Journal of Econometrics 186 (2015) 280-293

]

Contents lists available at ScienceDirect

Journal of Econometrics

b g8
pig
il

journal homepage: www.elsevier.com/locate/jeconom

Forecasting with factor-augmented regression: A frequentist model

averaging approach

Xu Cheng*, Bruce E. Hansen

2 University of Pennsylvania, United States
b University of Wisconsin, United States

b,*

A
@ CrossMark

ARTICLE INFO

Article history:
Available online 6 March 2015

JEL classification:
C52
C53

Keywords:
Cross-validation
Factor models
Forecast combination
Generated regressors
Mallows

ABSTRACT

This paper considers forecast combination with factor-augmented regression. In this framework, a large
number of forecasting models are available, varying by the choice of factors and the number of lags. We
investigate forecast combination across models using weights that minimize the Mallows and the leave-
h-out cross validation criteria. The unobserved factor regressors are estimated by principle components
of a large panel with N predictors over T periods. With these generated regressors, we show that the
Mallows and leave-h-out cross validation criteria are asymptotically unbiased estimators of the one-
step-ahead and multi-step-ahead mean squared forecast errors, respectively, provided that N, T — oco.
(However, the paper does not establish any optimality properties for the methods.) In contrast to well-
known results in the literature, this result suggests that the generated-regressor issue can be ignored for
forecast combination, without restrictions on the relation between N and T.

Simulations show that the Mallows model averaging and leave-h-out cross-validation averaging
methods yield lower mean squared forecast errors than alternative model selection and averaging
methods such as AIC, BIC, cross validation, and Bayesian model averaging. We apply the proposed methods
to the US macroeconomic data set in Stock and Watson (2012) and find that they compare favorably to

many popular shrinkage-type forecasting methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Factor-augmented regression has received much attention in
high-dimensional problems where a large number of predictors are
available over a long period. Assuming some latent factors gener-
ate the comovement of all predictors, one can forecast a particular
series by the factors rather than by the original predictors, with
the benefit of significant dimension reduction (Stock and Watson,
2002). In factor-augmented regression, the factors are determined
and ordered by their importance in driving the covariability of
many predictors, which may not be consistent with their forecast
power for the particular series of interest, an issue discussed in Bai
and Ng (2008, 2009). In consequence, model specification is nec-
essary to determine which factors should be used in the forecast
regression, in addition to specifying the number of lags of the de-
pendent variable and the number of lags of the factors included.
These decisions vary with the particular series of interest and the
forecast horizon.
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This paper proposes forecast combination based on frequentist
model averaging criteria. The forecast combination is a weighted
average of the predictions from a set of candidate models that
vary by the choice of factors and the number of lags. The model
averaging criteria are estimates of the mean squared forecast
errors (MSFE). Hence, the weights that minimize these model
averaging criteria are expected to minimize the MSFE. Two
different types of model averaging methods are considered: the
Mallows model averaging (MMA; Hansen, 2007) and the leave-h-
out cross-validation averaging (CVAy,; Hansen, 2010). For one-step-
ahead forecasting, the CVA; method is equivalent to the jackknife
model averaging (JMA) from Hansen and Racine (2012). The
MMA and CVA;, methods were designed for standard regression
models with observed regressors. However, dynamic factor models
involve unobserved factors and their estimation creates generated
regressors. The effect of generated regressors on model selection
and combination has not previously been investigated. This paper
makes this extension and provides a theoretical justification for
frequentist model averaging methods in the presence of estimated
factors.

We show that even in the presence of estimated factors,
the Mallows and leave-h-out cross-validation criteria are asymp-
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totically unbiased estimators of the one-step-ahead and multi-
step-ahead MSFE, respectively, provided that N,T — oo. In
consequence, these frequentist model averaging criteria can be
applied to factor-augmented forecast combination without modi-
fication. Thus for model selection and combination, the generated-
regressor issue can be safely ignored. This is in contrast to
inference on the coefficients, where Pagan (1984), Bai and Ng
(2009), Ludvigson and Ng (2011), and Gongalves and Perron (2014)
have shown that the generated regressors affect the sampling dis-
tribution. It is worth emphasizing that our result is not based on
asymptotic rates of convergence (such as assuming T'/2/N — 0as
in Bai and Ng (2006)); instead it holds because the focus is on fore-
casting rather than parameter estimation. Indeed, in the context of
a non-dynamic factor model (one without lagged dependent vari-
ables and no serial correlation) we show that the Mallows criterion
is an unbiased estimate of the MSFE in finite samples, and retains
the classic optimality developed in Li (1987), Andrews (1991), and
Hansen (2007). In dynamic models our argument is asymptotic,
and we do not establish any form of optimality, but our results do
not rely on differing rates of convergence.

Our simulations demonstrate the superior finite-sample per-
formance of the MMA and CVA; forecasts in the sense of low
MSFE. Our comparisons are quite thorough, comparing our pro-
cedures with AIC selection, BIC selection, Mallows selection,
cross-validation selection, approximate Bayesian model averag-
ing, equal weights, and the three-pass regression filter of Kelly
and Pruitt (forthcoming). Our methods dominate the other proce-
dures throughout the parameter space considered. These findings
are consistent with the optimality of MMA and JMA in the absence
of temporal dependence and generated regressors (Hansen, 2007;
Hansen and Racine, 2012). In addition, the advantage of CVA}, is
found most prominent in long-horizon forecasts with serially cor-
related forecast errors.

We apply the proposed methods to the US macroeconomic
data set in Stock and Watson (2012) and find that they compare
favorably to many popular shrinkage-type forecasting methods.

The frequentist model averaging approach adopted here ex-
tends the large literature on forecast combination, see Granger
(1989), Clemen (1989), Diebold and Lopez (1996), Hendry and
Clements (2002), Timmermann (2006), and Stock and Watson
(2006), for reviews. Stock and Watson (1999, 2004, 2012) provide
detailed empirical evidence demonstrating the gains of forecast
combination. The simplest forecast combination is to use equal
weights. Compared to simple model averaging, MMA and CVA}, are
less sensitive to the choice of candidate models. Alternative fre-
quentist forecast combination methods are proposed by Bates and
Granger (1969), Granger and Ramanathan (1984), Timmermann
(2006), Buckland et al. (1997), Burnham and Anderson (2002),
Hjort and Claeskens (2003), Elliott et al. (2013), among others.
Hansen (2008) shows that MMA has superior MSFE in one-step-
ahead forecasts when compared to many other methods.

Another popular model averaging approach is the Bayesian
model averaging (BMA; Min and Zellner, 1993). The BMA has
been widely used in econometric applications, including Sala-i-
Martin et al. (2004), Brock and Durlauf (2001), Brock et al. (2003),
Avramov (2002), Fernandez et al. (2001a,b), Garratt et al. (2003),
and Wright (2008, 2009). Geweke and Amisano (2011) propose
optimal density combination for forecast models. Compared to
BMA, the frequentist model averaging approach here does not re-
ply on priors and allows for misspecification through the balance
of misspecification errors against overparameterization. Further-
more, our frequentist model averaging approach explicitly deals
with generated-regressors, while BMA has no known adjustment.

As an alternative to the model averaging approach, forecasts
can be based on one model picked by model selection. Numerous
model selection criteria have been proposed, including the Akaike

information criterion (AIC; Akaike, 1973), Mallows’ C, (Mallows,
1973), Bayesian information criterion (BIC; Schwarz, 1978), and
cross-validation (CV; Stone, 1974). Bai and Ng (2009) argue
that these model selection criteria are unsatisfactory for factor-
augmented regression because they rely on the specific ordering
of the factors and the lags, where the natural order may not work
well for the forecast of a particular series. This issue is alleviated
in forecast combination by the flexibility of choosing candidate
models. In addition, the above model selection procedures have not
been investigated in the presence of generated regressors; ours is
the first to make this extension.

This paper complements the growing literature on forecast-
ing with many regressors. In addition to those discussed above,
many papers consider forecast in a data rich environment. Forni
et al. (2000, 2005) consider the generalized dynamic factor model
and frequency domain estimation. Bernanke et al. (2005) propose
forecast with factor-augmented vector autoregressive (FAVAR)
model. Bai and Ng (2008) form target predictors associated with
the object of interest. Bai and Ng (2009) introduce the boost-
ing approach. A factor-augmented VARMA model is suggested
by Dufour and Stevanovic (2010). Pesaran et al. (2011) also
investigate multi-step forecasting with correlated errors and
factor-augmentation, but in a multivariate framework. Stock and
Watson (2012) describe a general shrinkage representation that
covers special cases like pretest, BMA, empirical Bayes, and bagging
(Inoue and Kilian, 2008). Kelly and Pruitt (forthcoming) propose
a three-pass-regression filter to handle many predictors. Tu and
Lee (2012) consider forecast with supervised factor models. Dobrev
and Schaumgurg (2013) propose using regularized reduced rank
regression models for multivariate forecasting with many regres-
sors. A comprehensive comparison among many competing meth-
ods is available in Kim and Swanson (2014). The dynamic factor
model is reviewed in Stock and Watson (2011). Ng (2011) provides
an excellent review on variable selection and contains additional
references.

The rest of the paper is organized as follows. Section 2 intro-
duces the dynamic factor model and describes the estimators and
combination forecasts. Section 3 provides a detailed description of
forecast selection and combination procedures based on the Mal-
lows and leave-h-out cross-validation criteria. Section 4 provides
theoretical justification by showing the Mallows and leave-h-out
cross-validation criteria are asymptotically unbiased estimators of
the MSFE. Monte Carlo simulations and an empirical application to
US macroeconomic data are presented in Sections 5 and 6. Sum-
mary and discussions are provided in Section 7.

Matlab and Gauss code for the simulation and empirical work
reported in the paper is posted at www.ssc.wisc.edu/~bhansen.

2. Model and estimation

Suppose we have observations (y;, Xj;) fort = 1,...,T and
i = 1,...,N, and the goal is to forecast yr,, using the factor-
augmented regression model

Yerh = oo + L)y + BWL)'F; + &4 (2.1)

where h > 1 is the forecast horizon and F; € R" are unobserved
common factors satisfying

th — )V:Ft + €ijt. (22)

The vectors A; € R are called the factor loadings, e;; is called an
idiosyncratic error, and « (L) and B(L) are lag polynomials of order
p and q, respectively, for some 0 < p < pmax and 0 < q < Qmax-
We assume that a sufficient number of initial observations are
available in history so that the variables in (2.1) are available for
T time series observations.
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In matrix notation, (2.2) can be written as
X=FA +e (2.3)

where X isT x N,F = (Fy,...,Fp) isT xr, A= (A1,...,An) is
N xr,andeisaT x N error matrix. For our theory we assume that
the number of factors r in (2.2) is known. In practice (including our
simulations and empirical work) r can be consistently selected by
the information criteria in Bai and Ng (2002).

Our contribution is to treat the structures of «(L) and B(L) in
(2.1) as unknown, and to introduce methods to select the factors
and lag structures for forecasting. Consider approximating models
for (2.1) which include up to pmax lags of y; and gmax lags of F;.
Thus the largest possible approximating model for (2.1) includes
the regressors

Z[ = (17yf7"'7y[ Pmax’FI .o Fl’/ Qmax),' (2.4)
Given this regressor set, write (2.1) as
Yerh = z(b + &4 (2.5)

where b includes all coefficients from (2.1). Now suppose that the
forecaster is considering M approximating models indexed by m =
1, ..., M, where each approximating model m specifies a subset
z:(m) of the regressors z;. The forecaster’s mth approximating
model is then

Yern = ze(m)'b(m) + epp(m), (2.6)
or in matrix notation
y = Z(m)b(m) + e(m). (2.7)

We do not place any restrictions on the approximating mod-
els; in particular, the models may be nested or non-nested, and
the models may include all r factors, just a subset, or even zero
factors. However, the set of models should be selected judiciously
so that the total number of models M is practically and compu-
tationally feasible. A simple choice (which we use in our sim-
ulations) is to take sequentially nested subsets of z.. Another
simple feasible choice is to set zz(m) = (1, ¥, Ye—1,+++»Yeem,
FI,...,F",.), where F" denote the first m factors in F;. Alter-
natively, a relatively simple choice is to set z,(m) = (1, y¢, ¥¢—1,

e Ye—pmy, F oo F[”iq(m)) where we separately vary p(m)
among (0, 1, 2, ..., P) and g(m) among (0, 1, 2, ..., Q) for some
constants P, Q > 0. The choice of lag structures is not critical to
our treatment.

For estimation we replace the unobservable factors F by their
principle component estimate F = (Fy, ..., Fr)’ € RT*", which is
the matrix of r eigenvectors (multiplied by JT )associated with the
r largest eigenvalues of the matrix XX'/(TN) in decreasing order.
Alternative methods are available to estimate F, such as the GLS-
type estimators considered by Boivin and Ng (2006), Forni et al.
(2005), Stock and Watson (2005), Breitung and Tenhofen (2011),
Choi (2012), and Doz et al. (2012). Let z[(m) denote z;(im) with the
factors F;replaced with their estimates Ft, and set Z (m) f z1(m),

, Zr— h(m))/ The least squares estimate of b(m) is then b(m)
(Z(m)’Z(m)) 1Z(m) 'y with re51dual Eeen(m) = yin — 2, (m)’ b(m)
The least squares estimate b(m) is often called a “two-step” esti-
mator as the regressor Z; (m) contains the estimate F; also known
as a “generated regressor”.

The least squares forecast of yr,, by the mth approximating
model is

Vrenr (m) = Zr (m)b(m). (2.8)

Forecast combinations can be constructed by taking weighted
averages of the forecasts '37T+W(m). These take the form

M

> w(m)Prinr(m). (2.9)

m=1

Vrinr(w) =

Vriwr(m) from the setm = 1,...,

where w(m),m =1, ..., M, are forecast weights. Let w = (w(1),

,w(M))" denote the weight vector. We will require that the
weights are non-negative and sum to one, e.g., 0 < w(m) < 1
and Z’n\fﬂ w(m) = 1, or equivalently that w € #M, the unit
simplex in RM. Forecast combination generalizes forecasting based
on a single model as the latter obtains by setting w(m) = 1 for a
single model m. The forecast combination residual is &,.s(w) =

M ~
> me1 W(M)En(m).
3. Forecast selection and combination

The problem of forecast selection is choosing the forecast
M. The problem of forecast
combination is selecting the weight vector w from #M. In this
section we describe the Mallows and leave-h-out cross-validation
criteria for forecast selection and combination.

Factor models are distinct from conventional forecasting
models in that they involve generated regressors (the estimated
factors). As shown by Pagan (1984), in general the presence of
generated regressors affects the asymptotic distribution of two-
step parameter estimates such as B(m). The details for dynamic
factor models have been worked out by Bai and Ng (2006, 2009).
Bai and Ng (2006) show that the generated regressor effect is
asymptotically negligible if T'/2/N — 0, that is, if the cross-
sectional dimension is sufficiently large so that the first-step
estimation error is of a smaller stochastic order than the second-
step estimation error. Bai and Ng (2009) refine this analysis,
showing that the first stage estimation increases the asymptotic
variance by a factor related to both T and N. Consequently, they
propose to adjust the boosting stopping rule for mean squared
error (MSE) minimization. The lesson from this literature is that
we should not neglect the effect of generated regressors when
considering model selection.

The Mallows (1973) criterion is a well-known unbiased esti-
mate of the expected squared fit in the context of homoskedastic
regression with independent observations. The criterion applies
to any estimator whose fitted values are a linear function of the
dependent variable y. In the context of model selection with esti-
mated factors, the fitted regression vector is 4 (m)b(m) =7 (m)
(Z(m)/Z(m)) IZ(m) y and in the context of forecast combina-
tion the fitted regression vector is Zm:] w(m)Z (m) (Z(m)’Z(m)) 1

Z (m)'y. In both cases the fitted values are a linear function of y
if Z(m) is not a function of y, which occurs in any non-dynamic
factor model (that is, model (2.1) without lagged dependent vari-
ables). This is because the generated regressors Z(im) are a function
only of X. (Recall, F are the eigenvectors of XX’'/(TN) associated
with the r largest eigenvalues.) Consequently, the Mallows crite-
rion is directly applicable without modification to non-dynamic
homoskedastic factor models, and Mallows selection and averag-
ing retains the optimality properties described in Li (1987), An-
drews (1991), and Hansen (2007). This is a simple yet exciting
insight. It is also quite surprising given the failure of conventional
inference in the presence of generated regressors. Our intuition is
that while generated regressors inflate the MSE of the parameter
estimates, they symmetrically inflate the Mallows criterion, and
thus the criterion remains informative.

Unfortunately this finite-sample argument does not apply di-
rectly to the dynamic model (2.1) with lagged dependent variables.
Therefore in the next section we use asymptotic arguments to es-
tablish the validity of the Mallows criterion for the dynamic factor
model. It follows that the unadjusted Mallows criterion is appro-
priate for forecast selection and combination for dynamic factor
models.
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We now describe the Mallows criterion for selection and com-
bination. Let k(m) = dim(z;(m)) denote the number of regressors
in the mth model. The Mallows criterion for forecast selection is

ZW") 42
-2

where o7 is a preliminary estimate of o? = Est We suggest
‘77 =(T— k(M)) 1 Zt 1 £ (M)? using a large approx1mate model
M so that o aT is approx1mately unbiased for o%. The Mallows se-
lected model is m = argmin, -, Cr (m) and the selected forecast
is yT+W(m) Numerically, this is accomplished by estimating each
model m, calculating Cy (m) for each model, and finding the model
m with the smallest value of the criterion.

For forecast combination, the Mallows criterion for weight
selection is

1T M 2 252 M
Cr(w) == (Z w(m)@(m)) Z w(mk(m). (3.2)

t=1 \m=1

Cr(m) = of k(m) (3.1)

The Mallows selected weight vector is obtained by finding the
weight vector w which minimizes Cr(w). We can write this as

w = argmin Cr(w) (3.3)
weHM

and the selected forecast is yrpr (). Following Hansen (2008)
we call this the MMA forecast. Numerically, the solution (3.3)
minimizes the quadratic function Cr(w) subject to a set of
equality and inequality constraints, and is easiest accomplished
using a quadratic programming algorithm, which are designed for
this situation. Quadratic programming routines are available in
standard languages including Gauss, Matlab, and R.

The Mallows criterion is simple and convenient, but it is
restrictive in that it requires the error &, to be conditionally
homoskedastic and serially uncorrelated. The homoskedasticity
restriction can be avoided by instead using leave-one-out cross-
validation as in Hansen and Racine (2012), which is a generally
valid selection criterion under heteroskedasticity. The leave-one-
out cross-validation criterion, however, still requires the error to
be serially uncorrelated, yet when h > 1 the error ¢, is generally
a moving average process and thus is serially correlated.

To incorporate serial correlation, Hansen (2010) has recom-
mended using the leave-h-out cross-validation criterion which is
the sum of squared leave-h-out prediction residuals.

To construct this criterion, define the leave-h-out prediction
residual €4 pn(M) = Yeun — Z:(m)'b. n(m) where b ,(m) is the
least squares coefficient from a regression of y,,; on Z;(m) with
the observations {yj,z(m) : j = t —h+1,...,t + h— 1}
omitted, This leave-h-out residual uses the full-sample estimated
factors F;. When h = 1 the prediction residual has the simple
formula &y 5 (M) = &rn(m)(1 — Z (M) (Z(m)'Z(m)) ="z, (m)) .
For h > 1, Hansen (2010) has shown that it can be computed via
the formula

1
Erpnp(m) = Erpn(m) + Z;(m) ( Z Z(m)?f(m))

li—tI=h

x ( > %(m)a+h(m>). (34)

li—t|<h

The cross-validation criterion for forecast selection is

1 nn
CVir(m) = — th,h(m)? (35)

The cross-validation selected model is m = argminy <, <y CVp, r (M)
and the selected forecast is yT+h|T(m)

For forecast combination, the leave-h-out prediction residual
is Erpnn(w) = Z’,\::] w(m)&;4px(m) and the cross-validation
criterion is

T
Vpr(w) = = Z Eernn(w)?

~

—

2
>3 (Z w(m)z‘f+h,h(m>) : (3.6)

t=1

The cross-validation selected weight vector minimizes CV} r(w),
that is,

w = argmin CVj, 7 (w). (3.7)
weHM

Similar to the Mallows combination, (3.7) is conveniently solved

via quadratic programming, as the criterion (3.6) is quadratic in

w. The cross-validation selected combination forecast isyﬂmr(z’u\),

and we call this the leave-h-out cross-validation averaging (CVA;)

forecast.

4. Asymptotic theory

In this section, we provide a limited theoretical justification
for the Mallows criterion and the leave-h-out cross-validation
criterion with estimated factors. In the first subsection we
describe the technical assumptions, and in the second describe
the connection between in-sample fit, MSE, and MSFE. In the third
subsection we show that the Mallows criterion is an asymptotically
unbiased estimator of the MSFE in the case of one-step-ahead
forecasts and conditional homoskedasticity. In the fourth we
examine the leave-h-out cross-validation criterion, and show a
similar result for multi-step forecasts allowing for conditional
heteroskedasticity.

4.1. Assumptions

Let %t = o, Fr, Xir, Xor, -+ - F—1, Ye—1, X101, X0, 0—1, .- )
denote the information set at time t. Let C denote a generic
constant. For a matrix A, A > 0 denotes A is positive definite.

Assumption R. (i) E(gq44|F) = 0.

(il) (z;, &r4h, €, - - -, ene) is strictly stationary and ergodic.

(iii) E|lz||* < C Eef < C,and E(zz]) > 0.

(iv) T-V23 120 | zeerin —a N(O, 2), where 2 = > i<n E@z,
Et4hEtth—j)-

Assumption R(i) implies that &, is conditionally unpredictable
at time t, but when h > 1 it does not imply that & is
serially uncorrelated. This is consistent with the fact that the
h-step-ahead forecast error &, typically is a moving average
process of order h — 1. Assumption R(ii) assumes the data is
strictly stationary and ergodic, which simplifies the asymptotic
theory, and links the in-sample fit of the averaging estimator to
its out-of-sample performance. (See Section 4.2 below for details.)
Assumptions R(iii)-(iv) are standard moment bounds and the
central limit theorem, the latter satisfied under standard weak
dependence conditions. The specific form of §2 in Assumption R(iv)
follows from stationarity and Assumption R(i).
Assumption F. (i) The factors satisfy E ||F;||* < C and T~!

S RF =, 5 > 0.

(ii) The loading A; is either deterministic such that ||A;|| < C
or it is stochastic such that E ||A;]|* < C. In either case,
NT'AA—, %, > 0.

(iii) Eey = 0, Eley|® < C
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(iv) IE(eitejs) = Oijts» |Uﬁ,ts| < 0j for all (t, s), and |GU,ts| = T
for all (i, j) such that N~! Z?’j:l g <CT! Z[T,s:1 s < C,
and (NT)! Zi,j,t,s:] loyj.s] < C.

(v) Forevery (t,s), EIN"'/2 Y"1 [eje; — E(eiey)][* < C

(vi) The variables {A;}, {F;}, {e;:} are three mutually independent
groups. Dependence within each group is allowed.

(vii) For each t, ]E||(NT) V2Tt SN (Fs 4+ esen)(eneis —
]E(eltels))”

(viii) For all (i, t) IE||(NT) RED SN
where E(A;ej&r1n) = 0.

N
iiq Meieenl? < M,

Assumption F is similar to but slightly weaker than Assump-
tions A-D in Bai and Ng (2006) and Assumptions 1-4 of Goncalves
and Perron (2014).! Assumptions F(i) and (ii) ensure that there
are r non-trivial strong factors. This does not accommodate weak
factors as in Onatski (2012). Assumptions F(iii)-(v) allow for het-
eroskedasticity and weak dependence in both the time series and
cross-sectional dimensions, an approximate factor structure as in
Chamberlain and Rothschild (1983) and Connor and Korajczyk
(1986, 1993). Assumption F(vi) can be replaced by alternative con-
ditions, such as Assumptions D and F2-F4 of Bai (2003) and As-
sumptions 3(a), 3(c), and 3(d) of Gongalves and Perron (2014).
Assumptions F(vii) and (viii) impose weak dependence between
the idiosyncratic errors and the regression error as well as bounded
moments for the sum of some mean-zero random variables. They
are analogous to Assumptions 3(b), 4(a), and 4(b) of Gongalves and
Perron (2014), who also provide sufficient conditions under mu-
tual independence of {A;}, {e;s} and {&;4p}. A condition similar to
Assumption (vii) also is employed by Assumption F1 of Bai (2003).

A limitation of our theory is that it requires that the number
of factors r is known, and that any approximating models uses no
more than r factors. Otherwise we cannot appeal to existing results
on principle component estimation of factors. Approximating
models may contain less than r factors, but cannot contain more
than the true number of factors. This restriction is consistent with
the previous literature on factor-augmented regression.

4.2. MSE and MSFE

We first show that the MSFE is close to the expected in-sample
squared error. To see this, write the conditional mean in (2.1)
as u¢ so that the equation is yr4p = p¢ + &ryporasaT x 1
vector as y = u + &. Similarly for any forecast combination w,
write 1 (w) = Z%’zl w(m)Zz;(m)’b(m) and in vector notation
y=uw) +e(w). R

The MSFE of the point forecast yrinr(w) is

~ 2
MSFEr(w) = E (Yr4n — Yr4nr(w))
= E (67,5 + (ur — Ar(w))?)
= E (efih + (e — e(w))?)
= 0%+ ELr(w), (4.1)
where

1 ¢ _
Lrw) = = D (e = ew))’
t=1

1
=7 - Bw)) (n — f@(w)) (4.2)

is the in-sample squared error.

1 Assumption F does not impose Assumption C4 of Bai and Ng (2006 ), Assumption
3(e) of Gongalves and Perron (2014), nor asymptotic convergence as in Assumptions
F3 and F4 in Bai (2003). The reason is that our theory does not require obtaining the
asymptotic distribution of the estimated factors.

In (4.1), the first equality is by definition, the second equal-
ity holds since ey is uncorrelated with Zir (w), and the approx-
imation in the third line follows from stationarity of (y, ,NF[). This
approximation rests on whether the distribution of (y;, F;) is ap-
proximateNIy stationary. This holds since the principle component
estimate F; is a weighted average of X; = (Xi, ..., Xn:), Where
the weight is an approximately orthogonal transformation of A,
which holds under Assumption F as shown by Bai and Ng (2002)
and Bai (2003). Combined with the stationarity and independence
conditions in Assumptions R(ii) and F(vi), it follows that (y;, F;) is
approximately stationary as claimed.

The final equality in (4.1) shows that for any weight vector w
the MSFE of the combination forecast 371+;,‘T(w) is close to the
expectation of Ly (w), plus o-2. The Mallows and leave-h-out cross-
validation criteria are designed as estimates of Ly (w)+o2. The near
equivalence with MSFE shows that these criteria are also estimates
of MSFE and are thus appropriate forecast selection criteria.

4.3. Mallows criterion

In this section we restrict attention to the case of one-step fore-
casts (h = 1) and conditional homoskedasticity. Thus Assump-
tion R(i) is strengthened to E(g¢41|%) = 0 and E(e2 ;| %) = o2
Under these conditions we show that the Mallows criterion is an
asymptotically unbiased estimate of Ly (w) + o2

To see this, recalling the deﬁmtlons of ma and M(w) given in Sec-
tlon 4.2, we can see that w(w) = P(w)y P(w),u +P(w)e where
P(w) Z - w(m)P(m) and P(m) Z(m)(Z(m) Z(m)) 1Z(m)/
Thus the residual vector equals

tw) =¢e+pu—pu(w)

=&+ (I —P(w)) u — P(w)e. (4.3)
We calculate that
1 M 2
TZXZMMW@

= %?(w)/?(w)
1

-~ / -~ 1 / 1 -~ /
= f(u—u(w)) (b —p(w)) + f88+2¥(/t—u(w)) €

1, 1, ~ 1 ~
=Lr(w) + ?884—2?[/0 (I—P(w))e —2;8 P(w)e. (4.4)

It follows that

1 2
Cr(w) = Lr(w) + F‘?,S + ﬁrlT(w) - frzr(w) (4.5)
where

() = —= ' (1 = Bw)) e

1T = ﬁﬂ

ror(w) = &'P(w)e — 67 Z w(m)k(m). (4.6)

This relates the Mallows criterion to the in-sample squared error
LT(LU)

The classical justification of Cr(w) given by Mallows (1973)
was that it was an unbiased estimate of the squared error Ly (w)
up to a constant. From (4.5) and the fact E(T"'¢'e) = o2, we
see that this condition holds if Erir(w) = 0 and Eryr(w) = 0.
Given the time-series nature of the data we cannot show exact
unbiasedness, but we will show below that rir(w) and ror(w)
converge in distribution to mean-zero random variables and thus
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are asymptotically mean zero.” This allows us to interpret the
Mallows criterion Cr(w) as an asymptotically unbiased estimate
of the in-sample squared error Ly (w). Consequently, selecting the
weight vector (or model) to minimize Cr(w) is an estimator of the
minimizer of Ly (w), and hence the MSFE.

This property (asymptotic unbiasedness of the criterion) is not
by itself sufficient to establish optimality, namely that the MSFE
of the selected combination forecastS/}erT(’u?) is equivalent to the
optimal MSFE, or that

~ ~ )2
E (Yr4n — Yr+nr (W)
inf MSFE; (w)

weHM

In the context of independent observations this has been estab-
lished for Mallows selection by Li (1987) and for Mallows combi-
nation by Hansen (2007). This holds if the remainder terms in (4.5)
are of smaller order than Ly (w), uniformly in w € #M. We have
not established such uniformity, but note that the remainder terms
are of order 0,(T~"/?) and 0,(T 1), respectively, while Ly (w) con-
verges to a non-zero limit for any w which does not put full weight
on the true model (and thus for any w when the true model is of
infinite order). Therefore, in this sense as well we can view Cr(w)
as a reasonable estimate of Ly (w) and hence of the MSFE.

We now establish our claim that r17 (w) and 7 (w) converge in
distribution to mean-zero random variables. First, define

0 1 i
rp(w) = —=pw (I —P(w))e

JT
M 1
= w(m)—=u' (I — P(m)) ¢ (4.7)
2 7
and
M
rir(w) = 'P(w)e — o> w(m)k(m)
m=1
M
=02 ) w(m) (o 7%'P(m)e — k(m)) (4.8)
m=1

where P(w) = Z%Z] w(m)P(m) with P(m) = Z(@m)(Z(m)
Z(m))~'Z(m)'. These are analogs for the case of no generated
regressors.

Take r?T(w). Notice that u = Zb where Z = (z4,...,zr) and b
is the true coefficients in (2.5). Then under Assumption R, for each
m,

1
—u (I —P(m))e

VT

= ib/z/ (I — P(m)) € =>4 S1(m) ~ N(0, 62Q(m)), (4.9)
VT
where Q (m) = plimT~'b'Z’ (I — P(m)) Zb. Thus
M
i) =4 fi(w) =Y w(m)Sy(m), (4.10)

m=1

a weighted sum of mean-zero normal variables, and thus E¢;
(w) =0.

2 Technically, convergence in distribution by itself does not imply con-
vergence of moments, e.g, Erir(w) — 0, unless the random variable
rir(w) is uniformly integrable, which is difficult to establish. However, con-
vergence in distribution does imply convergence of the trimmed moment
limp_, oo limr_, o Erir(w)1 (Jri7(w)| < B) = 0soit is reasonable to describe ry7 (w)
in this context as asymptotically unbiased.

Now take rZOT(w). Under Assumption R, E(g;+1|%:) = 0 and
E(ef,,|F:) = o?, thus for each m, T~'Z(m)'Z(m) —,V(m) =
E(z:(m)z[(m)), T"2071Z(m)'e —4S,(m) ~ N(0,V(m)), and
hence
o72¢'P(m)e

= o2'Z(m) (Z(m)'Z(m)) ™" Z(m)'s — 4 S,(m)'V (m) 'S, (m)

=&(m) ~ sz(my
It follows that

M

() =40 w(m) (E(m) — k(m)) = t2(w), (4.11)
m=1

a weighted sum of chi-square random variables centered at their

expectations, and hence E¢, (w) = 0.

Finally, we show that rgT(w) — rr(w) = 0,(1) from which it
follows that ror (w) —4 {2 (w). The argument to show that r¥ (w)
— rir(w) = 0p(1) is similar so omitted. Observe that if ETZ is esti-
mated using a large model which includes the true lags as a spe-
cial case (or if the number of lags increases with sample size) then

07 —p 0% Next, write

ePmye = [T2Zy(m)'e + Ar]

X [T_]ZH(m)/ZH(m) + Bir + B}y + BZT]_1
x [T?Zy(m)'e + Ar].

Ar =T~ V2 (Z(m) — Zy(m))'e,
Bir =T (Z(m) — Zy(m))' Zy(m),

Byr =T (Z(m) — Zy(m))' (Z(m) — Zu(m)), (4.12)
and Zy(m) = Z(m)H(m) for some full-rank block-diagonal ma-
trix H(m) that transforms the factor column spaces in Z(m).> Let
Cyr = min[N"/2, T'/?]. By Lemma A.1 of Bai and Ng (2006), By =
0,(Cyt) and By = 0,(Cy;') under Assumptions R and F, showing
that the estimated factors approximately span the column spaces
of the true factors in large sample. By Lemma A.1 of Gongalves and
Perron (2014), Ar = 0,(Cy;), under Assumptions R and F.* Be-
cause Ar, Bir, and B,y are all negligible as N, T — o0, it follows
that ¢’P(m)e = &'P(m)e + 0,(1). Combined with the consistency
of 57 we conclude that r9; (w) — ror (w) = 0,(1) when N, T — 00
as desired.

The arguments above are analogous to those in Bai and Ng
(2006) on the effect of factor estimation on confidence intervals.
However, the above results hold without imposing the strong
T'2/N — 0 condition used in Bai and Ng (2006).

We have established the following result.

Theorem 1. Suppose h = 1, E(¢} ;| %) = o2, and Assumptions R
and F hold. For fixed M and w, and N, T — o0,

Cr(w) = Lr(w) + T '¢'e + 2T ?rir(w) — 2T 'ror (w),
where

rir(w) =4 &1 (w),

rar(w) =4 L2 (w),

E¢¢(w) = 0and E¢,(w) = 0.

3 The exact form of H(m) is based on the transformation matrix H defined in
Lemma A.1 of Bai and Ng (2006), with adjustments that each approximate model
only involves a subset of all factors and their lags. In addition, H(m) is block-
diagonal, where the upper-left block associated with the lags of y; is an identity
matrix. As such, H(m) only rotates the columns of factors and their lags.

4 Assumptions R and F imply all assumptions in Bai and Ng (2006) and Gongalves
and Perron (2014) used to obtain the desired results.
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Theorem 1 shows that for one-step homoskedastic forecasting,
the Mallows criterion Cy(w) is equal to the in-sample squared
error Ly(w) plus o2 and terms of smaller stochastic order with
asymptotic zero means. As discussed above, this means that we
can interpret Cr(w) as an asymptotically unbiased estimator of
ELr (w) 402 ~ MSFE; (w). This holds for any weight vector w, and
holds even though the regressors are estimated factors. This result
is similar to the theory of Hansen (2008) for forecast combination
without estimated factors.

With the generated regressors, the in-sample squared error
Lt (w) and the Mallows criterion Cr(w) are both inflated. However,
Theorem 1 shows that the in-sample squared error and the
Mallows criterion are inflated symmetrically, leaving the Mallows
criterion to be informative as usual.

While Theorem 1 establishes that the Mallows criterion is
asymptotically unbiased for the MSFE, it does not establish that
the selected weight vector is asymptotically efficient in the sense
of Shibata (1980), Ing and Wei (2005), or Schorfheide (2005) for
forecast selection, or Hansen (2007) in the case of model averaging.
In particular, Ing and Wei (2005) show that in an infinite-order
autoregressive (AR) model with i.i.d. innovations, the AR order
selected by the Akaike or Mallows criterion is asymptotically
optimal in the sense of minimizing the one-step-ahead MSFE
among all candidate models. No similar result exists for forecast
combination, and a rigorous demonstration of optimality is beyond
the scope of this paper. Nevertheless, the asymptotic unbiasedness
of the Mallows criterion shown in Theorem 1, the existing
optimality results on Mallows model averaging, and the optimality
theory of Ing and Wei (2005) together suggest that Mallows
forecast combination in the presence of estimated factors is a
reasonable weight selection method.

4.4. Multi-step forecast with leave-h-out cross validation averaging

When h > 1 or the errors are possibly conditionally het-
eroskedastic the Mallows criterion applies an incorrect parameter-
ization penalty. Instead, following Hansen (2010) we recommend
the leave-h-out cross-validation criterion for forecast selection and
combination. In this section we provide a theoretical foundation
for this criterion in the presence of estimated factors.

First, it is helpful to understand that an h-step-ahead forecast is
actually based on a leave-h-out estimator, so a leave-h-out cross-
validation criterion is a quite natural estimate of the MSFE. To see
this, recall that the h-step-ahead forecast is yrynr(m) = Zr(m)’
’b\(m), whereﬁ(m) is the least-squares estimate computed from the
sample {yiypn,zz(m) : t = 1 — h,. LT = h}. Also, recall the
definition of the leave-h-out estimator by ,(m), which is the least
squares coefficient from the same sample with the observations
Wj4n-Zj(m) 1 j =T —h+1,...,T + h — 1} omitted. Comparing
the estimation sample with the omitted observations, there is no
intersection. That is, b(m) = br ,(m) and the point forecast can be
written as yripr(m) = Zr (m)'br p(m). It follows that the forecast
error is yryn — Yr4nr (M) = yrin — Zr(m)'br p(m) = Erypp(m),
which is identical to the leave-h-out prediction residual. Similarly
the combination forecast error is yry, — ?HW(w) = Zronn(w),
the leave-h-out prediction residual. It follows that the MSFE of the
point forecast equals

~ 2~
MSFE7(w) = E (yron — Yrnr(w))” = E&rpn(w)?.

The MSFE equals the expected squared leave-h-out prediction
residual. As the cross-validation criterion is simply the sample
average of the squared leave-h-out prediction residuals, it is
natural to view the cross-validation criterion as an estimator of the
expectation EEHh,h(w)z and hence MSFET(w).

(4.13)

To push this analysis further, let the leave-h-out fitted values be

written as fi(m) = Z(m)'bex(m) and finn(w) = Ym_, w

(m)Z;(m)'b; ,(m). Then we can write the leave-h-out predication
residuals as €1y n (W) = Yrin — Mernn(w). Using vector notation,
ep(w) = & + u — pmp(w) so with a little algebra we obtain

T
CVpr(w) = fé?h(w)/é?h(w)
= Tr(w) + Le'e + —For(w) (4.14)
=Lr T ﬁ 1T .
where
~ 1 -
Lrw) = = (e = fien(w))®
t=1
1 -
= 7 (= (W) (= pin(w)) (4.15)

is the in-sample squared error from the leave-h-out estimator, and

~ 1 - )
rir(w) = T2 (= pmp(w)) e

M

Zw(m)i
T1/2

m=1 t

—

—h

(1e — Z:(m) bep(m)) €. (4.16)
—h

Il
-

As in the decomposition (4.12), we can replace Z;(m) with
zy(m) = H(m)'z;(m), where H(m) is the rotation matrix for the
factor space, adding an error of only o0,(1). Decomposing further,
we find

Tir(w) = Top(w) + Tor(w) + Tar (w) + 0p(1) (4.17)
where
M 1 T—h
Fr(w) =Y wm s > (e —2zuc(m)'bm) e, (418)
m=1 t=1—h
M 1 T—h .
Fir(w) = Y wm) = 3 zu(m)’ (b(m) —bm) ecsn, (419)

m=1 t=1-h
T—h

M

~ 1

Pr(w) = ) wm) 7 > "z (m)
m=1 t

=1-

% (b(m) — byn(m)) ecsn,

h
and b(m) = (Ezy(m)zy (m)’)71 E(zy: (M)y;4p) is the projection
coefficient from the regression of y; ., on zy, (m).
We now examine (4.18)-(4.20). First, as in (4.9) and (4.10),

(4.20)

Tor(w) =4 &1 (w), (4.21)

a mean-zero normal random variable. Second, a little re-writing
shows that

M
~ 1 ~
Fir(w) = ; w(m)—5€'Zu(m) (b(m) —bm)) = 0p(1).  (4.22)
Third,
M 1 T—h
Frw)l < Y wm= Y lzumecl
m=1 t=1—h

X mtax«/f ||E(m) —Et,h(m) ||

= 0,(1) (4.23)

where the final bound holds by Lemma 1 presented at the end of
this section. This establishes that (4.20) is 0, (1).
We have established the following result.
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Theorem 2. Suppose Assumptions R and F hold. For any h > 1, fixed
M and w, and N, T — 00,

CVir(w) = Lr(w) + T 'e'e + 2T 27 (w),
where

rir(w) —q ¢1(w),
and E¢;(w) = 0.

Theorem 2 is similar in form to Theorem 1. It shows that
CVy 1 (w) is an asymptotically unbiased estimate of Ly (w), the in-
sample squared error from the leave-h-out estimator, plus 2.
This holds for any weight vector w, even though the regressors
are estimated factors, for any forecast horizon h, and allows for
conditional heteroskedasticity. Theorem 2 extends Theorem 2 of
Hansen (2010) to forecasting with factor-augmentation.

An apparent difference between Theorems 1 and 2 is that
Theorem 1 shows that the Mallows criterion is an estimator of
the in-sample squared error Ly(w) while Theorem 2 shows that
the CV criterion is an estimator of the leave-h-out squared error
Lr(w). In the context of leave-1-out cross-validation, however, as
shown by Li (1987) and Hansen and Racine (2012), the difference
is asymptotically negligible, and the same carries over to the
leave-h-out case under the stationarity and finite fourth moment
conditions in Assumptions R and F.

The conventional Mallows criterion imposes an incorrect
penalty when the error &, is serially correlated (which occurs
when h > 1) or conditionally heteroskedastic. This insight
suggests that the performance of the Mallows criteria will
deteriorate when the serial dependence of the forecast error is
strong and the forecast horizon is long, and this is confirmed by
our simulations. An alternative solution is to use an alternative
penalty (e.g., a robust Mallows criterion). We recommend the
leave-h-out cross-validation criterion as it makes this adjustment
automatically, works well in finite samples, and is conceptually
straightforward to generalize to more complicated settings.

The following Lemma was used for the proof of Theorem 2.
It states that leave-h-out estimators are uniformly close to full
sample estimators.

Lemma 1. If u, is strictly stationary and ergodic, E |lu;||> < oo,
and g(u) is continuously differentiable at .« = Eu,, then for the

full-sample estimator I = T~! Z[T:1 u, and leave-h-out estimator
fen=T+1=207""3 o,

max
1<t<T

(4.24)

VT (g - g(ien) | = 0p(D.

We now establish Lemma 1. First, we observe that stationarity

plus E ||u; ||> < oo implies that
max [lu |l = 0, (TV?). (4.25)
<t<

This result can be shown via Markov’s inequality. For details, see
Hall and Heyde (1980, equation (5.30)) or Hansen (2013, Theorem
5.12.1).

Second, since

1—2h T 1
A== Y U+ — uj,
H= Hen T(T+1—2h)Z T 2n 2 U

=1 li=tl<h
then
max & — fenl < 0,(T7™H + ——— max |u
max [ = Fien]| < 0p(T™H + T+ 1_2n Dax [luel
= 0,(T71/?) (4.26)

the final bound using (4.25). Eq. (4.24) follows by an application of
the Delta method.

5. Finite sample investigation

In this section, we investigate the finite-sample MSFE of the
MMA and CVA; methods. The data generating process is analogous
to that considered in Bai and Ng (2009), but we focus on linear
models and add moving average dynamics to the multi-step
forecast error. Let F; denote the jth component of F;. Forj = 1,
...,r,i=1,...,N,and t = 1,...,T, the approximate factor
model is

Xie = MiFe + rei,
Fe = ajFje—1 + uje,
eir = pi€it—1 + €it, (5.1)

wherer = 4, A; ~ N(0, 1l;), o ~ U[0.2,0.8], p; ~ U[0.3,0.8],
(uje, €ir) ~ N(0O, I), i.i.d. over t, for all j and i. The values of «; and
p; are drawn once and held fixed over simulation repetitions. The
regression equation for forecast is

Yeen = BiFa + BaFar + B3Far—1 + BaFar—1 + BsFa—2
+ BeFat—2 + Et4hs

h—1
Etpn = Z”jUtJrhfj» (5.2)
=

where v; ~ N(0, 1), i.i.d. over t, and {v;} is independent of {u;s}
and {¢;} for any t and s. As such, only two factors and their lags
are relevant for forecasting. The parameters are 8 = (f, ...,
Bs) = ¢[0.5,0.5,0.2,0.2, 0.1, 0.1], where c is a scaling parameter
ranging from 0.2 to 1.2 for h = 1. For multi-step forecasting, the
moving average parameter 7 ranges from 0.1 to 0.9 and the scale
parameter c is held at 1. The sample size is N, T = 100 and 10,000
simulation repetitions are conducted. The programs are written in
Matlab and are available on our website.

While the true number of factors is r = 4, we treat this as
unknown, and therefore start by selecting the number of factors
r using the information criterion IC,, recommended by Bai and Ng
(2002),> where the number of feasible factors is taken 1 to be from 0
to 10. The first 7 factors are then placed in the vector F;. Given this
set of factors, the set of candidate regressors for model averaging
and model selection is

Ze=(1.Ye0 o Yiopmaes Fo oo Fp ) (5.3)

Feasible models are constructed sequentially given the ordering
n (5.3). Thus the first model sets z;(1) = 1, the second model
sets z:(2) = (1,y;), etc, yielding a total of M = (1 + pmax)
(1 + F) sequentially nested models. All model selection and model
averaging are performed over this set of models. For our primary
results we set pnmax = 4, though for robustness we report results
for Pmax = 0, Pmax = 2, and Pmax = 9.

We compare the MSFE of a wide set of model averaging and
model selection methods. The model averaging methods include
leave-h-out cross-validation averaging (CVAy), jackknife model
averaging (JMA), Mallows model averaging (MMA), Bayesian
model averaging (BMA), and simple averaging with equal weights.°
The model selection methods include leave-h-out cross-validation,
jackknife cross-validation, Mallows model selection, AIC, BIC.

For nearly all parameter values investigated, and all forecast
horizons, we found that leave-h-out cross-validation averaging
(CVAy) has the best performance with the smallest MSFE, with

—Pmax

5 We use the Matlab code provided by Serena Ng on her website to select the
number of factors.

6 Our BMA weights are set as w(m) = exp(—BIC(m)/2)/ Z?il exp(—BIC(i)/2),
where BIC(m) is the BIC for the mth model. This is an approximate BMA for the case
of equal model priors, and diffuse model priors on parameters.
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Fig. 1. Relative MSFE to least-squares forecast with all regressors for h = 1, 4, 8, and 12. CVA;, is leave-h-out cross-validation averaging. MMA is Mallows model averaging.
BMA is Bayesian model averaging. CV, is model selection with leave-h-out cross-validation. BIC is model selection with Bayesian information criterion.

Table 1

Relative RMSE to DFMS5, rolling forecast, Tyindow = 100, rmax = 50.
Percentile h=1 h=2 h=14

0.250 0.500 0.750 0.250 0.500 0.750 0.250 0.500 0.750

CVA, 0.983 1.003 1.016 0.962 0.992 1.014 0.964 0.985 1.012
JMA 0.983 1.003 1.016 0.962 0.996 1.013 0.972 0.994 1.020
MMA 0.992 1.009 1.031 0.974 1.004 1.025 0.975 1.007 1.034
EQ 0.999 1.030 1.061 0.982 1.011 1.046 0.967 0.999 1.030
BMA 0.993 1.014 1.053 0.976 1.009 1.038 0.979 1.014 1.047
OLS 1.061 1.110 1.179 1.024 1.087 1.135 1.015 1.066 1.113
Pretest 1.007 1.048 1.091 1.003 1.030 1.082 1.011 1.048 1.084
Bagging 0.996 1.022 1.060 0.982 1.011 1.043 0.984 1.016 1.052
Logit 0.999 1.027 1.071 0.988 1.019 1.052 0.982 1.022 1.064

Table 2

Relative RMSE to DFM5, cross validation, subsample 1985-2008.
Percentile h=1 h=2 h=4

0.250 0.500 0.750 0.250 0.500 0.750 0.250 0.500 0.750

CVA, 0.974 0.992 1.007 0.956 0.981 0.996 0.923 0.958 0.981
JMA 0.974 0.992 1.007 0.958 0.980 0.998 0.924 0.961 0.985
MMA 0.982 0.998 1.014 0.960 0.986 1.008 0.928 0.966 0.995
EQ 0.988 1.022 1.050 0.967 1.004 1.035 0.941 0.978 1.007
BMA 0.965 0.991 1.013 0.953 0.983 1.006 0.924 0.964 0.999
OLS 1.038 1.084 1.159 1.009 1.080 1.138 0.964 1.051 1.113
Pretest 0.965 0.990 1.019 0.963 0.987 1.019 0.937 0.977 1.010
Bagging 0.966 0.995 1.019 0.960 0.983 1.016 0.938 0.968 1.007
Logit 0.957 0.987 1.012 0.949 0.976 1.010 0.922 0.964 0.998

the second lowest MSFE achieved by MMA. In some cases the
differences in MSFE are quite large. To compactly report our
comparisons, we display the (normalized) MSFE of a selection
of the procedures in Fig. 1, where dominated procedures were

omitted. To make the graphs easier to read we normalize the MSFE
by the MSFE for the least-squares forecast with all regressors in Z;.
Thus a value smaller than 1 implies superior performance relative
to unconstrained least-squares.
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Fig. A.1. Relative MSFE for h = 1,4, 8, and 12 when pmax = 0. (No lags of y; and F[ are used.) The normalization is the same as in Fig. 1. CVA; is leave-h-out cross-
validation averaging. MMA is Mallows model averaging. BMA is Bayesian model averaging. EQ is equal weight simple averaging. CV;, is model selection with leave-h-out

cross-validation. BIC is model selection with Bayesian information criterion.

As stated earlier, Fig. 1 shows that CVA; has the best overall
performance, followed by MMA. For the one-step-ahead forecast,
CVA;, and MMA are comparable. They dominate all other methods
except when the scale parameter c is around 0.2, an extreme
situation with very low signal-to-noise ratio in the forecast
equation.

For the multi-step forecasts, the advantage of CVAy, is promi-
nent when the forecast horizon is long and the serial dependence in
the forecast error is strong. For example, whenh = 8 and 7 = 0.8,
the relative MSFE for CVA, is 80%, around 10% smaller than that for
model selection by BIC or cross-validation, 7% smaller than that for
BMA, and 3% smaller than that for MMA.

For robustness, we tried different values for the largest number
of 1ags pmax (0, 2, and 9) and display the results in Figs. A.1-A.4.
(When pmax = 0, the possible regressor set is (1, y¢, Fy).) The
general character of the results is unchanged.

In addition, in these figures we add simple (equal) averaging,
denoted by EQ. What is quite striking about simple averaging is
that its performance is very sensitive to pmax. Equal weighting has
low MSFE for pmax = 4, but is high for other choices (in particular
for pmax = 0). The method is inherently non-robust to the class of
models being averaged.

6. Empirical application

In this section, we apply the CVA,, MMA, JMA, and simple
averaging to forecast US macroeconomic series and compare

them to various shrinkage-type methods discussed in Stock and
Watson (2012). We adopt the approach in Stock and Watson
(2012) that considers using a large number of potential principle
components. Our results complement those in Stock and Watson
(2012) by adding frequentist forecast combination methods to
the list covered by their shrinkage representation, such as pretest
methods, Bayesian model averaging, empirical Bayes, and bagging.

The data set, taken from Stock and Watson (2012), consists of
143 US macroeconomic time series with quarterly observations
from the second quarter of 1960 to the last quarter of 2008. The
series are transformed by taking logarithm and/or differencing as
described in Table B.1 of Stock and Watson (2012). The principle
component estimates of the factors are computed from the 109
lower-level disaggregate series and all 143 series are used as the
dependent variables to be forecast.

As in Stock and Watson (2012), all forecasting models contain a
fixed set of 4 lagged dependent variables. The models differ by the
number of included factors. The number of factors included in each
model ranges from O to r = 50 for the rolling window forecast,
and up to r = 100 for the cross-validation forecast. The models are
nested as is standard in factor models.

Given this set of models, we use both selection and averaging
approaches to construct forecasts. The averaging methods include
leave-h-out cross-validation, jackknife model averaging, Mallows
model averaging, equal weights, and exponential BIC weights
(BMA). The programs are written in Gauss and are available on our
website.
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Fig. A.2. Relative MSFE for h = 1, 4, 8, and 12 when pmax = 2. The normalization is the same as in Fig. 1. CVA}, is leave-h-out cross-validation averaging. MMA is Mallows
model averaging. BMA is Bayesian model averaging. EQ is equal weight simple averaging. CV; is model selection with leave-h-out cross-validation. BIC is model selection

with Bayesian information criterion.

The MSFE is computed in two ways: a rolling pseudo out-of-
sample forecast method and a cross-validation method. The length
of the rolling window is 100. We report relative root mean squared
error (RMSE) relative to the dynamic factor model with 5 factors
(DFM-5). Stock and Watson (2012) show that DFM-5 improves
upon AR(4) model in more than 75% of series and the shrinkage
methods offer little or no improvements over DFM-5 on average.
Hence, DFM-5 serves as a good benchmark for the comparison.

Tables 1-2 can be viewed as extensions of Table 2 and Table
S-2A in Stock and Watson (2012), with four frequentist model
averaging methods added to existing results. The results on BMA,
pretest, bagging, and logit are taken from Stock and Watson (2012),
where the details on these methods are available. Three forecast
horizons, h = 1, 2, 4, are considered. Entries in the Tables are
percentiles of distributions of RMSEs over the 143 variables being
forecast. A value smaller than 1 at the median implies that the
method considered is superior to DFM-5 for more than half of all
series.

Table 1 reports relative RMSE computed using the rolling fore-
casts. It shows that for h = 4, CVA, improves upon DFM-5 by at
least 1.5% for half of all series and by at least 3.6% for one-fourth of
all series. In contrast, Table 2 of Stock and Watson (2012) showed
that the shrinkage methods they considered were inferior to DFM-
5 for more than half of all series. J]MA (equivalently, CVA;) is only
slightly inferior to CVA, and MMA is comparable to other shrink-
age methods. The simple averaging with equal weights, denoted by
EQ, performs better than most shrinkage methods, but not as well

as CVAy,. The same trend holds for h = 2, although the difference is
not as significant as that for h = 4. When h = 1, all averaging and
shrinkage methods are comparable to DFM-5.

As a robustness check, in Table A.1, we report the RMSE of CVA,
MMA, JMA, and EQ relative to DFM-5 with the alternative window
sizes of 75 and 125. We found that the RMSE do not vary much with
the window size and CVAy, generally out performs DFM-5.

Table 2 reports relative RMSE computed using the cross-
validation method. It shows that for h = 4, CVA; improves upon
DFM-5 by at least 4.2% for half of all series and by at least 1.9% for
three-fourth of all series. In this case, other shrinkage methods also
offer improvements upon DFM-5 for some series, but no method
does so for as many as three-fourth of all series, according to
Table S-2A in Stock and Watson (2012). A category analysis as in
Stock and Watson (2012) shows that these frequentist forecast
combination methods also tend to do well when some shrinkage
methods show improvements and there remain hard-to-forecast
series.

7. Conclusion

This paper proposes frequentist model averaging approach
for forecast combination with the factor-augmented regression,
where the unobserved factors are estimated by the principle
components of a large panel of predictors. The Mallows model
averaging (MMA) and the leave-h-out cross-validation averaging
(CVAy) criteria are shown to be approximately unbiased estimators
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Fig. A.3. Relative MSFE for h = 1, 4, 8, and 12 when pmax = 4. The normalization is the same as in Fig. 1. CVA;, is leave-h-out cross-validation averaging. MMA is Mallows
model averaging. BMA is Bayesian model averaging. EQ is equal weight simple averaging. CV, is model selection with leave-h-out cross-validation. BIC is model selection

with Bayesian information criterion.

Table A.1
Relative RMSE to DFM5, rolling window forecast.
Percentile h=1 h=2 h=4
0.250 0.500 0.750 0.250 0.500 0.750 0.250 0.500 0.750
Tyindow = 75, 'max = 40
CVA, 0.985 1.005 1.017 0.975 0.998 1.022 0.963 0.988 1.016
JMA 0.985 1.005 1.017 0.974 1.001 1.021 0.972 0.996 1.019
MMA 0.992 1.008 1.026 0.983 1.009 1.024 0.975 1.000 1.024
EQ 0.995 1.018 1.042 0.986 1.014 1.037 0.977 1.002 1.025
Tyindow = 125, 'max = 50
CVA, 0.974 1.000 1.020 0.964 0.991 1.025 0.945 0.983 1.016
JMA 0.974 1.000 1.020 0.965 0.996 1.027 0.956 0.998 1.032
MMA 0.983 1.008 1.029 0.972 1.000 1.044 0.961 1.000 1.042
EQ 0.997 1.028 1.061 0.971 1.015 1.059 0.957 1.002 1.042

of the MSFE in one-step and multi-step forecasts, respectively,
provided N,T — oo in the panel data. Thus, the generated
regressor issue is negligible, without any requirement on the
relative size of N and T. Monte Carlo simulations and empirical
application support the theoretical result that these frequentist
model averaging criteria are designed to mirror the MSFE such that
the weight vector selected approximately minimizes the MSFE.
The forecast combination methods proposed in this paper can
be extended and adapted to a broader class of applications. One
extension is to generalize the single variable forecast to the mul-
tivariate forecast in the factor-augmented vector autoregressive

(FAVAR) model by Bernanke et al. (2005). Second, nonlinear factor-
augmented regression should be considered, as discussed in Bai
and Ng (2009). Finally, interval forecast based on model averag-
ing is an important but challenging topic (Leeb and Pétscher, 2003,
2008). These topics should be investigated in future research.
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