 0.13 0.85 (0.77) 0.86 (0.82) 0.49 (0.24) 0.89 (0.81)
C/T 0.16 0.13 0.82 (0.64) 0.86 (0.82) 0.40 (0.17) 0.87 (0.72)
C/S 0.13 0.10 0.87 (0.79) 0.89 (0.86) 0.40 (0.22) 0.88 (0.82)
z;
C 0.11 0.09 0.99 (0.99) 1.0 (1.0) 0.58 (0.37) 0.98 (0.95)
C/T 0.14 0.12 0.98 (0.92) 1.0 (1.0) 0.52 (0.26) 0.96 (0.88)
C/S 0.11 0.09 0.99 (0.97) 1.0 (1.0 0.50 (0.32) 0.97 (0.93)
Z*
C 0.01 0.04 0.82 (0.96) 1.0 (1.0) 0.11(036) 093 (0.94)
C/T 0.00 0.03 0.39 (0.89) 1.0 (1.0) 0.02 (0.27) 0.79 (0.85)
C/S 0.00 0.03 0.57 (0.95) 1.0 (1.0) 0.03 (0.33) 0.84 (0.92)
ADF .
C 0.08 0.07 0.64 (0.61) 081 (0.78) 0.56 (045)  0.84 (0.82)
C/T 0.1 0.08 0.60 (0.54) 0.71 (0.66) 0.38 (0.21) 0.78 (0.72)

Rejection frequencies at the 5% level of significance using critical values from Table 1. In paren-
theses are the size-adjusted rejection frequencies based on critical values from this table with p = 1.0.
There are 2500 replications for each experiment. Z¥,Zf, and ADF* are the test statistics defined in
Egs. (3.1)3.3), respectively, and ADF is the usual augmented Dickey—Fuller statistic with t = 1. C,
C/T, and C/S refer to models 2-4, respectively, and C and C/T for the usual ADF refer to regressions
with a constant and a constant and a trend. For ADF* and ADF the lag length K is set on the basis
of a t-test (see text).

In Table 3 we first investigate the ability of the tests to detect cointegration in
the presence of a level shift with y; = 1, 4, = 4, &, = 2,and «, = 2. With only an
intercept change we find one prominent difference between the rejection fre-
quencies in Table 2 (with no structural break) and Table 3 (where the intercept
shifts): the rejection frequencies for the conventional ADF test for n = 100 have
fallen substantially under breaks. For instance at n = 100 the ADF test that
includes an intercept (C) has fallen from about 80% rejection frequency to
roughly 30%, regardless of where the break occurs. In contrast, the rejection
frequencies for all three of our cointegration tests that allow for possible shifts
are very close to those obtained with time invariant relations. As we might
expect the best power results are generally for the test based on the level shift
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model 2 (C). Also power appears to be unaffected by the location of the break in
the sample.

In the same table we report results when the slope changes but the intercept is
fixed over the sample: p, = 1, p; = 1, a; =2, and a, = 4. As before the best
power results are obtained for those tests that allow for a shift in the slope (C/S).
Compared to the tests with no structural break (Table 2), the rejection frequen-
cies (both nominal and size-adjusted) for the (C) and (C/T) have fallen consider-
ably when 7 = 0.25 or 0.5. For this experiment, power rises as the breakpoint
occurs later in the sample. In a series of experiments we increased o4 relative to
o,. As might be expected power falls as o, rises relative to o,,. Finally we note
that the standard ADF tests reject the null far less frequently compared to tests
which account for breaks especially if the slope break is in the earlier part of the
sample.

In Table 4 we present some results on the average estimated 7’s [the point in
the sample where the smallest test statistic is obtained for each test (3.1)—(3.3)]
together with their standard error based upon the simulations in Table 3 with
the slope change. Consistent with our earlier results we see that the tests C/S
estimate the breakpoint more accurately with a smaller standard deviation. The
evidence also suggests that breaks that occur in the latter half of the sample are
better estimated.

Table 4
Estimating a breakpoint

n =350 n =100
z 0.25 0.50 0.75 0.25 0.50 0.75
ADF*
C 0.58 (0.20)  0.66 (0.18)  0.67 (0.21) 053(0.22)  0.66(0.18)  0.71(0.20)

C/T 0.56 (0.21) 0.61 (0.20) 0.61 (0.22) 0.53 (0.21) 0.62 (0.19) 0.65(0.22)
C/s 0.45 (0.18) 0.58 (0.15) 0.66 (0.19) 0.33 (0.13) 0.56 (0.11) 0.70 (0.17)

VAd

C 0.51(0.24)  0.64(020)  0.66 (0.23) 045(0.24)  0.64(0.19)  0.70(0.21)
/T 0.54(0.22)  059(021)  0.62(0.23) 0.50(0.22)  0.62(0.20)  0.65(0.23)
c/s 042(0.18)  057(0.15)  0.64 (0.20) 031(0.12)  055(0.10)  0.70(0.17)
Z*

C 0.51(0.23)  0.63(0.20)  0.65(0.24) 045(023) 064 (0.19)  0.70(0.21)
/T 0.54(0.22)  0.60(021)  0.61(0.23) 0.50 (0.22)  0.62(0.19)  0.65(0.23)
c/s 042(0.18)  0.57(0.15)  0.62(0.21) 031(0.12) 0550100  0.70(0.17)

These are the average estimated ’s which is the point in the sample where the smallest value of the
test statistic is obtained. Standard error are in parentheses. The results are for the experiment
described in Table 3 for the slope change «, =2 and o, = 4.
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Overall the results with Z} appear to be the best in terms of size and power.
However, as we have seen this test is biased away from the null which can lead to
large gaps between nominal and size-adjusted power.

6. An illustrative example

The question of whether the long-run money-demand equation is stable has
received ample attention over the years. Two recent discussions are Lucas (1988)
and Stock and Watson (1993). As a practical example, we consider this question
in the context of our new tests using annual data (1901-1985) and quarterly data
(1960:1-1990:4). The long-run money-demand relation with no structural
breaks may be written as

In(m,) —In(p,) = U+ agIn(y) + aor, + e,

The annual data are from Lucas (1988) and m is M1, p is the implicit price
deflator, y is the real net national product, and r is the six-month commercial
paper rate. The quarterly data are from the CITIBASE tape; the series used are
GMPY, FXGM3, GMPY82, FM1, GNNP, GNNP82, and are seasonally
adjusted. This specification is identical to Lucas (1988) and Stock and Watson
(1991).

With this same data, Gregory, Nason, and Watt (1994) found that some of
Hansen’s (1992c) tests for structural breaks detected a break and that the
conventional ADF tests indicated that the null of no cointegration could be
rejected for the annual data but not for the quarterly. In Table 5 we report the
test statistics for our tests as well as the estimated breakpoint (in parentheses). In
addition, we calculate the test statistic for the conventional ADF test. For the
conventional ADF test the lag length for K (again selected on the basis of a ¢-test
as outlined in the Section 5) is 1 (annual) and 6 (quarterly) for both the C and
C/T tests. The lags selected for ADF* tests for the C, C/T, and C/S are (2,2,0) for
the annual and (0,0,6) for the quarterly data, respectively.

Examining first the annual data, we find that the null hypothesis of no
cointegration is rejected (at the 5% level) by our new tests using the C and C/T
type formulations, but not using the C/S formulation. The smallest test statistic
occurred roughly at half of the sample (1944), and in Fig. 1 we graph the ADF (1)
using the annual data for C, C/T, and C/S over the truncated sample. Clearly
there is a well-defined single minimum for all three of these tests. Since the
conventional ADF test rejects the same null, it would be inappropriate to
conclude from this piece of information alone that there is a structural
break, since a conventional cointegrated system could produce this same
set of results. In fact, the point estimates for the second half of the sample (not
reported here) are economically meaningless, lending support to the view that
there is no structural break. On balance we believe that the evidence suggests
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Table 5
Testing for regime shifts in U.S. money demand

In(m,) —In(p,) = p + 2y In(y) + azr, + e

Annual data, 1901-1985 Quarter data, 1960: 1-1990:4
Test stat. Breakpoint Test stat. Breakpoint
ADF*
C — 543+ (0.49) ~37 (0.44)
/T — 5.66+* (0.50) — 434 (0.84)
C/S — 501 (0.49) — 471 (0.55)
zr
C — 5.33%* (0.50) - 3.57 (0.39)
C/T — 5.85%* (0.49) — 4.66 (0.85)
C/s — 5.38% {0.49) — 5.80%x (0.52)
3
C — 46.39* {0.50) — 2294 (0.85)
C/T . 52.52% (0.49) ~ 3638 (0.85)
C/s — 4436 {0.50) — 53.57% (0.52)
ADF
C — 4.55%% (—) ~291 (—)
/T — 437** (—) —27 ()

These are the test statistics where an * and ** indicates significance at the 10% and 5% levels,
respectively. Beside these in parentheses are the estimated t’s (the point in the sample where the
smallest value of the test statistic is obtained). The annual data are from Lucas (1988) and m is M1,
p is the implicit price deflator, y is the real net national product, and r is the six-month commercial
paper rate. The quarterly data are from the CITIBASE tape; the series used are GMPY, FXGM3,
GMPYS82, FM1, GNNP, GNNP82, and are seasonally adjusted.

that there is some sort of long-run cointegrating relationship between these
variables.

Turning to the quarterly data, we first notice that the conventional ADF tests
fail to reject the null of no cointegration. Thus some applied researchers might
conclude that there is not sufficient evidence to pursue the possibility of a long-
run relationship. The tests which allow for only a level shift (the C and C/T tests)
also fail to reject the null. We find, however, that the null is rejected at the 5%
level for the ZF and 10% for Z¥ tests by the most general alternative (the C/S
tests) which allows for both the intercept and the slope coefficient to shift. The
same test for ADF* does not reject at this level. For this data set and model,
allowing for the possibility of a regime shift does raise important questions
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Fig. 1. Regime shifts with ADF*, U.S. annual money demand (1901-1985)

regarding the long-run relationship between the series. For the two tests that
rejected the null of no cointegration, the breakpoint for the C/S tests is at the
middle of the sample with £ = 0.52 (1975:2).

7. Final remarks

The concept of cointegration, originally suggested by Granger (1981) and
formulated by Engle and Granger (1987), is that over the long run a special time-
invariant linear combination of nonstationary variables may be stationary. As
empirical work has progressed, it is becoming clear some applied econo-
mists are interested in allowing the cointegrating relationships to change over
time. In order for the concept of cointegration to retain significant empirical
content, empirical work will have to restrict the types of structural change
permitted. The most basic type of structural change is the one-time regime shift
model. Other models are of course possible, but may require more careful analysis.

If structural change is to be entertained in cointegrated models, applied
economists need appropriate test statistics to determine if there is any evidence
for such a model. The standard testing procedure is to set up the null of no
cointegration against the alternative of cointegration, so rejection is considered
evidence in favor of the model. In this paper we extend this family of test
statistics by setting the alternative hypothesis to be cointegration while allowing
for a one-time regime shift of unknown timing. Rejection of the null hypothesis,
therefore, provides evidence in favor of this specification.
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It is important to note, however, that this type of hypothesis test does not
provide much evidence concerning the question of whether or not there was
a regime shift, since the alternative hypothesis contains as a special case the
standard model of cointegration with no regime shift. The naive alternative of
examining the individual or joint significance of the dummy variables 1s danger-
ously flawed for two reasons. First, OLS estimation is not efficient, and test
statistics do not generally have asymptotic standard distributions under the
hypothesis of cointegration. Second, under the hypothesis of no regime shift, the
date of the break is not identified, so even efficient test statistics have non-
standard distributions. Appropriate statistics and their asymptotic distributions
for testing the hypothesis of no regime shift against the alternative of a regime
shift are given in Hansen (1992a) and Quintos and Phillips (1993). The test
statistics of the present paper complement these tests, and both types of test
statistics are potentially useful.

As illustrated in our analysis of the money-demand relationship in the
previous section, we believe that empirical investigations will be best served by
using a number of complementary statistical tests. One difficult task for the
applied researcher is to juggle these separate pieces of the puzzle, but we can
offer a few suggestions. The standard ADF statistic and our 4 DF* statistics both
test the null of no cointegration, so rejection by either statistic implies that there
is some long-run relationship in the data. If the standard ADF statistic does not
reject, but the ADF* does, this implies that structural change in the cointegrating
vector may be important. If both the ADF and the ADF* reject, no inference that
structural change has occurred is warranted from this piece of information alone,
since the ADF™* statistic is powerful against conventional cointegration. In this
event, the tests of Hansen (1992a) are useful to determine whether the cointegrat-
ing relationship has been subject to a regime shift. Unfortunately at this stage we
have little guidance as to how to control for Type I error under such procedures
which suggests that additional Monte Carlo work would be worthwhile.

The analysis of this paper has been confined to the question of developing
residual-based tests for cointegration in the presence of a regime shift. We have
not addressed the issues of efficient testing or efficient estimation, and leave these
subjects for future research. For example, it would be interesting and useful to
develop an analogous set of test statistics using the likelihood ratio approach
advocated by Johansen (1988, 1991). Some progress along these lines has been
recently initiated by H. Hansen and Johansen (1993).

Appendix: Proof of the theorem

We will rigorously prove the Theorem for a simplified setting in which the test
statistic is constructed from residuals from the following regression model:

Vie= ] Yo + 93 V2P + € (A1)
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which is the same as model 4, except that there is no intercept or level shift. See
our working paper version, Gregory and Hansen (1992), for a complete proof for
model 4. To simplify the presentation we assume that y, = 0.

A.1. Fundamental convergence results

Throughout the proof, => denotes weak convergence of the associated
probability measures with respect to the uniform metric over te [0,1]Jorte T,
where appropriate, and {-} denotes the indicator function. Let S, =Y |_, u
be the cummulative sum of the innovations, and partition S, = (S, S3,)" in
conformity with u, Set S,,. = S, @, where @, = {t > [nt]}, and set X, =
(ST, 83,07 It will be convenient to also define the subvector X5, = (S3,, S2:)",
as these are the regressors in our model (A.1).

The starting point for the asymptotic analysis is the multivariate invariance

principle
n~Y*8,,= B(7), (A.2)

where B(t) is a vector Brownian motion with covariance matrix . This was
shown by Herrndorf (1984) (see Phillips and Durlauf, 1986, for the extension
to the vector case). Partition B(r) =(B; B3)' in conformity with S,, define
B,(r) = By(r) o(r) and X(r)=(B(r)", B,(r)")" where @.(r)={r >1}, and
define the subvector X,(r) = (B,(r)", B,{r)")".

Our proof method involves explicitly writing out all test statistics as functions
of partial sums of functions of the data, in contrast to the proof method of Zivot
and Andrews (1992) who write the test statistics as explicit functions of the
indicator function ¢, Our method is more cumbersome notationally, but is
more convenient in terms of proving uniformity over the breakpoint 7. The key
to our approach rests on the joint weak convergence of

] n 1
2 Z = [ BB' (A3)
t=[nt ¢
and
1
- Z Sy = f BdB" + (1 — 1)4, (A4)
t=[nt]

where the weak convergence in (A.3) and (A.4) is with respect to the uniform
metricover 7 € [0, 1],and A4 = lim, (1/n) Y ;_, E(S;u/+ ). (A.3) follows from (A.2)
and the continuous mapping theorem (CMT, see Billingsley, 1968, Thm. 5.1)
. 1 T . . . .
since |, BB' is continuous with respect to t. (A.4) is proved under our assump-
tions by Hansen (1992b, Thm. 4.1). Note that the latter result is stronger than the
pointwise convergence theorems of Chan and Wei (1988) and Phillips (1988). To
ensure that there is no confusion with mere pointwise convergence, for the
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remainder of the proof we will refer to results such as (A.3) and (A.4) as holding

‘uniformly over 7”. The remainder of the proof is largely a series of repeated
applications of the CMT to (A.3), (A.4), and functions of these sample moments.

A.2. Least squares coefficient process

(A.4) implies

| G | R
1 TZSrSrT ) Z SIS;t
=Y X.X.= n= N =T
nzt:1 t it 1 n . 1 n
2 Z S2:S, ) z 8282
h t=[n1] n t={nt]
- (A.5)
1 1
IBBT j'BB; 1
1 : = XX,

{B,B" {B,Bj| °
uniformly over 1 € [0,1].

Deﬁne a, = (o"cl, &3) as the least-squares estimator of (A.1) for each 1, and set
=(1, —&])". It follows from (A.5) and the CMT that

1

Z XthXZI't) (’1_2 i XZtt 11)
(A.6)

1
1 -11 =M
- (5 XZIX;‘!) j X2tB1
0 0

uniformly over t € T. Note that we need to restrict T to a compact subset of (0,1)
since X ,,, is multicolinear when 1 =0 or 7 = 1.

A.3. Convergence to the stochastic integral process

Partition A and Q in conformity with S,

A:<A11 Al).)’ Q:<Qll QIZ>’
AZl A22 921 QZZ
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and set A,. = (A, Ay,) and A., = (A7, A35)". (A.5) implies that

= |-
=
>
-

o
i
T

|

. 1 2
=1 - Z Sa Ui
=
= (A7)
1
deBT + A1 . 4
0 T
={X.dB' + s
g |:(1 — T)AZ]

1
[ BdB™ +(1 — 1) 4,

uniformly over 7 € [0, 1].
The process S,,, has differences

ASth = ASZ:¢11 + SZtrlAwrn (AS)

where Agy, = ¢, — @, 1. = {t = [n7]}. Note that ¢, 4¢,. . = 0. To derive the
large-sample counterpart we need to define the differential dg,. Since ¢(r) is a step
function with a jump at 7, dg, is naturally defined as the dirac function with the
property that for all functions f(-) with Ieft-limits and all a <7t <5,
jZf dg, = lim,;.f(z). Note that ¢, dg, = 0 since the left-limit of ¢, at 7 is 0. We then
define the differential dB,,(r) = ¢.() dB,(r) + Ba(r) der), giving the relationships

1 1
{ BdB;, = [ BdB; + B(t)By(7)’ (A.9)
1] 4

and
1 1
j BZrdB;t = j B)_rdB-zr (A.]O)
0 T

Using (A.8), (A.9), and (A.10),

1 2 T 1 T
| . ’—1 Z S,UZ,+1 +;S[nr]—1S2["T]"1
n Z X"AS;wl:: t:[m]_ll "
t=1 — Z SZ,U;+1
nt=[nt]*1
_ (A.11)

1
[ BdB} + (1 — 1)A.; + B(t)By(1)"

A.
X.dB, + (1 — r)[ 2],
A,

O ey

1
I B,dB; + (1 — 1),
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where the convergence is uniform over t € [0, 1]. Setting dX; = (dB", dB;.)",
then (A.7) and (A.11) yield

12 1 12
- z X;AX:+H =\ z X”ASL»I, - z XtrAS;t+1t
n ni=1 ]
= (A12)
1
[ X, dX! + A,
0
uniformly over 7, where
A= I: A (1— r)A.z]
i (1-794, (1-714;, '
A.4. Serial correlation coefficient estimate

Note that é, = #; X,, so by (A.2), (A.3), and the CMT,

n
2 Z tt:;’;r_z z XttX:;At
t=1

- (A.13)

=

i

-
3

1 1
n [ X X1n. = X¥,
0 4]

uniformly over te T, where X*(r) = B,(r) — (Ll)BleT‘I)(jé X2.X3) 1 X ,(r) is
the stochastic process in (r,7) obtained by projecting B(r) orthogonal to X,.(r).
Define ¢ = [Q2,; — 2,,925,9Q,,1"2, and set W,(r) = ¢ '[B; — 2,025, B,(r)]
and W ,(r) = Q5,/2B,(r), so that W, = BM(1) is independent of W, = BM(I,,).
By standard projection arguments, X¥(r) = aW . (r), where W (r) = W (r) —
(j-(l)WIW;r)(j(l)WZtW;r)71 WZt(r)s and WZr(r) = [W;(T), Wg(r) ¢1(r)]-r- Thus
(A.13) becomes

5 ), bn=a’ (W2 (A.14)

uniformly over t € T.
Similarly using (A.12) and the CMT,

n
1 A Py Tl T A
n Z etrA t+1c = He E XtrAXt+ 1:1e

- (A.15)
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uniformly over 1 € T. (A.14), (A.15), and the CMT yield

1 n 1
" Y. 6. Aé 1. P [W AW 4 pl A,
n(p.— 1) = =1 - e ] , (A.16)
e Z o* W
= 0

uniformly over t € T. The limit in (A.16) exists for T € T since j(l, W?2>0as. by
Lemma A.2 of Phillips and Hansen (1990).

A.5. Bias correction

The Phillips’ statistics are constructed using the statistic 4, = ZJM=1 w(j/M)
x(1/n) Y ¥V where 3, = é; — p.é,_ 1. = Aé, — (p. — 1)é,_ .. For brevity,
denote w(j/M) by w;. Now by the triangle inequality and Holder’s inequality,

M max I(p: — DI

<M

- ZAel ]‘[el 1t
n

M
Z Z Ael jt A err)

1/2 172

In(p. — DI

1
7’ ZAerr _zzer it
t

-, 0,

uniformly in 1, since M/\/;—>0 and sup, |n(p, — 1)| = O,(1) by (A.16). Sim-
ilarly, we can replace 4¢,_;, with ¥,_; to show that

M

. 1

Ae= ), Wi Y Aé - Ad + 0,(1), (A.17)
i=1 1

uniformly in 7. Now note that

i 1 i=1 1 =1 Ny
Z wj—ZAX,_j,AX,th J=
j=1 7
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which gives the asymptotic behavior of the upper-left element of (A.18). A slight
modification of the proof in Hansen (1992c) yields the stronger result

M 1 [n1]
IRV T R} (A19)
=1 Moy

uniformly in 7 € [0, 1]. This is possible since Theorem 1 in Hansen (1992c) is
based on a moment inequality which can be strengthened to a maximal inequal-
ity via Lemma 2 of Hansen (1991).

Now using (A.8), we can obtain the asymptotic behavior of the lower-left
element of (A.18);

M 1 M 1
Z Wj;ZASzzszu:T = Z Wj;Z(%-jt“zz—ﬁu:T +A¢t—jts21—j—lutr)
=1 t =1 t

2

Mo
T T
Z Uy —jeliy + Z W= 8o 1Uipey+
> (me] +J j=1 B

I
Mk
=
S =

(1 = 1)4,, (A.20)
uniformly in 7 € [0, 1] by (A.19) and the fact that
M

1
— W.u .
M).Zl U

M 1

.
Z Wj—Sz[m]—lu[m]
=1 N

M 1
S —=max|—=S,,

\/HISVI \/I"l

where the final inequality follows from Markov’s inequality and

max

t<n

< 0,(1),

2

E max = 0(1),

sn

1 M
M L Withs
i=1

which is an application of Corollary 3 of Hansen (1991).
Similar analysis for the upper-right and lower-right elements of (A.18), com-
bined with (A.19) and (A.20), yield the complete result

Moo

Wi= 2 AX, AX— A, (A.21)
i=1 " ny
uniformly in t € [0, 1]. Finally, (A.17), (A.21), the fact that 4é, =% 4X,, and
(A.3) yield

Z AXl—jr AX!I’?I + Op(l)b”]tT A‘lr’t’ (A22)
¢

S| o

M
T a7 )
Ar”?t Z M’j
i=1

uniformly over te T
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This allows us to find the limit distribution of Z,(1) . By (A.14), (A.16), (A.22),
and the CMT,

1 1
o’ (W AW, + nf A, —niAn,  [W. AW,
0 0 (A.23)

El

1 =T
o’ (Wi fw?
0 0

uniformly in 7 € T. Since the supremum mapping is continuous in the uniform
metric, (A.23) and the CMT imply that

1
[w.dw.
Z* = inf Z(t)= inf ° ,

1
teT teT
2
jW,

o]

as stated in the theorem.

A.6. Long-run variance estimate

We can define a matrix Q, analogous to A,:

a? (029} (1 —=1)82,
Q. = 21 25, (1 —1)2;;
(1 -0 (1 -1 (1—-1)0,

We can factor this as Q, = Q) D*Q, where

«_(1 0O _ I (1—01,
D’_(o D,)’ DT_<(1—T)1,“ (1—1)1,,,)’

0
Qe:( 7 m>,
Q1 Q235

with

Q5720,, Q,, 0
Q. = = .
=21 ( 0 and - Q2 0 Q,,

and
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Standard manipulations show that

1 11
Q57 o, = (5 szW;r) fW21W1°' + Q5 =K+ Qs
0 0

c Q. =0"" ’ 0 Py( ! .
o Q) QF/\ - — Ky

Analysis similar to that which led to (A.22) can show that

1 0 1
) T (] T =1 ! D.k., A24
o-t = 17‘[ Qt ’?f (] Kr ) (0 Dz) < _ Kr) + k'[ T K ( }

uniformly in T € T. We can derive from (A.23), (A.24), and the CMT the limit
distribution of the Z, process

SO

1
§ W.dw,
1 0

1/2
Zt(‘f)=Za(T)(A2 5 2 éi) =7 7z 172>
g n” <5W2) <KTDK>
0

(A.25)

T

uniformly in 1 e T.
Once again, the continuity of the supremum mapping in the uniform metric
allows the CMT to be applied to (A.25) to yield our final result:

1
fw.dw,
Z¥ =inf Z,(1)= inf 9

p 1 1/2 1/2°
teT teT !
(j W 3) (K? Dmx)
0
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