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a b s t r a c t

This paper uses local-to-unity theory to evaluate the asymptotic mean-squared error (AMSE) and forecast
expected squared error from least-squares estimation of an autoregressive model with a root close to
unity. We investigate unconstrained estimation, estimation imposing the unit root constraint, pre-test
estimation, model selection estimation, and model average estimation. We find that the asymptotic risk
depends only on the local-to-unity parameter, facilitating simple graphical comparisons. Our results
strongly caution against pre-testing. Strong evidence supports averaging based on Mallows weights.
In particular, our Mallows averaging method has uniformly and substantially smaller risk than the
conventional unconstrained estimator, and this holds for autoregressive roots far from unity. Our
averaging estimator is a new approach to forecast combination.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

This paper reopens the question of selection between unit
root and stationary autoregressions. Rather than approaching the
question from the vantage of hypothesis testing, we attack the
question from the viewpoint of minimizing risk as measured by
mean-squared error and out-of-sample expected squared forecast
error. Our view is that if the purpose of autoregressivemodels is for
estimation and forecasting, then model selection methods should
be designed to minimize risk. As a general rule, hypothesis testing
is inappropriate for this purpose, andwe find that this rule remains
true in the context of near non-stationary time series.
We consider an autoregressive model, and study asymptotic

risk using a local-to-unity asymptotic framework. We study the
asymptotic performance of the unconstrained least-squares esti-
mator, the estimator imposing the unit root restriction, an opti-
mal weighted average, the Dickey–Fuller pre-test estimator, the
Mallows/AIC selection estimator, and finally the Mallows aver-
aging estimator. We consider two measures of risk: asymptotic
in-sample mean-squared error (AMSE), and asymptotic out-of-
sample expected squared forecast error. In the local-to-unity
framework, both risk measures depend exclusively on the local-
to-unity parameter, facilitating graphical comparisons. The con-
clusions are clear. On the one hand, we find that the classic
Dickey–Fuller pre-test estimator has very high risk. On the other
hand, we find that our new Mallows averaging estimator has uni-
formly and substantially low risk. It is the preferred estimation
method among those considered.
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We now discuss some of the related literature.
There is a very large literature concerning test for autoregres-

sive unit roots, starting with the seminal work of Dickey and Fuller
(1979, 1981). The local-to-unity asymptotic framework was intro-
duced by Chan and Wei (1987) and Phillips (1988a,b).
Many methods have been proposed for selecting the order of a

stationary autoregression, including Akaike’s final prediction error
(Akaike, 1970), AIC (Akaike, 1973), Mallows’ Cp (Mallows, 1973),
BIC (Schwarz, 1978), Sh(k) (Shibata, 1980), and predictive least
squares (Rissanen, 1986). There is also a large literature exploring
the asymptotic performance of these methods, including Wei
(1992), Bhansali (1996), Lee and Karagrigoriou (2001), Ing (2003,
2004), Ing andWei (2003, 2005) and Inoue and Kilian (2006). All of
these papers focus on model selection for stationary observations,
and none consider averaging estimators.
There is also a literature studying the effect on forecasting per-

formance of whether or not to impose a unit root on an estimated
autoregression and the role of unit root pre-testing. Franses and
Kleibergen (1996) compare the empirical forecasting performance
of the two models using the predictive least-squares criterion.
Kemp (1999) studies forecast errors from a nearly integrated pro-
cess at long horizons. Diebold and Kilian (2000) investigate the role
of Dickey–Fuller pre-testing on long-horizon forecasting. Clements
and Hendry (2001) study the impact of incorrect model choice
on forecast mean-squared error. Kim et al. (2004) give asymptotic
expressions for mean-squared forecast error in estimated models
with a linear trend. Two papers which are close in method to ours
are Stock (1996) and Elliott (2006). Both use local-to-unity asymp-
totics to evaluate the distribution of long-horizon forecasts based
on pre-test estimators.
Autoregressive models with unit roots are a special case of

cointegrated vector autoregressions (Engle and Granger, 1987).
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There is a small literature on information-based methods for
selection of cointegration rank. Gonzalo and Pitarakis (1998) and
Aznar and Salvador (2002) discuss conditions for consistent model
selection, and Kapetanios (2004) argues that the AIC is not a good
selector of cointegration rank. Chao and Phillips (1999) analyze
the problem using Bayes methods and propose the Posterior
Information Criterion.
The averaging estimator discussed in this paper was introduced

by Hansen (2007). It has also been applied to out-of-sample
forecasting in stationary models by Hansen (2008), models with
a structural break by Hansen (2009), and to heteroskedastic
regressions by Hansen and Racine (2007). The idea of using a local-
to-zero parameterization to study the asymptotic distribution of
pre-test andmodel average estimatorswas developed byHjort and
Claeskens (2003).
Forecast combination was introduced in the seminal work of

Bates and Granger (1969) and Granger and Ramanathan (1984)
and spawned a large literature. Some excellent reviews include
Granger (1989), Clemen (1989), Diebold and Lopez (1996), Hendry
and Clements (2002), Timmermann (2006) and Stock and Watson
(2006). Stock and Watson (1999, 2004, 2005) have provided
detailed empirical evidence demonstrating the gains in forecast
accuracy through forecast combination. A related paper is Pesaran
and Timmermann (2007) which proposes forecast combination
methods in regression models subject to structural breaks.
The paper is organized as follows. Section 2 presents the model

and the base estimators. Section 3 presents the asymptotic anal-
ysis of mean-squared error. Section 4 presents asymptotic fore-
cast risk. Section 5 covers Dickey–Fuller pre-testing. Section 6
presents Mallows selection. Section 7 introduces the Mallows
averaging estimator. Section 8 evaluates the finite sample per-
formance using simulation. Section 9 introduces a generalized
Mallows averaging estimator. Section 10 concludes. Proofs of the
theorems are presented in the Appendix. A Gauss program which
calculates theMMA estimator is available on the author’s webpage
www.ssc.wisc.edu/~bhansen.

2. Model and estimation

Our model writes an observed series as a sum of its determin-
istic and stochastic components:

yt = β0 + β1t + · · · + βptp + St (1)

where p is the order of the trend component. The leading case of
interest is p = 1, a linear time trend. The stochastic component St
is an AR(k+ 1), written as

∆St = α0St−1 + α1∆St−1 + · · · + αk∆St−k + et (2)

where et is a homoskedasticmartingale difference sequence (MDS)
with variance σ 2. The Eq. (2) has a unit root when α0 = 0. We as-
sume that all other roots of the Eq. (2) are stationary.
Differencing (1) and substituting (2) implies

∆yt = δ′tθ0 + x
′

tθ1 + z
′

tα + et (3)

where

δt =


1
t
...

tp−1

 , xt =
(
tp

yt−1

)
, zt =

∆yt−1...
∆yt−k

 ,

θ1 =

(
−α0βp
α0

)
α =

α1...
αk

 ,
and θ0 is a function of the parameters in (1)–(2).
The optimal one-step-ahead predictor for∆yt is the conditional
mean
µt = δ

′

tθ0 + x
′

tθ1 + z
′

tα. (4)
We consider three estimators of µt . Our baseline is unconstrained
least-squares estimation of (3)

∆yt = δ′t θ̂0 + x
′

t θ̂1 + z
′

t α̂ + êt . (5)

We set µ̂t = δ′t θ̂0 + x
′
t θ̂1 + z

′
t α̂. This estimator has p+ 2+ k fitted

coefficients.
Our second estimator imposes the unit root α0 = 0 which im-

plies that θ1 = 0. The least-squares estimates under this restriction
is

∆yt = δ′t θ̃0 + z
′

t α̃ + ẽt . (6)

We set µ̃t = δ′t θ̃0+ z
′
t α̃. This estimator has p+k fitted coefficients,

two fewer than the unconstrained estimator.
Our third estimator is obtained by taking a weighted average

of µ̂t and µ̃t . Let w ∈ [0, 1] be the weight assigned to the
unconstrained estimator. The averaging estimator is
µ̂t(w) = wµ̂t + (1− w) µ̃t .

3. Asymptotic mean-squared error

To evaluate the quality of our estimators, we use two measures
of risk. In this section we consider the (asymptotic) in-sample
mean-squared error, which measures the average fit. It is not a
direct measure of forecasting performance because the estimates
are constructed using the entire sample. Despite this qualification,
we will see later that the in-sample AMSE is a convenient criterion
because it is related to conventional information criterion.
To evaluate these measures, we use the local-to-unity asymp-

totic framework. Specifically, we let

α0 =
ca
n

where
a = 1− a1 − · · · ak
and c is held fixed as n → ∞. Let W (r) denote a standard
Brownian motion and define the diffusion process
dWc(r) = cWc(r)+ dW (r) (7)
which satisfies

Wc(r) =
∫ r

0
exp (c (r − s)) dW (s). (8)

Also define the trend functions

δ(r) =


1
r
...

rp−1

 ,
Xc(r) =

(
rp

Wc(r)

)
, (9)

and the detrended processes

W ∗c (r) = Wc(r)−
∫ 1

0
Wcδ′

(∫ 1

0
δδ′
)−1

δ(r)

X∗c (r) = Xc(r)−
∫ 1

0
Xcδ′

(∫ 1

0
δδ′
)−1

δ(r).

Theorem 1. The AMSE of the constrained estimator is

m0(c, p, k) ≡ lim
n→∞

1
σ 2

n∑
t=1

E (µ̃t − µt)
2
= m0 (c, p)+ k (10)

where
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m0(c, p) = EF0c + p,

F0c = c2
∫ 1

0
W ∗2c . (11)

For p = 0 we can calculate

m0 (c, 0) = −
c
2
−

(
1− exp (2c)

4

)
(12)

and for p = 1,

m0 (c, 1) = −
c
2
−

(
1− exp (2c)

4

)
−

(
exp (2c)− 1

2c

)
+ 2

(
exp(c)− 1

c

)
. (13)

The AMSE of the unconstrained estimator is

m1(c, p, k) ≡ lim
n→∞

1
σ 2

n∑
t=1

E
(
µ̂t − µt

)2
= m1 (c, p)+ k (14)

where

m1(c, p) = EF1c + p,

F1c =
(∫ 1

0
dWX∗′c

)(∫ 1

0
X∗c X

∗′

c

)−1 (∫ 1

0
X∗c dW

)
. (15)

A closed-form expression for m1(c, p) is not available, but for all p,

lim
c→−∞

m1(c, p) = 2+ p.

The AMSE of the averaging estimator is

mw(c, p, k) ≡ lim
n→∞

1
σ 2

n∑
t=1

E
(
µ̂t(w)− µt

)2
= mw(c, p)+ k (16)

where

mw(c, p) = w2m1(c, p)+ (1− w)2m0(c, p)
+ 2w (1− w)m01(c, p),

m01(c, p) = −E
(
c
∫ 1

0
W ∗c dW

)
+ p.

For all p,m01(0, p) = p. When p = 0 then

m01(c, 0) = 0

and for p = 1

m01(c, 1) =
(
exp(c)− 1

c

)
. (17)

The weight w which minimizes mw(c, p, k) is

wm(c, p) =
m0(c, p)−m01(c, p)

m0(c, p)+m1(c, p)− 2m01(c, p)

and the minimized AMSE is

mwm(c, p, k) =
m0(c, p)m1(c, p)−m01(c, p)2

m0(c, p)+m1(c, p)− 2m01(c, p)
+ k.

The AMSE of all estimators are the sum of k plus the additional
component m0(c, p),m1(c, p), or mw(c, p). k is the normalized
variance from the estimation of the coefficient αwhich is common
across the three models and estimators. For the constrained
estimator,m0(c, p) reflects variance from the estimation of θ1 and
the bias arising from the imposed unit root restriction. For the
unconstrained estimator,m1(c, p) is the normalized variance from
estimation of the coefficients on xt and δt and is thus non-standard.
Fig. 1. Asymptotic mean-squared error.

For the averaging estimator, mw(c, p) is a convex weighted
average of the constrained and unconstrained components, less an
interaction term.
While m0(c, p) and m01(c, p) can be calculated analytically, in

general the functionm1(c, p)must be calculated by simulation.
The optimal weight wm(c, p) is independent of k and is strictly

between0 and1 for c < 0. Thismeans that theAMSEof the optimal
averaging estimator is strictly less than both the unrestricted and
restricted estimators.
The AMSE of the constrained, unconstrained, and optimal

estimators for p = 1 and k = 0 (that is, the functions
m0(c, 1),m1(c, 1) and mwm(c, 1)) are displayed

1 in Fig. 1 for c
ranging from −20 to 0. This corresponds to the model with a
fitted intercept and linear time trend (the case with an intercept
only (p = 0) is qualitatively similar). From the display, we can
see that the AMSE of the constrained estimator is approximately
linear in c , monotonically increasing as c moves away from zero.
The AMSE of the unconstrained estimator is also monotonic, but
with the opposite slope. The latter obtains its maximal value of
7.3 at c = 0, and asymptotically approaches 3 as c → −∞.
The AMSE curves intersect at c = −8.5, meaning that for c >
−8.5, the restricted (unit root) estimator has lower AMSE than the
unconstrained estimator, while for c < −8.5 the unconstrained
estimator has lower AMSE. For all c , the AMSE of the optimal
averaging estimator is substantially below the AMSE of the other
two estimators. The optimal estimator is infeasible, but its AMSE
suggests that there are potentially large gains may be available
from averaging.

4. Asymptotic forecast risk

In this section we consider an alternative measure of risk, the
asymptotic one-step-ahead expected squared forecast error,which
is a more direct measure of forecasting ability than AMSE.

Theorem 2. The asymptotic forecast risk of the constrained estimator
is

f0(c, p, k) ≡ lim
n→∞

n
σ 2
E (µ̃n+1 − µn+1)

2
= f0(c, p)+ k (18)

where

1 Figs. 1 and 2 are computed on a grid of 101 evenly-spaced points from
−20 to 0. Figs. 3–5 are computed on a grid of 21 points. Functions without
analytic expressions were calculated by simulation. The asymptotic distributions
were approximated by finite-sample counterparts with 1000 observations. 500,000
simulation replications were used.



B.E. Hansen / Journal of Econometrics 158 (2010) 142–155 145
f0(c, p) = ET 20c,

T0c = −cW ∗c (1)+ δ(1)
′

(∫ 1

0
δδ′
)−1 ∫ 1

0
δdW . (19)

When p = 0 then T0c = −cWc(1) and

f0(c, 0) = c
(
exp (2c)− 1

2

)
.

When p = 1 then T0c = (1− c)Wc(1) and

f0(c, 1) = (1− c)2
(
exp (2c)− 1

2c

)
.

The asymptotic forecast risk of the unconstrained estimator is

f1(c, p, k) ≡ lim
n→∞

n
σ 2
E(µ̂n+1 − µn+1)2 = f1(c, p)+ k (20)

where

f1(c, p) = E
(
T 21c
)

T1c = δ(1)′
(∫ 1

0
δδ′
)−1 ∫ 1

0
δdW

+ X∗c (1)
′

(∫ 1

0
X∗c X

∗′

c

)−1 ∫ 1

0
X∗c dW . (21)

The asymptotic forecast risk of the averaging estimator is

fw(c, p, k) = fw(c, p)w2f1(c, p)+ (1− w)2 f0(c, p)
+ 2w (1− w) f01(c, p)+ k (22)

where

fw(c, p) = w2f1(c, p)+ (1− w)2 f0(c, p)+ 2w (1− w) f01(c, p)
f01(c, p) = E (T1cT0c) .

The weight which minimizes fw(c, p, k) is

wf (c, p) =
f0(c, p)− f01(c, p)

f0(c, p)+ f1(c, p)− 2f01(c, p)

and the minimized risk is

fwf (c, p, k) =
f0(c, p)f1(c, p)− f01(c, p)2

f0(c, p)+ f1(c, p)− 2f01(c, p)
+ k.

The functions f1(c, p) and f01(c, p) must be calculated by
simulation.
The asymptotic forecast risk of the constrained, unconstrained,

and optimal estimators for p = 1 and k = 0 is displayed in Fig. 2.
The features are qualitatively similar those displayed in Fig. 1.

5. Pre-testing

The choice between the constrained estimator µ̃t and the
unconstrained estimator µ̂t may be determined by the data. A
common practice is pre-testing using a unit root test. The pre-
test estimate selects µ̂t if the test rejects the null of the unit
root, otherwise it selects µ̃t . For concreteness, let us focus on the
Dickey–Fuller t-test, which is based on the t-ratio

DFn =
α̂ − 1
s(α̂)

where s(α̂) is the OLS standard error for α̂. Let r be a critical value.
(For example, if p = 1 the asymptotic 5% critical value is r =
−3.41.) The pre-test estimator is

µ̂
df
t = µ̂t1 (DFn ≤ r)+ µ̃t1 (DFn > r) .
We now present the AMSE and asymptotic forecast risk for this

estimate.
Fig. 2. Asymptotic forecast risk.

Theorem 3.

mdf (c, p, k) = lim
n→∞

1
σ 2

n∑
t=1

E
(
µ̂
df
t − µt

)2
= E (F1c1 (DFc ≤ r))+ E (F0c1 (DFc > r))+ p+ k

and

fdf (c, p, k) = lim
n→∞

n
σ 2
E
(
µ̂
df
n+1 − µn+1

)2
= E

(
T 21c1 (DFc ≤ r)

)
+ E

(
T 20c1 (DFc > r)

)
+ k

where F0c, F1c, T0c , and T1c are defined in (11), (15), (19) and (21),
respectively,

DFc =

∫ 1
0 W

τ
c dWc(∫ 1

0

(
W τ
c

)2)1/2 ,
and

W τ
c (r) = Wc(r)−

∫ 1

0
Wcτ ′

(∫ 1

0
ττ ′
)−1

τ(r),

τ (r) =

 1...
rp

 .
The AMSE and asymptotic forecast risk of the pre-test estimator

are displayed in Figs. 1 and 2, respectively. Both measures of risk
are low for small values of−c but quite large for moderate to large
values of −c . The goal of pre-testing is presumably to gain the
benefits of both the constrained and unconstrained estimators, but
examining the figures we see that this is not the case. The pre-test
estimator has smaller risk than the unconstrained estimator only
for very small values of −c , but for most of the parameter space
the pre-test estimator has higher risk, and the discrepancy can be
quite large. This is similar to the behavior of pre-test estimates in
stationary models.
This conclusion appears to clash with the assertions in Stock

(1996) and Diebold and Kilian (2000) that pre-testing can be useful
for selection of forecasting models. However, the tables in Stock
(1996) clearly show similar behavior to the results in Figs. 1 and 2,
even for his DF-GLS pre-test estimator. Diebold and Kilian (2000)
largely miss the difficulty by focusing exclusively on very small
and very large values of |c|—both cases where pre-testing works
well. These papers also focus on the long-horizon forecasting case,
where they argue that pre-testing is more valuable, while in this
paper we focus exclusively on one-step-ahead forecasting.
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6. Mallows selection

As an alternative to pre-testing, the choice between µ̂t and µ̃t
can bemade using an information criterion, such as the AIC, BIC, or
Mallows. For convenience we focus on the Mallows criterion as its
linear structure is easy to characterize. We discuss selection based
on AIC and BIC following Theorem 5 below.
The Mallows (1973) criterion is a penalized sum of squared

errors, designed to be approximately unbiased for the in-sample
AMSE. In our local-to-unitymodel, the optimalMallows criteria for
the unrestricted and restricted models are

M0(c) = nσ̃ 2 + 2σ̂ 2 (m01(c, p)+ k)

and

M1(c) = nσ̂ 2 + 2σ̂ 2 (m1(c, p)+ k) ,

respectively, where σ̂ 2 = n−1
∑n
t=1

(
yt − µ̂t

)2 and σ̃ 2 =
n−1

∑n
t=1 (yt − µ̃t)

2 are the estimates of σ 2 from the two models.
This claim is justified by the following result.

Theorem 4.
EM0(c)
σ 2

− n→ m0(c, p, k)

EM1(c)
σ 2

− n→ m1(c, p, k).

Theorem 4 shows that the criteria M0(c) and M1(c) are (after
normalization) asymptotically unbiased estimates of the AMSE.
This demonstrates that these are appropriate Mallows criterion
for model selection. The penalty terms in M0(c) and M1(c) are
non-standard. This is analogous to the finding of Chao and Phillips
(1999) in their study of Bayesian model selection in reduced rank
VARs.
Unfortunately, the criteria M0(c) and M1(c) are infeasible

since they depend on the unknown c. We suggest evaluating the
criterion for the restricted model M0(c) at the restricted value
c = 0, viz.M0 = M0(0) and the criterion for the unrestrictedmodel
M1(c) at the opposite asymptote, viz.M1 = limc→−∞M1(c). Since
m01(0, p) = p and limc→−∞m1(c, p) = 2+ p these values are

M0 = nσ̃ 2 + 2σ̂ 2(p+ k)

and

M1 = nσ̂ 2 + 2σ̂ 2(2+ p+ k)

respectively, which are the classic Mallows (1973) criterion for
the restricted and unrestricted models (as p + k is the number
of fitted parameters in the unit root model and 2 + p + k is the
number of parameters in the unrestricted model). That is, while
M0(c) andM1(c) are optimal yet infeasible, the limitsM0 = M0(0)
and M1 = limc→−∞M1(c) correspond to the conventional model
selection criterion.
Mallows selection picks the model with the smallest criterion

(M0 or M1). This is equivalent to selecting the unrestricted
estimator when Fn ≥ 2((2+ p+ k)− (p+ k)) = 4 where

Fn = n
(
σ̃ 2 − σ̂ 2

σ̂ 2

)
(23)

is the classic Wald statistic for the joint exclusion of yt−1 and the
time trend from (3). The Mallows selected estimator is then

µ̂mt = µ̂t1 (Fn ≥ 4)+ µ̃t1 (Fn < 4) .

We now characterize the AMSE and asymptotic forecast risk of
Mallows selection.
Theorem 5.

mm(c, p, k) = lim
n→∞

1
σ 2

n∑
t=1

E
(
µ̂mt − µt

)2
= E (F1c1(Fc ≥ 4))+ E (F0c1 (Fc < 4))+ p+ k

and

fm(c, p, k) = lim
n→∞

n
σ 2
E
(
µ̂mt − µn+1

)2
= E(T 21c1(Fc ≥ 4))+ E

(
T 20c1(Fc < 4)

)
+ k

where F0c, F1c, T0c , and T1c are defined in (11), (15), (19) and (21),
and

Fc =
(∫ 1

0
dWcX∗′c

)(∫ 1

0
X∗c X

∗′

c

)−1 (∫ 1

0
X∗c dWc

)
. (24)

From Theorem 5 we can also deduce the asymptotic perfor-
mance of AIC and BIC selection. In fact, Mallows and AIC selec-
tion are asymptotically equivalent, as AIC selects the unrestricted
estimator when n log

(
σ̃ 2/σ̂ 2

)
≥ 4, and n log

(
σ̃ 2/σ̂ 2

)
= Fn +

op(1) in the local-to-unity model. It follows that AIC selection has
the same asymptotic risk as Mallows selection. In contrast, BIC
is asymptotically equivalent to restricted estimation, as BIC se-
lects the unrestricted estimator when n log

(
σ̃ 2/σ̂ 2

)
≥ 2 ln(n)

which occurs with probability tending to zero as n diverges, since
n log

(
σ̃ 2/σ̂ 2

)
≈ Fn has a non-degenerate asymptotic distribution

in the local-to-unity model. Since the unrestricted model is in a lo-
cal neighborhood of the restricted model, BIC selects the restricted
model with probability approaching one and thus BIC selection has
asymptotic risk equal to the restricted estimator.
The AMSE of the Mallows/AIC selection estimator is displayed

in Fig. 1 and its forecast risk is displayed in Fig. 2. (The BIC selection
estimator has the same asymptotic risk as the constrained
estimator.) The risk of the Mallows/AIC selection estimator is very
close to that of the unconstrained estimator. The evidence suggests
that there is little reason to consider the selection estimator rather
than unconstrained estimation.

7. Mallows averaging

Just as for selection, the Mallows criterion for the averaging
estimator (Hansen, 2007) is a penalized sum of squared errors,
designed to be approximately unbiased for the in-sample AMSE.
For anyw let

σ̂ 2(w) = n−1
n∑
t=1

(
yt − µ̂t (w)

)2
be the variance estimate using the averaging estimator µ̂t (w). In
the local-to-unity model the optimal Mallows criterion is
Mw(c) = nσ̂ 2(w)+ 2σ̂ 2(w (m1(c, p)+ k)

+ (1− w) (m01(c, p)+ k)).
This claim is justified by the following result.

Theorem 6.
EMw(c)
σ 2

− n→ mw(c, p, k).

This shows that the criterion Mw(c) is an asymptotically
unbiased estimates of the AMSE for the averaging estimator. As in
the case of selection this criterion is unfeasible, and as before we
suggest replacing m1(c, p) with limc→−∞m1(c, p) = 2 + p and
m01(c, p)withm01(0, p) = 0, leading to the feasible criterion
Mw = nσ̂ 2(w)+ 2σ̂ 2 (w(2+ p+ k)+ (1− w) (p+ k))
= nσ̂ 2(w)+ 2σ̂ 2 (2w + p+ k)

which is identical to the Mallows averaging criterion proposed in
Hansen (2007).
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The Mallows selected weight ŵ is the value which minimizes
Mw overw ∈ [0, 1]. Since the criterion is quadratic inw there is an
explicit solution.

Theorem 7. The minimizer of Mw is

ŵ =


1−

2
Fn

if Fn > 2

0 otherwise

where Fn is the classic Wald statistic (23).

The Mallows averaging estimator is the weighted average of
the unrestricted and restricted least-squares estimators, using the
Mallows weight ŵ.
µ̂at = ŵµ̂t +

(
1− ŵ

)
µ̃t

=


µ̃t if Fn ≤ 2(
1−

2
Fn

)
µ̂t +

(
2
Fn

)
µ̃t otherwise.

Theorem 8. The Mallows selected weight has the asymptotic distri-
bution

ŵ
d
−→ πc =


1−

2
Fc

if Fc > 2

0 otherwise,

where Fc is defined in (24). The AMSE of the Mallows averaging
estimator is

ma(c) = lim
n→∞

1
σ 2

n∑
t=1

E
(
µ̂at − µt

)2
= E

(
π2c F1c

)
+ E

(
(1− πc)2 F0c

)
− 2cE

(
πc (1− πc)

∫ 1

0
dWW ∗c

)
+ 1

and the asymptotic forecast risk is

fa(c) = lim
n→∞

n
σ 2
E
(
µ̂n+1

(
ŵ
)
− µn+1

)2
= E (πcT1c + (1− πc) T0c)2

where F0c, F1c, T0c , and T1c are defined in (11), (15), (19) and (21),
respectively.

The AMSE and asymptotic forecast risk of the Mallows
averaging estimator are displayed in Figs. 1 and 2. Its performance
is stunning relative to the other estimators. In both figures, the
risk of the averaging estimator is uniformly smaller than the
unrestricted estimator, and for most values of c the improvement
is quite significant. The risk reduction (relative to unrestrictive
estimation) is significant even for large values of |c|. For example,
at c = −20 the reduction in AMSE is about is about 15%. Overall,
the averaging estimator has the impressively low risk, and is the
best choice among the feasible estimators considered.

8. Finite sample MSE and forecast risk

The analysis of the previous sections has been asymptotic. We
have found that the AMSE and forecast risk are only a function of
the local-to-unity parameter c and the order of the trend function
p, and is affected by the autoregressive order k only by an intercept
shift. In particular, the asymptotic theory is invariant to the other
model parameters, including those which determine the short-
run dynamics. In this section, we investigate whether or not these
features continue to hold in finite samples. For simplicity, we focus
on forecast risk, as this is the primary criterion of interest.
Our finite sample investigation uses the AR(k+1)model (1)–(2)

with p = 1 and et i.i.d. N(0, 1). We set the trend parameters
β0 = β1 = 0. In this section, we assume that k is known, and
consider the values k = 0, 4, 8. The sample sizes are n = 50 and
n = 200.
For our first experiment,we set all the remaining autoregressive

parameters to zero, α1 = · · · = αk = 0. This allows us to
investigate the effects of sample size and autoregressive order,
holding the serial correlation properties constant. Setting α0 =
c/n, we vary c on a grid from −20 to 0. This implies a range for
α0 of [−0.4, 0] for n = 50 and a range of [−0.1, 0] for n = 200.
For each parameter configuration, we calculate the forecast risk

nE(µ̂n+1 − µn+1)
2 for three estimators: the unrestricted least-

squares estimator µ̂n+1, the Dickey–Fuller pre-test estimator µ̂
df
n+1,

and theMallows averaging estimator µ̂an+1. The riskwas calculated
by Monte Carlo simulation, taking the average of n(µ̂n+1 −µn+1)2
across 500,000 simulation draws.
The results are presented in Fig. 3. There are six panels, one

for each (n, k) pair. In each panel, the forecast risk is plotted
as a function of c. These panels are finite sample analogs of the
asymptotic risk as reported in Fig. 2. What is striking is that all
of the panels in Fig. 3 are quite similar to Fig. 2. The scaled finite
sample forecast risk is nearly identical to the asymptotic risk. The
only exception can be seen in the lower-left panel, for n = 50
and k = 8, where the unrestricted estimator has relatively high
forecast risk, and is noticeably dominated by the pre-test and
averaging estimators for all values of c. What is most important,
however, is that the risk of the Mallows averaging estimator is
uniformly less than that of the unrestricted estimator, in all cases
considered.
Our second experiment adds serial correlation. We do this by

setting the autoregressive parameters as αj = −(−θ)j for j =
1, . . . , k, for θ = 0.6 (the results are not sensitive to this choice).
We then set α0 = (1 − a1 − · · · ak)c/n as indicated by the
asymptotic theory.
We repeated the experiment as described above, for k = 4 and

8 (since k = 0 is redundant with the prior experiment). The results
are presented in Fig. 4 and are very similar to Fig. 3. As predicted
by the asymptotic theory, the forecast risk is relatively invariant to
the autoregressive parameters.

9. General Mallows averaging

We now consider a more general setting where the number
of autoregressive lags k is unknown. Let the set of models be
indexed by both k and the possible unit root restriction. This is
model (1)–(2) with k ∈ {0, 1, . . . , K}. For each k = 0, . . . , K , let
µ̂t(k) and µ̃t(k) denote the least-squares estimates of µt from the
regressions (5) and (6).
The averaging estimator is a weighted average of these 2K + 2

estimates. For each k, let w1k be the weight assigned to µ̂t(k),
and let w0k be the weight assigned to µ̃t(k). The weights are
non-negative and sum to one: w1k ≥ 0, w0k ≥ 0, and

∑K
k=0

(w0k + w1k) = 1. The general averaging estimator of µt is

µ̂t(W ) =
K∑
k=0

(
w0kµ̃t(k)+ w1kµ̂t(k)

)
where

W =



w0k
...
w0k
w1k
...
w1k

 .
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Fig. 3. Finite sample forecast risk.
The Mallows criterion for weight selection as described by
Hansen (2007) is

M(W ) =
n∑
t=1

(
yt − µ̂t(W )

)2
+ 2σ̂ 2

(
K∑
k=0

(w0kk+ w1k(2+ k))+ p

)

where

σ̂ 2 =
1
n

n∑
t=1

(
yt − µ̂t(K)

)2
is the variance estimator from the unrestricted general model.
A computationally useful alternative formula for M(W ) is

constructed as follows. Let ê(k) = y − µ̂(k) and ẽ(k) = y − µ̃(k)
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Fig. 4. Finite sample forecast risk,Θ = 0.6.
be the n × 1 vectors of residuals from the individual models, and
construct the n× (2K + 2)matrix
ê =

[
ẽ(0), . . . , ẽ(K), ê(0), . . . , ê(K)

]
and the (2K + 2)× 1 vector

R =



p
...

p+ K
p+ 2
...

p+ K + 2


.

The vector R contains the adjusted Mallows penalties for each
model. The criterion can then be written as
M(W ) = W ′ê′êW + 2σ̂ 2R′W .

The Mallows selected weight vector Ŵ minimizesM(W ) over the
set of W which satisfy the constraints (non-negativity and sum-
ming to one). This is a linear-quadratic programming problemwith
inequality constraints, and generally has no closed-form solution.
Numerical solutions are readily obtain using linear programming
methods. Corner solutions are typical, so many individual selected
weights will be zero.
The Mallows estimator is µ̂t = µ̂(Ŵ ), the weighted average

using these selected weights.
We investigate the finite sample performance of this general
Mallows averaging estimator in a Monte Carlo simulation experi-
ment. The same settingwas used as in the previous section, andwe
contrast three estimators. The first estimator is Mallows selection,
where the class of models is AR(1) through AR(K ) (the estimates
µ̂t(1) through µ̂t(K)). The second estimator is Mallows averag-
ing of this set of models (as in Hansen (2007)). The third estima-
tor is the general Mallows averaging estimator as described above.
This comparison allows us to disentangle the benefits of selection
versus averaging, and the benefits of averaging over the autore-
gressive order k as well as over the unit root restriction. For this
investigation, we consider autoregressions of order K = 4, 8,
and 12. (Note that in when K = 12 the general estimator is av-
eraging over 26 individuals models!)
The asymptotic forecast risk of the methods are presented in

Fig. 5 for θ = 0.6. The results are qualitatively similar across
K and n. In all cases, the general averaging estimator has the
lowest forecast risk, and the selection estimator has the highest
forecast risk. We can see that there is a clear improvement
by averaging over the autoregressive models (by comparing the
selection estimator with the partial averaging estimator) and also
a clear improvement by averaging the unrestricted models with
those imposing the unit root restriction.
This experiment was repeated for other values of θ . The results

are qualitatively similar for other values of θ and therefore omitted.
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Fig. 5. Selection and averaging over k.
10. Conclusion

This paper examined the question of selection and combination
of autoregressive model when the goal is minimizing risk. Using
local-to-unity asymptotic methods, we found that two measures
of risk of a variety of estimators are functions only of the local-
to-unity parameter, facilitating direct comparisons. We examined
unconstrained and constrained least-squares estimation, optimal
combination, Dickey–Fuller pre-testing, Mallows selection, and
Mallows averaging. The numerical comparisons demonstrate the
stunning result that the Dickey–Fuller pre-test estimator has
particularly high risk, while the Mallows averaging estimator has
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uniformly low risk. We conclude that Mallows averaging is a
potentially important forecasting method.
Thepaper has confined attention to one-step-ahead forecasting.

It would be useful to use similar methods to study long-horizon
forecasting. This presents some special technical challenges and is
well beyond the scope of this paper.
Furthermore, the analysis is restricted to univariate autoregres-

sions. A natural extension would be to vector autoregressions,
where the question is the number of cointegrating relationships.
Based on the analysis in this paper, we expect model averaging
methods will have lower risk than estimation based on cointegra-
tion pre-testing. This deserves further study.
It is also possible that further improvements can be made by

considering alternative estimators to least squares. Stock (1996)
documents that using the efficient unit root tests of Elliott et al.
(1996) can reduce the forecast risk of the pre-test estimator. Can-
jels and Watson (1997) develop improved methods for estimation
of the trend parameters in models with roots local to unity. These
methods may be useful in constructing improved forecasts.
Finally, as documented by Stock and Watson (2005), simple

rules for forecast combination (assigning each model equal
weight) often achieve lower forecast risk than data-dependent
combination methods. This finding suggests that improvements
over the Mallows averaging method may be feasible, and calls for
further research into improved combination selection.
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Appendix

The following results will be useful in subsequent calculations.

Lemma 1.

E(Wc(r)2) =
exp(2cr)− 1

2c
, (25)

E
(∫ 1

0
W 2c

)
=
1
2c

(
exp (2c)− 1

2c
− 1

)
, (26)

E (Wc(1)W (1)) =
exp(c)− 1

c
. (27)

Proof. Using (8) and the fact that dW (s) is an orthogonal process,

E(Wc(r)2)

= E
∫ r

0

∫ r

0
exp (c (r − s)) exp (c (r − u)) dW (s)dW (u)

=

∫ r

0
exp (2c (r − s)) ds

=
exp(2cr)− 1

2c
which is (25). Eq. (26) follows by integration. To show (27),

E (Wc(1)W (1)) = E
∫ 1

0

∫ 1

0
exp (c (1− s)) dW (s)dW (u)

=

∫ 1

0
exp(c(1− s))ds

=
exp(c)− 1

c
.

Proof of Theorem 1. First, as shown in Lemma1ofHansen (1995),
since et is a MDS,

1
σ
√
n

[nr]∑
t=1

et
d
−→ W (r)

and
a

σ
√
n
S[nr]

d
−→ Wc(r).

Defining the weight matrices D0n = diag{1, n, . . . , np−1} and
D1n = diag

{
np, n1/2σ/a

}
, we have

D−10n δ[nr]
d
−→ δ(r),

D−11n x[nr]
d
−→ Xc(r).

Define the orthogonalized series

x∗t = xt − δ
′

t

(
n∑
j=1

δjδ
′

j

)−1 n∑
j=1

δjxj

z∗t = zt − δ
′

t

(
n∑
j=1

δjδ
′

j

)−1 n∑
j=1

δjzj

S∗t−1 = St−1 − δ
′

t

(
n∑
j=1

δjδ
′

j

)−1 n∑
j=1

δjSj−1

and observe that
a

σ
√
n
S∗
[nr]

d
−→ W ∗c (r),

D−11n x
∗

[nr]
d
−→ X∗c (r).

Since the regressions (5) and (6) include δt , the fittedmeans µ̂t and
µ̃t are unchanged if we replace xt and zt with x∗t and z

∗
t , which we

now assume for the remainder of the Appendix.
We now examine the constrained estimator. The regression (6)

has an effective error of can−1St−1 + et . Let

θ̃∗0 = θ̃0 −
ca
n

(
n∑
t=1

δtδ
′

t

)−1 ( n∑
t=1

δtSt−1

)
which satisfies

n1/2

σ
D0n

(
θ̃∗0 − θ0

)
=
1
σ
D0n

(
1
n

n∑
t=1

δtδ
′

t

)−1 (
1
√
n

n∑
t=1

δtet

)
+ op(1)

d
−→

(∫ 1

0
δδ′
)−1 (∫ 1

0
δdW

)
. (28)

Also

n1/2

σ
(α̃ − α) =

(
1
n

n∑
t=1

z∗t z
∗′

t

)−1 (
1

σ
√
n

n∑
t=1

z∗t et + op(1)

)
d
−→ Z ∼ N

(
0,Q−1

)
(29)

where Q = E
(
z∗t z
∗′
t

)
.

We can write

µ̃t − µt = −can−1St−1 +
(
θ̃0 − θ0

)′
δt + (α̃ − α)

′ z∗t

= −can−1S∗t−1 +
(
θ̃∗0 − θ0

)′
δt + (α̃ − α)

′ z∗t (30)
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so

1
σ 2

n∑
t=1

(µ̃t − µt)
2

=
c2a2

σ 2n2

n∑
t=1

S∗2t−1 +
1
σ 2

(
θ̃∗0 − θ0

)′ n∑
t=1

δtδ
′

t

(
θ̃∗0 − θ0

)
+
1
σ 2
(α̃ − α)

′

n∑
t=1

z∗t z
∗′

t (α̃ − α)+ op(1)

d
−→ c2

∫ 1

0
W ∗2c +

(∫ 1

0
dWδ′

)(∫ 1

0
δδ′
)−1

×

(∫ 1

0
δdW

)
+ Z ′QZ

= F0c + χ2p + χ
2
k (31)

where

χ2p =

(∫ 1

0
dWδ′

)(∫ 1

0
δδ′
)−1 (∫ 1

0
δdW

)
and

χ2k = Z
′QZ

are chi-square with degrees of freedom p and k, respectively.
Taking expectations of (31) we obtain (10).
When p = 0 then there is no δ(r). Thus using (26),

m0(c, 0) = E
(
c2
∫ 1

0
W 2c

)
= −

c
2
+
exp (2c)− 1

4

which is (12). When p = 1, δ(r) = 1. Thus

m0(c, 1) = E
(
c2
∫ 1

0
W ∗2c

)
+ 1

= E
(
c2
∫ 1

0
W 2c

)
− E

(
c
∫ 1

0
Wc

)2
+ 1.

Eq. (7) implies

c
∫ 1

0
Wc = Wc(1)−W (1) (32)

and thus using (25), (26) and (27), we find

m0(c, 1) = E
(
c2
∫ 1

0
W 2c

)
− EWc(1)2

− EW (1)2 + 2E (Wc(1)W (1))+ 1

= −
c
2
+
exp (2c)− 1

4
−

(
exp (2c)− 1

2c

)
+ 2

(
exp(c)− 1

c

)
,

which is (13).
We next consider the unconstrained estimator. Note that

µ̂t − µt = δ
′

t

(
θ̂0 − θ0

)
+ x∗′t

(
θ̂1 − θ1

)
+ z∗′t

(
α̂ − α

)
.

We calculate that

n1/2

σ
D0n

(
θ̂0 − θ0

)
d
−→

(∫ 1

0
δδ′
)−1 ∫ 1

0
δdW , (33)

n1/2

σ
D1n

(
θ̂1 − θ1

)
d
−→

(∫ 1

0
X∗c X

∗′

c

)−1 ∫ 1

0
X∗c dW , (34)
and

n1/2

σ

(
α̂ − α

) d
−→ Z (35)

as in (29).
We find

1
σ 2

n∑
t=1

(
µ̂t − µt

)2
=
1
σ 2

n∑
t=1

(
δ′t

(
θ̂0 − θ0

)
+ x∗′t

(
θ̂1 − θ1

)
+ z∗′t

(
α̂ − α

))2

=
1
σ 2

(
θ̂1 − θ1

)′ n∑
t=1

x∗t x
∗′

t

(
θ̂1 − θ1

)
+
1
σ 2

(
θ̂0 − θ0

)′ n∑
t=1

δtδ
′

t

(
θ̂0 − θ0

)
+
1
σ 2

(
α̂ − α

)′ n∑
t=1

z∗t z
∗′

t

(
α̂ − α

)
+ 2

1
σ 2

(
θ̂ − θ

)′ n∑
t=1

x∗t z
∗′

t

(
α̂ − α

)
d
−→

(∫ 1

0
dWX∗′c

)(∫ 1

0
X∗c X

∗′

c

)−1 (∫ 1

0
X∗c dW

)
+

(∫ 1

0
dWδ′

)(∫ 1

0
δδ′
)−1 (∫ 1

0
δdW

)
+ Z ′QZ

= F1c + χ2p + χ
2
k . (36)

Taking expectations of (36) yields (14).
We now examine the averaging estimator. Let θ̂0(w) = wθ̂0 +

(1−w)θ̃∗0 and α̂(w) = wα̂+ (1−w)α̃. We can see that for anyw

n1/2

σ
D0n

(
θ̂0(w)− θ̂0

)
d
−→

(∫ 1

0
δδ′
)−1 ∫ 1

0
δdW

and

n1/2

σ

(
α̂(w)− α

) d
−→ Z .

Noting that

µ̂t(w)− µt = wx∗′t
(
θ̂1 − θ1

)
− (1− w) can−1S∗t−1

+

(
θ̂0(w)− θ0

)′
δt +

(
α̂(w)− α

)′ z∗t , (37)

we see

1
σ 2

n∑
t=1

(
µ̂t(w)− µt

)2
= w2

1
σ 2

(
θ̂1 − θ1

)′ n∑
t=1

x∗t x
∗′

t

(
θ̂1 − θ1

)
+ (1− w)2

c2a2

σ 2n

n∑
t=1

S∗2t−1 +
1
σ 2

(
θ̂0(w)− θ0

)′
×

n∑
t=1

δtδ
′

t

(
θ̂0(w)− θ0

)
− 2w (1− w)

ca
nσ 2

×

(
θ̂1 − θ1

)′ n∑
t=1

x∗t S
∗

t−1 +
1
σ 2

(
α̂(w)− α

)′
×

n∑
t=1

z∗t z
∗′

t

(
α̂(w)− α

)
+ op(1)
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d
−→ w2

(∫ 1

0
dWX∗′c

)(∫ 1

0
X∗c X

∗′

c

)−1
×

(∫ 1

0
X∗c dW

)
+ (1− w)2 c2

∫ 1

0
W ∗2c

− 2w (1− w) c
(∫ 1

0
dWX∗′c

)(∫ 1

0
X∗c X

∗′

c

)−1
×

∫ 1

0
X∗cW

∗

c + χ
2
p + χ

2
k

= w2F1c + (1− w2)F0c − 2w(1− w)c

×

∫ 1

0
dWW ∗c + χ

2
p + χ

2
k . (38)

Taking expectations establishes (16).
To evaluatem01(c, p), note that

m01(c, p) = −Ec
∫ 1

0
dWWc

+ E

(
c
∫ 1

0
dWδ′

(∫ 1

0
δδ′
)−1 ∫ 1

0
δWc

)
+ p

= E

(
c
∫ 1

0
dWδ′

(∫ 1

0
δδ′
)−1 ∫ 1

0
δWc

)
+ p (39)

since E
∫ 1
0 dWWc = 0 by the definition of the stochastic integral. It

follows that when p = 0,m01(c, 0) = 0. When p = 1, using (32)
and (27),

m01(c, 1) = E
(
cW (1)

∫ 1

0
Wc

)
+ 1

= −E
(
W (1)2

)
+ E (W (1)Wc(1))+ 1

=
exp(c)− 1

c
,

which is (16).
The optimalw∗ andmean-squared error are found byminimiz-

ingmw(c, p, k)with respect tow. �

Proof of Theorem 2. First, take the unconstrained estimator. Ob-
serve that
µ̂n+1 − µn+1 = δ

′

n+1(θ̂0 − θ0)+ x
∗′

n+1(θ̂1 − θ1)+ z
∗′

n+1(α̂ − α).

Using (33) and (34), note that
n1/2

σ
(δ′n+1(θ̂0 − θ0)+ x

∗′

n+1(θ̂1 − θ1))

d
−→ δ(1)′

(∫ 1

0
δδ′
)−1 ∫ 1

0
δdW + X∗c (1)

′

×

(∫ 1

0
X∗c X

∗′

c

)−1 ∫ 1

0
X∗c dW = T1c (40)

and thus
n
σ 2
E(δ′n+1(θ̂0 − θ0)+ x

∗′

n+1(θ̂1 − θ1))
2
→ ET 21c .

Furthermore using (35)
n
σ 2
((α̂ − α)(α̂ − α)′)

d
−→ ZZ ′,

so
n
σ 2
E((α̃ − α)′z∗n+1)

2
=

n
σ 2
tr E(z∗n+1z

∗′

n+1(α̃ − α)(α̃ − α)
′)

→ tr E(z∗n+1z
∗′

n+1ZZ
′)

= E(Z ′QZ) = k. (41)
Together,

n
σ 2
E(µ̂n+1 − µn+1)2 =

n
σ 2
E(δ′n+1(θ̂0 − θ0)+ x

∗′

n+1(θ̂1 − θ1))
2

+
n
σ 2
E((α̂ − α)z∗n+1z

∗′

n+1(α̂ − α))+ o(1)

→ ET 21c + k

which is (20).
Second, take the constrained estimator. We have

µ̃n+1 − µn+1 = −can−1S∗n + (θ̃
∗

0 − θ0)
′δn+1 + (α̃ − α)

′z∗n+1.

Using (28),

n1/2

σ
(−can−1S∗n + (θ̃

∗

0 − θ0)
′δn+1)

d
−→ −cW ∗c (1)+ δ(1)

′

(∫ 1

0
δδ′
)−1 ∫ 1

0
δdW = T0c (42)

and therefore
n
σ 2
E(−can−1S∗n + (θ̃

∗

0 − θ0)
′δn+1)

2
→ ET 20c .

As in (41),

n
σ 2
E((α̂ − α)′z∗n+1)

2
→ k.

Then
n
σ 2
E(µ̃n+1 − µn+1)2 =

n
σ 2
E(−can−1S∗n + (θ̃

∗

0 − θ0)
′δn+1)

2

+
n
σ 2
E((α̂ − α)′z∗n+1)

2
+ o(1)

→ ET 20c + k,

which is (18). When p = 0 then T0c = −cWc(1) so f0(c, 0) =
c2EWc(1)2 = c(exp(2c)− 1)/2 by (25). When p = 1 then

T0c = −cWc(1)+ c
∫ 1

0
Wc +W (1) = (1− c)Wc(1)

and therefore f0(c, 1) = (1 − c)2EWc(1)2 = (1 − c)2(exp(2c) −
1)/2c.
Third, take the averaging estimator. Since

µ̂n+1(w)− µn+1 = w(δ
′

n+1(θ̂0 − θ0)+ x
∗′

n+1(θ̂1 − θ1))+ (1− w)

× (−can−1S∗n + (θ̃
∗

0 − θ0)
′δn+1)+ (α̂(w)− α)

′z∗n+1,

then
n
σ 2
E(µ̂t(w)− µt)2 = w2

n
σ 2
E(δ′n+1(θ̂0 − θ0)+ x

∗′

n+1(θ̂1 − θ1))
2

+ (1− w)2
n
σ 2
E(−can−1S∗n + (θ̃

∗

0 − θ0)
′δn+1)

2

+ 2w(1− w)
n
σ 2
E(δ′n+1(θ̂0 − θ0)

+ x∗′n+1(θ̂1 − θ1))(−can
−1S∗n + (θ̃

∗

0 − θ0)
′δn+1)

+
n
σ 2
E((α̂(w)− α)z∗n+1z

∗′

n+1(α̂(w)− α))

+ op(1)
d
−→ w2ET 21c + (1− w)

2ET 20c
+ 2w(1− w)E(T0cT1c)+ k

which is (22).
The optimal weight and risk are found byminimizing fw(c, p, k)

with respect tow. �
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Proof of Theorem 3. From (31) and (36) we have

1
σ 2

n∑
t=1

(µ̃t − µt)
2 d
−→ F0c + χ2p + χ

2
k

and

1
σ 2

n∑
t=1

(µ̂t − µt)
2 d
−→ F1c + χ2p + χ

2
k .

By standard calculations we know that DF
d
−→ DFc . Recalling that

µ̂df = µ̂t1(DFn ≤ r)+ µ̃t1(DFn > r), we then have

1
σ 2

n∑
t=1

(µ̂
df
t − µt)

2
=
1
σ 2

n∑
t=1

(µ̂t − µt)
21(DFn ≤ r)

+
1
σ 2

n∑
t=1

(µ̃t − µt)
21(DFn > r)

d
−→ F1c1(DFc ≤ r)+ F0c1(DFc > r)+ χ2p + χ

2
k

= F1c1(DFc ≤ r)+ F0c1(DFc > r)+ χ2p + χ
2
k .

Taking expectations yields the expression formdf (c, p, k).
Similarly, using (42) and (40),
n
σ 2
E(µ̂dft − µn+1)

2
=
n
σ 2
E[(µ̂n+1 − µn+1)21(DFn ≤ r)]

+
n
σ 2
E[(µ̃n+1 − µn+1)21(DFn > r)]

=
n
σ 2
E[(δ′n+1(θ̂0 − θ0)+ x

′

n+1(θ̂ − θ))
2

× 1(DFn ≤ r)] +
n
σ 2
E[(−can−1S∗n

+ (θ̃∗0 − θ0)
′δn+1)

21(DFn > r)]

+
n
σ 2
E((α̂ − α)z∗n+1z

∗′

n+1(α̂ − α))+ o(1)

→ E
[
T 21c1(DFc ≤ r)

]
+ E[T 20c1(DFc > r)] + k,

which is fdf (c, p, k). �

Proof of Theorem 4. First takeM0(c). Since yt − µ̃t = et − (µ̃t −
µt) then
n∑
t=1

(yt − µ̃t)2 =
n∑
t=1

e2t +
n∑
t=1

(µ̃t − µt)
2
− 2

n∑
t=1

et(µ̃t − µt)

and thus

M0(c)− nσ 2

σ 2
=
1
σ 2

n∑
t=1

(e2t − σ
2)+

1
σ 2

n∑
t=1

(µ̃t − µt)
2

+
2σ̂ 2

σ 2
(m01(c, p)+ k)−

2
σ 2

n∑
t=1

et(µ̃t − µt). (43)

The first three terms have expectations tending to m0(c, p, k) +
2(m01(c, p)+ k). The fourth term is−2 times

1
σ 2

n∑
t=1

et(µ̃t − µt) = −
ca
σ 2n

n∑
t=1

etS∗t−1 +
1
σ 2

n∑
t=1

etδ′t(θ̃
∗

0 − θ0)

+
1
σ 2

n∑
t=1

etz∗′t (α̃ − α)

d
−→ −c

∫ 1

0
dWW ∗c +

∫ 1

0
dWδ′

(∫ 1

0
δδ′
)−1 ∫ 1

0
δdW + Z ′QZ

(44)
(using (28)), which has expectation m01(c) + k. Adding these
components, it follows that (43) has expectation tending to
m0(c, p, k) as claimed.
Next considerM1(c). We have

M1(c)− nσ 2

σ 2
=
1
σ 2

n∑
t=1

(e2t − σ
2)+

1
σ 2

n∑
t=1

(µ̂t − µt)
2

+
2σ̂ 2

σ 2
(m1(c, p)+ k)−

2
σ 2

n∑
t=1

et(µ̂t − µt). (45)

The first three terms have expectation tending to m1(c, p, k) +
2(m1(c, p)+ k). The third is−2 times

1
σ 2

n∑
t=1

et(µ̂t − µt)

=
1
σ 2

n∑
t=1

etx∗′t (θ̂1 − θ1)+
1
σ 2

n∑
t=1

etz∗′t (α̂ − α)

d
−→

∫ 1

0
dWX∗c (r)

′

(∫ 1

0
X∗c X

∗′

c

)−1 ∫ 1

0
X∗c dW

+

∫ 1

0
dWδ′

(∫ 1

0
δδ′
)−1 ∫ 1

0
δdW + Z ′QZ (46)

which has expectationm1(c, p)+k. Adding these two components,
we see that (45) has expectation tending to m1(c, p, k) as
claimed. �

Proof of Theorem 5. The argument is the same as for Theorem 3,
except that we use the fact that Fn

d
−→ Fc . �

Proof of Theorem 6. Similar to the argument in the proof of
Theorem 4,

Mw(c)− nσ 2

σ 2
=
1
σ 2

n∑
t=1

(e2t − σ
2)+

1
σ 2

n∑
t=1

(µ̂t(w)− µt)
2

+
2σ̂ 2

σ 2
(w(m1(c, p)+ k)+ (1− w)(m01(c, p)+ k))

−w
2
σ 2

n∑
t=1

et(µ̂t − µt)− (1− w)
2
σ 2

n∑
t=1

et(µ̃t − µt).

The first three terms have expectation converging to

mw(c, p, k)+ 2(w(m1(c, p)+ k)+ (1− w)(m01(c, p)+ k)).

The fourth and fifth terms converge to a random variable with
expectation

−2(w(m1(c, p)+ k)+ (1− w)(m01(c, p)+ k))

by (44) and (46). Summing, the entire expression converges to a
random variable with expectationmw(c, p, k), as claimed. �

Proof of Theorem 7. Let êt = yt − µ̂t and ẽt = yt − µ̃t . Observe
that
n∑
t=1

(yt − µ̂t(w))2 =
n∑
t=1

(wêt + (1− w)ẽt)2

= w2
n∑
t=1

ê2t + (1− w)
2
n∑
t=1

ẽ2t + 2w(1− w)
n∑
t=1

êt ẽt

= w2
n∑
t=1

ê2t + (1− w)
2
n∑
t=1

ẽ2t + 2w(1− w)
n∑
t=1

ê2t

= nσ̂ 2 + (1− w)2n(σ̃ 2 − σ̂ 2).
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Thus
Mw
σ̂ 2
= n+ (1− w)2Fn + 2(2w + k).

The first-order condition forminimization is 0 = −2(1−ŵ)Fn+4,
whose solution is ŵ = 1− 2/Fn. If this value is negative, then the
constrained minimizer is ŵ = 0. �

Proof of Theorem 8. Since Fn
d
−→ Fc it follows directly that

ŵ
d
−→ πc . Evaluating Eq. (38) at w = πc and then taking

expectations we obtain the expression from ma(c, p, k). The
argument for fa(c, p, k) is similar. �
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