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This paper develops an asymptotic theory of estimation and inference in ‘cointegrated’ regres- 
sion models with errors displaying nonstationary variances. Least squares estimates are shown to 
be consistent at a T’/’ rate. Hypothesis testing requires the use of a robust covariance matrix 
estimate, in contrast to earlier work on cointegrated regressions. The inference theory is not 
nuisance-free, but preliminary investigations indicate that approximation by the normal distribu- 
tion may be adequate in practice. 

1. Introduction 

There has been a recent explosion of theoretical and empirical interest in 
the model of cointegration proposed by Granger (1981) and developed by 
Engle and Granger (1987). This model is popular because it allows re- 
searchers to take seriously two seemingly contradictory facts: (1) economic 
data typically appear to possess unit roots (that is, have stochastic trends); yet 
(2) economic theory often suggests ‘equilibrium’ or long-run relationships 
may exist between variables. The model of cointegration reconciles these 
facts by allowing a linear combination of individually I(1) series to be I(O);’ 
equivalently, the residual error in a linear regression is taken to be stationary. 

It is not clear, however, that the model of cointegration (which we will 
refer to as the CI model) as formulated by Engle and Granger is sufficiently 
general to cover all nonstationary economic models of interest. The CI 
regression errors differ stochastically from the regressors in that they have a 

*This paper is a revised version of chapter four of my Ph.D. dissertation. I would like to thank 
Don Andrews, Vassilis Hajivassiliou, Peter Phillips, the associate editor, and two referees for 
helpful advice and comments. 

‘A series X, is integrated of order d, denoted I(d), if it has no deterministic components and 
its dth difference, AdX,, is I(O). A series is I(O) if it has a spectral density which is bounded away 
from zero and infinite at the zero frequency. 
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Table 1 

Sample split tests on regression error variance? 

Total consumption 
upon income 688 2322 2.77 

NDS consumption 
upon income 786 1362 1.36 

Stock prices 
upon dividends 0.002 0.012 4.00 

Long interest rates 
upon short rates 0.326 2.642 3.80 

“6: = regression error variance estimate over first half sample; 62’ = regression error variance 
estimate over second half sample; t-test = t-test of hypothesis that regression error variance is 
same in two sample halves, computed with Bartlett weights with lag window of five. 

fixed mean and a bounded variance. The asymmetry in variance orders is 
intuitively unsatisfying in some cases. One might expect that as the regressors 
increase in magnitude, the residual variance would also increase. One might 
also expect that the variance of the error process might change over time, 
due to other factors. Essentially, we may wish to allow the variance of the 
error to be nonstationary. 

The empirical relevance of this idea can be illustrated by calculating simple 
sample split tests on the variance of the regression error in four published 
cointegrating regressions. The results are given in table 1. The first regression 
is of aggregate consumption upon disposal income. The second regression is 
of aggregate nondurables and services consumption upon disposable income. 
These are taken from Campbell (1987).2 The third regression is of a stock 
price index upon dividends, as reported in Campbell and Shiller (1987).3 The 
fourth regression is of short-run interest rates (three-month T-bill) on long-run 
rates (lo+ year).4 A similar regression appears in Campbell and Shiller 
(1987). Each regression is computed with only a constant in addition to the 
stated variable. The regression error variance is calculated for the first and 
second halves of the sample, and the r-test for the hypothesis that the 
variance is the same is computed. Since the squared regression errors are 
serially dependent, the t-statistic is calculated using a robust variance esti- 
mate, using a Bartlett window with a lag length of five [see Newey and West 
(1987)]. 

2The data is originally from Blinder and Deaton (1985). They are seasonally adjusted quarterly 
series for the period 1953:2-1984:4, measured as per capita real aggregates. 

‘The data, real annual prices and dividends for the period 1871-1986, was courteously 
provided by Robert Shiller. 

4The data is quarterly nominal interest rates for the period 1947-1986, extracted from the 
Citibase files FYGM3 and FYGL. 
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The t-tests give strong evidence for nonconstancy of the error variance in 
three of the four cointegrating regressions.5 The regressions appear to be 
cointegrating, in the sense that the two variables trend together over the long 
run, but the regression error appears to violate the asymptotic stationarity 
assumed in the conventional theory of cointegration. Of course, since the 
sample split tests have power against a wide variety of alternatives, we cannot 
conclude from this one piece of evidence anything about the form of the 
nonstationarity in the regression error variance. 

If the variance of the regression error is asymptotically nonstationary, then 
it should not be ignored in our theoretical and empirical investigations. Since 
the properties of the error process are unlikely to be well known a priori, we 
need a theoretical specification flexible enough to encompass the cases of 
interest, yet sufficiently tractable to allow the development of an asymptotic 
theory. Consider the process w, generated by w, = u~u,, where at = I(1) and 
u, = I(O). We call this a bi-integrated (BI) process. We can think of U, as the 
‘stationary part’ of w, and of a, (or, more precisely, at2) as the ‘variance 
part’. If y, is generated by y, = @xl + w,, where X, = I(1) and w, = BI, then 
we say that ( y,, x,) are heteroskedastically cointegrated. The model, which 
we call the model of heteroskedastic cointegration (HCI), may be justified on 
several grounds: 

(1) Both X, and w, have variances which grow at the same rate. This 
removes one potential attack on the standard CI model - that the latter 
derives all its estimation power from the differing stochastic orders of the 
regressors and residuals. It is well known that regression on trended variables 
is consistent even under endogeneity. Therefore, the conclusion may have 
been drawn that the consistency of OLS in the CI model was a consequence 
of this stochastic order difference. This, in fact, is hinted at in the discussion 
by Stock (1987). Our results show that the HCI model may be estimated 
consistently by least squares even under endogeneity. The key requirement is 
the fixed mean property of the residuals. 

(2) The use of time-varying parameter (TVP) models in economics has 
been fairly popular. For instance, in the linear regression y, = plx, + u,, if 
lx,, p,, ~(1 = I(O), then estimation of p = E(P,) can be handled using stan- 
dard methods, if the heteroskedasticity of the residuals is taken into account. 
If, however, X, = I(l), the model becomes an HCI model, with a, =x,. (An 
extra noise term, u,, is present, but this is irrelevant asymptotically.) This 
model is intuitively plausible, for it suggests that the residual will be propor- 
tional to the regressor; i.e., big innovations occur more frequently when the 
regressor process reaches large values. 

‘In the first three regressions (although not the fourth) the apparent heteroskedasticity 
disappears if the regressions are estimated in logarithms. The cited papers, however, estimated 
the models in levels. 
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Andrews (19871 was the first to study an amended CI model with mildly 
explosive residuals. Specifically, he showed that if var(w,) = OJt”), 0 I LY < 1, 
then least squares is consistent and converges at least as fast as T” -a)/2. The 
BI errors of our paper, however, are outside the scope of Andrews’ analysis 
as we have (Y = 1. This work is also related to an earlier literature on dynamic 
regression with nonstandard normalizations. A partial list includes Robinson 
(19781, Anderson and Taylor (19791, and Wooldridge and White (19881. 

This paper covers the following ground. Section 2 outlines the model and 
assumptions. Section 3 derives an asymptotic theory of least squares estima- 
tion and inference for this model. We find that least squares estimation is 
consistent under general assumptions, yet the asymptotic distribution is 
neither median unbiased nor mixture-normal under endogeneity. Under an 
exogeneity assumption, the limiting distribution is mixture-normal, permitting 
valid chi-square inference if a robust covariance matrix estimate is used. 
Section 4 examines simulated plots of the distributions under more general 
assumptions. The conclusion contains some suggestions for future research. 

A word on the notation before we begin. The symbol * denotes weak 
convergence, = signifies equality in distribution, and II All,, = (~jkEIAjklPl’/p 
denotes the LP-norm for random matrices. Stochastic processes such as the 
Brownian motion B(r) on [0, l] are frequently written as B to achieve 
notational economy. Similarly, integrals such as jdB(r) are written more 
simply as /iB. 

2. The model and assumptions 

Consider the linear regression model 

where the n x 1 regressor vector is I(1): 

x, =x I-1 + U3r9 (2) 

and the error w, is a bi-integrated process, as defined in the introduction. 
That is, 

w, = flcult, 

where the scale process a, is I(1): 

(3) 

ut=u,-,+uu,,. (4) 

The initializations x0 and c,, may be any random variables which have finite 
absolute expectations. 
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We call model (l)-(4) a model of hereroskedustic coinregration, abbreviated 
by HCI, and is motivated by the issues raised in the introduction. 

Note that 

var( x,) = C,t, 0 < c, < cc), 

var( Wt) = C,t, O<C,<m, 

and are thus of the same stochastic order. This is a substantial difference 
from the standard Engel-Granger cointegration model, where the variance 
of the regression errors is constant. Although they have variances of the same 
stochastic order, the variables behave quite differently from one another. The 
I(1) process x, wanders around with no tendency to return to any particular 
value. The BI process w,, on the other hand, will tend to cross its mean 
value, A*,, often. 

Define the vector U, = (u,,, uzt, ~;~)l and the partial sum S, = c~._,uj. 

Assumption 1. The process { ur} is mean zero and strong mixing (cw-mixing) 
with mixing coefficients (a,) of size -3p/(p - 3), and supIElu,lP < ~0 for 
some p > 3. 

Define the long-run covariance matrix 

R = ;m T-‘E&-S;) 
m 

and the matrix 

A = $r T-’ &(S,u;). 
w 

1 

Assumption 1 is sufficient for the invariance principle, 

T-“2SI,,I~B(r) =BM(R), 

convergence to the matrix stochastic integral, 

(5) 

(6) 
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and convergence to a product stochastic integral 

Results (51, (61, and (7) have been shown by Herrndorf (1984, corollary 1) and 
Hansen (1991c, theorems 4.1, 4.2), respectively. 

We partition B, 0, and A conformably with u,. Thus in the case of R we 
write 

f2 = f&1 022 023 . 

I 1 03, 032 033 

We will require that LIX3 > 0, a22 > 0, and R,, > 0, and normalize Eu:, = 1. 

3. Estimation and inference 

In this section we examine the asymptotic distributions of the least squares 
estimate of p in the HCI model. Denote this estimator by fi = (& $,l’. 
Define the matrix 6, = diag(l,@>. The main finding is reported in Theo- 
rem 1. 

Theorem 1. Under Assumption 1, 

where p* = (0; P’,)‘, /3,T = PO + A*,, and X(r) = (1 B&r’)‘. 

Remark I. The cointegrating slope parameter p, is estimated consistently 
by least squares. The rate of convergence is the square root of sample size, as 
in standard asymptotic theory. This obtains regardless of the nature of the 
dependence between the innovations u,~, ~z,, and Us,. That is, no assump- 
tion of exogeneity is required to obtain consistency, even though the regres- 
sors and regression error are of the same stochastic order. 

Remark 2. The intercept PO is not estimated consistently by least squares. 
As pa is not typically of economic interest, this is potentially only a problem 
for the estimation of covariance parameters, but we will show later that the 
inconsistency of PO is irrelevant asymptotically. 
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Remark 3. The asymptotic distributions in Theorem 1 are nonstandard and 
are not generally mixtures of normals. The unusual structure of the regres- 
sors and regression errors implies that we cannot apply existing techniques 
which obtain mixture normality in cointegrated models, such as MLE [see 
Johansen (1988)] or semiparametric estimation [see Phillips and Hansen 
(199O)l. In order to progress further, we need to impose a stronger set of 
covariance assumptions. 

Assumption 2. E(.x,un) = 0. 

This states that the stationary part of the regression error is orthogonal to 
the regressor. Assumption 2 directly implies that A,, = 0, so Theorem 1 
reduces to 

An improved understanding 
defining the stochastic process 

J(r) = IrBz dB,. 
0 

-1 

/ 
‘XB, dB,. (8) 

0 

of the distribution in (8) is obtained by 

(9) 

J(r), like the Brownian motion B,(r) = /i dB,, is a continuous time martin- 
gale. We can contrast their behavior via their quadratic variation processes. 
To review, for any semimartingale X the quadratic variation process is 
defined as 

For the 

[X,X],=X(r)2-2/rXdX. 
0 

Brownian motion B,(r), Ito’s lemma gives 

[B,,B,]~=B,(r)2-2/rBIdBl=rL?l,. 
0 

In contrast, for the process J(r) we find 

as shown in Protter (1990, theorem 29). This gives rise to the heuristic 
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expressions 

(dB,)’ = n,, dr and (dJ)* = R,B,( r)’ dr. 

What is especially useful about the process J(r) is that by the associative 
property of semimartingales [Protter (1990, theorem 19)1, 

j’XB2 dB, = /‘XdJ 
0 0 

This allows us to write the limit distribution in (8) as 

(pXrj-‘i, XB,dB, = (i;XX’j-‘i,rXdJ. (10) 

which resembles in form the distributions obtained in standard cointegration 
theory [see, for example, Park and Phillips (19SS)l. 

The distribution in (10) is not a mixture of normals since B, may be 
correlated with B, and/or B,. We now impose this requirement. 

Assumption 3. fJ2, = 0, Cl,, = 0. 

This assumption states that the stationary part of the regression error is 
‘long-run orthogonal’ (spectral cohesion is zero at the zero frequency) to the 
innovations driving the regressors and the variance scale of the regression 
error. This is quite a restrictive assumption and is relaxed in the next section. 
It is helpful, however, in understanding the form of the distributional theory 
and the type of covariance matrix estimator needed. 

Define F23 = a(B,(r), B,(r): 0 5 r I 11, the smallest a-field containing the 
history of the Brownian motions B, and 8,. Under Assumption 3, B, is 
independent of F&, so conditional on F&, 

/‘XdJ= j’XB2dB, =N(O,V), 
j 

1 
2 

I/= XX’B,fl,,. 
0 0 0 

Unconditionally, we find 

/ 

I 
XdJ= 

/ N(O, I’) dJ’( I’): 
0 v>o 

where P(V) is the probability measure over the random matrix V defined 
above. To simplify notation, we will write the unconditional distribution 
simply as NO, V). 
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This discussion can be summarized in the following result: 

Theorem 2. Under Assumptions 1, 2, and 3, 

ST@ -p*) +-N(O,M-‘vw’), (11) 

where 

M = OIXX’ and V= L’XX’B: da,, = /iXX’(dJ)‘. 
/ 0 

Remark 4. The distribution given in Theorem 2 is a variance mixture of 
normals. The random covariance matrix M- ’ VM- ’ is of the form often 
found in estimators with heteroskedasticity and/or serial correlation. Inter- 
estingly, the covariance matrix for the least squares estimator in the standard 
cointegration model can also be put in this form, for in this case the 
quadratic variation is (dB,)2 = n,, dr, and the matrix I’ is a scale multiple 
of M. 

Remark 5. Consider the problem of testing linear hypotheses upon the 
slope coefficients of the form 

Ha: R’P, = r, rank(R) = q. 

First, observe that by partitioned matrix inversion we can obtain from (11) 

where M, = /dBTBT’, B,*(r) = B,(r) - jiB3, and Vi = jdB:B,*‘(d.Jj2. (B,* is 
demeaned B,.) Therefore, under Ho, 

fl(R’fi, -r) *N(O, R’M[‘L’,M;‘R). 

Inference upon the slope parameters pi can proceed :onventionally if we can 
find a consistent estimate Vi of Vi, in the sense that Vi * Vi (jointly with the 
slope parameter estimates). Since V, is not a scale multiple of M,, the 
standard ‘OLS’ covariance matrix estimator will not achieve this goal. We 
therefore need to consider a covariance matrix estimator which is robust to 
heteroskedasticity and autocorrelation, as in White and Domowitz (1984). 
Define the Wald statistic 

w= T(R’jj, -r).(R’~;‘lil~~‘R)-‘(R~B1 -r), 
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7 

hi, =PC(x, -X)(x,-X)‘, 

p, = ; c k,,C(x,+,, -X)(x, -.+L%, 
m= -B , 

and the second summation is over t such that 1 I t + m 5 T. The weights 
{k,} are selected so that, for each m, lim, tr k,, = 1. The bandwidth, or lag 
truncation number, B is selected to grow to infinity such that B = o(T”~). 
We need the following strengthening of Assumption 1: 

Assumption 4. The process {u,) is mean zero and strong mixing (cr-mixing) 
with mixing coeficients ((w,} of size -6p/(p - 61, and sup, Elu,l” < 00 for 
some p > 6. 

Theorem 3. Under Assumptions 2, 3, and 4, and B = o(T’/‘), 

(a) Te2fi’, * V,, (b) @-;‘x3 

Remark 6. In the HCI model, the OLS covariance matrix estimator does 
not generate an appropriate metric, but an heteroskedasticity and autocorre- 
lation-consistent covariance matrix estimator allows inference to proceed 
conventionally. In the literature on cointegrated models, little attention has 
been paid to robust covariance matrix estimation, since it is unnecessary in 
the standard model. Theorem 3 points out that there exist situations where 
the robust estimators are necessary. 

4. Estimates of the nonstandard distributions 

If Assumption 3 is violated, the inference procedures outlined in the 
previous section may be biased, as the test statistics will not have chi-square 
asymptotic distributions. We can get a feel for the magnitude of this bias by 
displaying the graphs of t-statistics for the simple case of one regressor. To 
review, in the CI model, the divergence from the MO, 1) can be quite 
substantial. As shown by Park and Phillips (1988>, the t-statistic in this case 
has an asymptotic distribution which is a mixture of an independent normal 
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random variable and a Dickey-Fuller f-variate: 

i=N(l -Q;3)1’2+DF.Q13r (14 

where N = N(0, 1) and 

Here and elsewhere in this section we will use the compact notation 

fl =fi-‘Ofl fin-‘/2 _ab aa ab bb 9 a, b = 1,2,3. 

The DF distribution is well known to have negative mean and skewness, and 
is not well approximated by the standard normal. For moderate values of 
&,, therefore, the distribution in (12) will diverge considerably from the 
standard normal. 

Returning to the HCI model, the distribution of the r-statistic in the simple 
one-regressor model can be written as 

where 

B,= (1 -(I -a;,)-‘@21 -n2,~,l)2-n:,)1’2% 

+(1 -Gn:,) -1’2(G21 - L?,&n,l)W2 + Gl3W3~ 

B2 = (1 - Q:y2w2 + Q23w3, 

B3 = w,, 
and 

(13) 

In general, this distribution seems rather complicated. The information we 
need, however, can be extracted by examining the leading cases: B, = B,, and 
B, and B, independent. The first occurs when Q2, = 1 (and therefore 
Q,, = a,,>. We can expect B, and B, to be related in this way, for example, 
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0 
-4 -2 0. 2 4 

Fig. 1 

when the BI error emerges due to a TVP process (see the remarks in the 
Introduction). The distribution in (13) then equals 

where 

Fig. 1 displays’ the distributions MO, 1) and /,,iQ,, dW,, which are the two 
independent components of the distribution. The distribution of /dQ,, dW, 
has an symmetric, slightly bi-modal shape. The relevant fact for inference, 
however, is its behavior in the tails. The distribution is slightly more dis- 
persed than the NO, 11, and thus some size distortion will occur, if critical 
values are set using the NO, 1). The degree of distortion, however, seems 
negligible. 

The picture changes somewhat for the second leading case: B, and B, 
independent, which occurs when n,, = 0. In this case the distribution in (13) 

6The distributions were approximated by Monte Carlo simulation. 64,000 samples of size 1000 
were drawn using pseudo-normal increments. A normal kernel estimated the density function. 
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O -4 -2 0. 2 4 

Fig. 2 

equals 

~(0, I)(1 - Q2:, -@J”’ + /'Q&, dW, + %I dW,)> (14) 
0 

where 

The N(0, 1) term in (14) is independent of the second term. In fig. 2 we 

display MO, 11, /dQ,, dW,, and /dQ,,dW,. Interestingly, the second and 
third are quite different. /dQ,, dW, is bell-shaped and less dispersed than 

MO, 1). /; Q23 dw,, on the other hand, is significantly different from the 
standard normal. It is symmetric about zero, yet bi-modal and more dis- 
persed than the NO, 1). If the distribution in (14) is close to this shape, then 
inferences based upon the standard normal will be misleading. This will 
occur when both &, is large (the regressors and the stationary part of the 
error are driven by the same process) and the persistent movement in the 
variance of the error is nearly independent of both x, and uir (G,, and Q,, 
are small). It is hard to think of a standard economic model which would 
produce this configuration. We can conclude that heteroskedasticity of the BI 
form plus endogeneity can distort the size of hypothesis tests constructed 
with conventional critical values, yet this distortion will not be large in most 
cases. 
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5. Conclusion 

Modeling dynamic economic variables using the framework of cointegra- 
tion is attractive because it allows researchers to specify meaningful regres- 
sion relationships between nonstationary series, permitting the broad range 
of analysis and hypothesis testing which permeates applied economics. This 
paper has shown that much of the statistical theory developed for the 
standard model of cointegration carries over to a broader class of models 
which can be characterized by heteroskedastic regression errors whose vari- 
ances are potentially unbounded. 

In the standard model of cointegration, the regressors differ stochastically 
from the regression errors in two respects: the regressors’ variance grows 
linearly over time, and the regressors possess a stochastic trend. The bi- 
integrated errors of this paper are similar to conventional errors in that they 
do not have a stochastic trend, yet their unconditional second moments grow 
linearly as do the regressors. The fact that coefficient estimates are consis- 
tently estimated even under arbitrary endogeneity assumptions suggests that 
the asymptotic results of the standard cointegration model are driven by the 
differing trend properties of the regressors and the regression errors, not the 
differing variance properties. 

There are several questions left unanswered by this paper. First, although 
it may seem evident that empirical second moments exhibit nonstationary 
characteristics, it is not at all clear whether the bi-integrated processes 
introduced here are the most useful approximation to the data. Second, in 
the presence of heteroskedasticity, least squares estimation, although consis- 
tent, is inefficient. Some alternative estimator may be more efficient. Harvey 
and Robinson (1988) suggest in a different context an adaptive estimation 
procedure. Essentially, the authors suggest estimating the underlying vari- 
ance process by smoothing (via a kernel) the squared residuals from the OLS 
regression. In the context of heteroskedastic cointegration, what would be 
necessary is to show that the variance estimate obtained in this manner 
converges weakly to the variance process B,(r)‘. Proving such a theorem 
appears to be quite challenging and will be left to future research. 

Appendix 

Proof of Theorem 1 

Define xr, = S;‘(l xi)’ = (1 T-‘/‘x:Y. Eq. (1) may be rewritten as 

Y, = P i 1 ,’ f + (wt -4,). 
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Thus, 
T 

z--l c XTr(Wt -&I) 
t=l 

I T 

-1 ~-‘Cc%-M 

1 

T-3/2 &,(w, - Azl) 
I 

From (5) and the assumption that EJx,l < 03, 

l XT[Tr] = T- l/zxo + T- 1j2S 

By the continuous mapping theorem and (A.21, 

\ 

. (A.l) 

I 

(A.4 

(A.3) 

From (6) we can deduce 

T 

T-‘~(w,-A2,) =~~T-‘Cu,,+T-‘CS21Ulr-A21j/1B2ds,. 
1 1 1 0 

(A-4) 
From (7) we find 

T 

T-3’2 cx,( w, - A2,) 

= T-3/2 f: (x0 + S,,)(a, + S2,)q, - T-3/2 5x3[A2, 
I 1 
T T 

= T-3’2 CS3J2,ult - T-3’2 ~x3tA21 + op( 1) 
1 1 

* j’B,B, df-4 + j14n,, + 
0 0 

j1W2, - 
0 

jlWz, 
0 

= / ‘B,B2 dB, + j’Bp$,, (A-5) 
0 0 

respectively. (A.31, (A.4), and (A.5) combine to yield the result. 0 
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Proof of Theorem 3 

The proof will be facilitated by a few inequalities. Define 

Y Ttm = T-2(x,+, -X)(xt -x)‘at+ma, (A.6) 

and 

771m = w:+, - E(u,u:+,). (A? 

The inequalities we need are 

(A.@ 

IIYTt+k.m - YTJ3,2 I K2(W-)‘? (A.9) 

i+t 

1: II bj, sK,fi, 
j=i 

3 

(A.lO) 

for finite K,, K,, and K,. 
Define ,P;= (T(u,: i I t), the smallest a-field containing the past history of 

ui. (A.8) and (A.101 will follow from Lemma 2 of Hansen (1991a) if (u,, q} 

and {qtrnl z} are an I,,-mixingale and an L,-mixingale, respectively, with 
summable mixingale coefficients (independent of m for TV,,,). Indeed, by 
McLeish’s strong mixing inequality, 

and under Assumption 4, C~(Y, 1/6-1/p < 00, SO (A.81 holds. (A.9) follows from 
(A.8) and a few tedious algebraic manipulations. To establish (A.lO) we note 

that, by Lemma 1 in Hansen (1991b), 

and ~~~~~~~~~~ <CC under Assumption 4, so {T,~, S;) is an L,-mixingale 
with summable mixingale coefficients independent of m. 

(a) First, we establish 

m=-B I 

(A.ll) 
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which follows from 

T-’ 5 km CYTdtm + 0. 
m=-E I P 

155 

(A.12) 

Set N = [@I, t, = [kT/N] + 1, and tz = tk+, - 1. Then 

N-l tk* 

= E c c YTtm?7tm 
k=O t=tl 

N-l t: 

+ c c llY,tm - YTtkml13/211rlrml13 

3 k=O t=tk 

T/N 
_< NK,K,( T/N)“’ +N c K2(t/T)1’2K3 

t=1 

I K,K,((TN)“* + T/fl) = 2K2K,T314, 

by repeated use of the triangle inequality, Holder’s inequality, (A.91, and 
(A.lO). Therefore, 

E l--l I? km CYTtm77tm 
m=-E t 

I T-‘(2B + 1) max E CYTImvrrn 
IrnlSB t 

_< 2K,K3(2B + 1)T-‘j4 + 0 as T+ 03. 

This establishes (A.12) by Markov’s inequality, and hence (A.ll). 
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We next show that 

m=-B t 

= T-3 f k,~(xt+, 4)(x,-f)‘~t+,wt+~p(l). (A.13) 
in=-B t 

To simplify the presentation, assume x, is scalar. Now, 

m=-B 

x(x;,+,&.(~ -p))2~~)1'2(T-i~u:l)l'2 
t 

2B+l 

= -FOP(l) + O. P 

This establishes (A.13). Similarly, we can replace w, by $J, to find that 

WI=-B t 

= T-2p, +op(l). (A.14) 

(A.141 and (A.111 complete the proof of part (a>. 
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(b) Note that T-'M, =j jdB:BT'. Thus 

F?=fi(R'&rs R ?Ml ( f1 A )~'(T-~~~)~~U,!~'R)~~ 

x@(R$, -r) 

Conditional on M;'I/;', this distribution is $. Since this does not depend 
upon M;'I/;',' it is the unconditional distribution as well. This completes the 
proof. q 
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