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a b s t r a c t

This paper proposes forecast combination based on themethod of MallowsModel Averaging (MMA). The
method selects forecast weights by minimizing a Mallows criterion. This criterion is an asymptotically
unbiased estimate of both the in-sample mean-squared error (MSE) and the out-of-sample one-step-
ahead mean-squared forecast error (MSFE). Furthermore, the MMA weights are asymptotically mean-
square optimal in the absence of time-series dependence. We show how to compute MMA weights in
forecasting settings, and investigate the performance of the method in simple but illustrative simulation
environments. We find that the MMA forecasts have low MSFE and have much lower maximum regret
than other feasible forecasting methods, including equal weighting, BIC selection, weighted BIC, AIC
selection, weighted AIC, Bates–Granger combination, predictive least squares, and Granger–Ramanathan
combination.
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1. Introduction

Forecast combination has a long history in econometrics. While
a broad consensus is that forecast combination improves forecast
accuracy, there is no consensus concerning how to form the
forecast weights. The most recent literature has focused on two
particularly appealing methods—simple averaging and Bayesian
averaging. The simple averaging method picks a set of models and
then gives them all equal weight for all forecasts. The Bayesian
averaging method computes forecast weights as a by-product of
Bayesian model averaging (BMA).
This paper introduces a new method appropriate for linear

models estimated by least squares. The method is to construct
forecast combinations using the weights computed by Mallows
Model Averaging (MMA), the weights which minimize the
generalized Mallows criterion introduced in Hansen (2007). The
Mallows criterion is an estimator of mean-squared error (MSE)
and mean-squared forecast error (MSFE), and MMA weights are
asymptotically optimal with respect to mean-square loss. We
therefore expect MMA combination to produce point forecasts
with low MSFE. In the context of linear regressions with iid data,
Hansen (2007) introduced the idea of model averaging using the
weights whichminimize theMallows criterion, demonstrated that
the Mallows criterion is an unbiased estimate of the MSE, and
showed that the Mallows averaging estimator is asymptotically

∗ Tel.: +1 608 263 3880; fax: +1 608 263 3876.
E-mail address: bhansen@ssc.wisc.edu.
URL: http://www.ssc.wisc.edu/∼bhansen.

0304-4076/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2008.08.022
optimal in the sense of achieving the best possible MSE. Our
contribution in this paper is to propose using these weights
for forecast combination, show that the Mallows criterion is
asymptotically unbiased for the MSE and MSFE when the
observations are a stationary time-series, and demonstrate the
relative performance of the method in simulation environments.
As mentioned above, two powerful existing methods for

forecast combination are simple averaging andBayesian averaging.
Both have been shown to be extremely versatile and successful in
applications, yet neither is inherently satisfying. Simple averaging
only makes sense if the class of models under consideration is
reasonable. If a terriblemodel is included in the class of forecasting
models, simple averaging will pay the penalty. This induces an
inherent arbitrariness, and thus the method is incomplete unless
augmented by a description of how the initial class of models is
determined, which destroys the inherent simplicity of themethod.
On the other hand, the fact that BMA relies on priors (over the

class of models and over the parameters in the models) means
that thismethod suffers from the arbitrarinesswhich is inherent in
prior specification. Furthermore, the BMA paradigm is inherently
misspecified. It is developed under the assumption that the truth is
one finite-dimensional parametric model out of a class of models
under consideration. The goal is to find the ‘‘true’’ model out
of this class. This paradigm and goal is inherently misspecified
and misguided, as it is more appropriate to think of models as
approximations, and that the ‘‘true’’ model is more complex than
any of the models in our explicit class. When we fit models,
we balance specification error (bias) against overparameterization
(variance). The correct goal is to define the object of interest (such
as forecast mean-squared error) and then evaluate methods based
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on this criterion, without assuming that we necessarily have the
correct model.
Mallows Model Averaging takes exactly the desired approach.

The goal is to obtain the set of weights which minimizes the MSE
over the set of feasible forecast combinations. The generalized
Mallows criterion is an estimate of the MSE and MSFE, and the
weights which minimize this criterion are asymptotically optimal
in some settings.
The Mallows criterion for model selection was introduced

by Mallows (1973), and is similar to the information criteria of
Akaike (1973) and Shibata (1980). The asymptotic optimality of
model selection by this class of criterion has been studied by
Shibata (1980, 1981, 1983), Li (1987), Banasali (1996), Lee and
Karagrigoriou (2001), Ing (2003, 2004, 2007) and Ing and Wei
(2003, 2005). Akaike (1979) proposed using the exponentiated AIC
asmodelweights, and this suggestionwas picked up and expanded
by Buckland et al. (1997) and Burnham and Anderson (2002). Hjort
and Claeskens (2003) introduced a general class of frequentist
model average estimators, including methods similar to Mallows
model averaging.
The Bayesian information criterion was introduced by Schwarz

(1978) as a method for model selection. There is a large literature
on Bayesian Model Averaging; see the review by Hoeting et al.
(1999). Some applications in econometrics include Sala-i-Martin
et al. (2004), Brock andDurlauf (2001), Avramov (2002), Fernandez
et al. (2001a,b), Garratt et al. (2003) and Brock et al. (2003).
The idea of forecast combination was introduced by Bates and

Granger (1969), extended by Granger and Ramanathan (1984),
and spawned a large literature. Some excellent reviews include
Granger (1989), Clemen (1989), Diebold and Lopez (1996), Hendry
and Clements (2002), Timmermann (2006) and Stock and Watson
(2006). The idea of using Bayesian model averaging for forecast
combination was pioneered by Min and Zellner (1993) and its
usefulness recently demonstrated by Wright (2003a,b). Stock and
Watson (1999, 2004, 2005) have provided detailed empirical
evidence demonstrating the gains in forecast accuracy through
forecast combination, and in particular have demonstrated the
success of simple averaging (equal weights) along with Bayesian
model averaging.
The plan of the paper is simple. Section 2 introduces the

model and approximating linear forecasting models. Section 3
introduces forecast combination and reviews existing combination
methods. Section 4 presents the Mallows criterion and the
MMA forecast combination. Section 5 shows that the Mallows
criterion is an asymptotically unbiased estimate of the in-sample
mean-squared error. Section 6 shows that this MSE criterion is
approximately equivalent to out-of-samplemean-squared forecast
error. Section 7 reviews Hansen’s (2007) demonstration of the
asymptotic efficiency of MMA in independent samples. Section 8
presents the results of two simulation experiments.

2. Approximating models

Let {yt , xt : t = 1, . . . , n} be a sample where yt is real-
valued and xt = (x1t , x2t , . . .)′ is countably infinite. Consider the
regression model

yt = µt + et (1)

µt =

∞∑
j=1

ajxjt = a′xt (2)

E (et | xt) = 0 (3)

E
(
e2t | xt

)
= σ 2. (4)

In Eq. (2), a = (a1, a2, . . .)′ denotes a countably infinite vector, and
we assume that sum (2) converges in mean square.
The goal is to construct a point forecast fn+1 of yn+1 given xn+1.
The optimal mean-square forecast is the conditional mean µn+1,
and therefore empirical forecasts are estimates of µn+1.
As (2) possibly contains an infinite number of coefficients but

the sample size is finite, a finite-dimensional approximatingmodel
is estimated in practice. Supposewe have a set ofM approximating
models where them’th uses the first k(m) regressors. (The leading
case sets k(m) = m.) This imposes the strong assumption that the
set of forecastingmodels is strictly nested. This is highly restrictive
(as there are many cases where non-nested models are of interest)
but is necessary for application of the methods discussed in this
paper. Extending the methods to allow for non-nested models
would be highly desirable.
Letting xt(m) = (x1t , x2t , . . . , xk(m)t)′ and a(m) = (a1, a2,

. . . , ak(m))′ this model can be written as

yt = a(m)′xt(m)+ et(m)

where

et(m) = et +
∞∑

j=k(m)+1

ajxjt ,

or in matrix notation

y = X(m)a(m)+ e(m).

The least-squares estimate of a(m) is

â(m) =
(
X(m)′X(m)

)−1 X(m)′y,
the least-squares residuals are

ê(m) = y− X(m)â(m),

and residual variance estimate

σ̂ 2(m) =
1
n
ê(m)′ê(m).

The least-squares forecast of yn+1 from this approximating model
is then

f̂n+1(m) = xn+1(m)′â(m). (5)

Some forecast combination methods require the calculation of
recursive estimates. Stacking the first t − 1 observations on yt and
xt(m)′ into the (t − 1) × 1 and (t − 1) × k(m) matrices yt−1 and
Xt−1(m), the recursive least-squares estimates of a(m) are

ât−1(m) =
(
Xt−1(m)′Xt−1(m)

)−1 Xt−1(m)′yt−1.
The recursive least-squares forecasts of yt from this approximating
model are then

f̂t(m) = xt(m)′ât−1(m), (6)

the forecast errors are

ẽt(m) = yt − f̂t(m),

and an estimate of the forecast error variance is

σ̃ 2(m) =
1

P + 1

n∑
t=n−P

ẽt(m)2 (7)

for some integer P such that ẽn−P(m) is well defined.
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3. Forecast combination

Section 2 defined a set of M approximating models and
associated forecasts. We now consider combinations of these
forecasts. Let w(m) be a weight assigned to the m’th forecast.
Define the vectors w = (w(1), . . . , w(M)) and f̂t =(
f̂t(1), f̂t(2), . . . , f̂t(M)

)′
. The combination forecast of yn+1 is

f̂n+1 (w) = w′ f̂n+1 =
M∑
m=1

w(m)f̂n+1(m) = x′n+1â (w) (8)

where

â (w) =
M∑
m=1

w(m)â(m) (9)

is an averaging estimator of a. In (8) and (9) we interpret â(m) and
â (w) to be infinite-dimensional vectors where â(m) has entries of
0 beyond them’th element.
Severalmethods have been proposed for selection of theweight

vectorw. A classicmethod introduced by Bates and Granger (1969)
sets the weights to be inversely proportional to the estimated
forecast error variances defined in (7):

w(m) =
σ̃ 2(m)−1

M∑
j=1
σ̃ 2(j)−1

. (10)

This can be viewed as a smoothed version of predictive least
squares (Rissanen, 1986), which simply selects the model with
smallest forecast variance σ̃ 2(m).
Granger and Ramanathan (1984) proposed selecting the

weights byminimizing the sum of squared forecast errors from the
combination forecast

Q (w) =
n∑

t=n−P

(
yt − f̂

′

tw
)2
. (11)

The unrestricted minimizer (Granger–Ramanathan’s Method A) is
the least-squares coefficient

ŵ =

(
n∑

t=n−P

f̂t f̂
′

t

)−1 n∑
t=n−P

f̂tyt . (12)

As described in Timmermann (2006, Sections 3.2 and 5.2) it may
be prudent to minimize (11) subject to the convexity constraints
0 ≤ w(m) ≤ 1 and additivity constraint

∑M
m=1w(m) = 1. This is

ŵ = argmin

0≤w(m)≤1,
M∑
m=1

w(m)=1

Q (w) . (13)

We call the forecast using (13) the constrained Granger–
Ramanathan forecast.
The recent forecasting literature has devoted considerable

attention to forecasts based on Bayesian Model Averaging (BMA).
When the priors are diffuse the BMAweights approximately equal

w(m) =
exp

(
−
1
2BIC(m)

)
M∑
j=1
exp

(
−
1
2BIC(j)

) (14)

where

BIC(m) = n ln
(
σ̂ 2(m)

)
+ k(m) ln n
is the Bayesian Information Criterion (BIC) for model m. A related
proposal (Buckland et al. (1997) and Burnham and Anderson
(2002)) is smoothed AIC (SAIC) weights

w(m) =
exp

(
−
1
2AIC(m)

)
M∑
j=1
exp

(
−
1
2AIC(j)

) (15)

where

AIC(m) = n ln
(
σ̂ 2(m)

)
+ 2k(m)

is the Akaike Information Criterion (AIC).
The recent forecasting literature has also suggested the use of

very simple combination methods, including the forecast mean
which is equivalent to setting w(m) = 1/M , and the forecast
median.

4. Mallows Model Averaging

In this paper we propose constructing forecast combinations
using the weight vector selected by the Mallows Model Averaging
(MMA) criterion of Hansen (2007), an extension of the classic
Mallows criterion for model selection. The full-sample averaging
estimator of the conditional mean µt is µ̂

′

tw = â (w)′ xt where
µ̂t =

(
µ̂t(1), µ̂t(2), . . . , µ̂t(M)

)′ and µ̂t(m) = xt(m)′â(m). The
MMA criterion is the penalized sum of squared residuals

Cn (w) =
n∑
t=1

(
yt − µ̂

′

tw
)2
+ 2

M∑
m=1

w(m)k(m)s2

= w′ê′êw+ 2w′Ks2 (16)

where ê =
[
ê(1), . . . , ê(M)

]
,K = (k(1), . . . , k(M))′ and

s2 =
1

n− k(M)
ê(M)′ê(M)

is an estimate of σ 2 from the largest fitted model. The second
equality in (16) uses the assumption that the weights sum to one,
which will be imposed.
The MMA weight vector is the value of w which minimizes

Cn (w). Feasible values for w are weight vectors whose elements
are non-negative and sum to one.1 This set is the unit simplex in
RM :

H =

{
w ∈ [0, 1]M :

M∑
m=1

wm = 1

}
. (17)

The definition of the Mallows weight vector is then

ŵ = argmin
w∈H

Cn(w). (18)

The MMA forecasts are µ̂′tŵ = â(ŵ)′xt . Due to the inequality con-
straints in (17), the solution to (18) is not analytically available
for M > 3, and must be found numerically using quadratic pro-
gramming, for which numerical solutions have been thoroughly
studied and algorithms are widely available. Even whenM is quite
large the numerical solution to (18) is computationally fast using
any standard algorithm.

1 It is tempting to consider more weight vectors which do not satisfy these
restrictions. However, if the Mallows criterion is used, we must restrict the weight
vector to the unit simplex. If the non-negativity restriction is relaxed, theminimized
values can be quite ill-behaved and have terrible empirical performance.
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5. Mallows criterion and MSE

A traditional motivation for the Mallows criterion is that it
is an (approximately) unbiased estimate of the in-sample mean-
squared error. Hansen (2007) shows that this property holds for
the criterion (16) for iid observations. In this section we develop
an asymptotic analog for stationary dependent observations.
Write model (1) in vector notation as y = µ+ e. The averaging

estimator of µ given the weight vectorw is

µ̂ (w) =
M∑
j=1

w(m)X(m)â(m) = P (w) y

where

P (w) =
M∑
j=1

w(m)X(m)
(
X(m)′X(m)

)−1 X(m)′.
The averaging residual vector is ê (w) = y− µ̂ (w) .
Define the in-sample mean-squared error

Ln (w) = E

(
1
n

n∑
t=1

(
µt − µ̂t (w)

)2)

=
1
n
E
(
µ− µ̂ (w)

)′ (
µ− µ̂ (w)

)
. (19)

This is a summary measure of the fit of the averaging estimator.
Computing the sumof squared errors and expanding the square

we find

ê (w)′ ê (w) =
(
e+ µ− µ̂ (w)

)′ (e+ µ− µ̂ (w))
=
(
µ− µ̂ (w)

)′ (
µ− µ̂ (w)

)
+ e′e

+ 2e′
(
µ− µ̂ (w)

)
=
(
µ− µ̂ (w)

)′ (
µ− µ̂ (w)

)
+ e′e

+ 2e′ (I− P (w))µ− 2e′P (w) e.

Thus the expectation for the Mallows Criterion is

E (Cn (w)) = E

(
ê (w)′ ê (w)+ 2

M∑
m=1

w(m)k(m)s2
)

' n
(
Ln (w)+ σ 2

)
− 2

(
E
(
e′P (w) e

)
− σ 2

M∑
m=1

w(m)k(m)

)
.

The final term is asymptotically zero, as we now show.

Theorem 1. If (xt , et) is strictly stationary and ergodic, Ex′txt <∞,
and M andw are fixed as n→∞, then

E
(
e′P (w) e

)
−→ σ 2

M∑
m=1

w(m)k(m).

Using Theorem 1, we see that E (Cn (w)) ' n
(
Ln (w)+ σ 2

)
.

Thus the expectation of the Mallows criterion is asymptotically
equivalent to the squared error (19). (The additive and multiplica-
tive constants do not matter.) We see that this classic property of
the Mallows criterion extends to model averaging with stationary
dependent data.
6. MSE and MSFE

In this section we show that the mean-squared forecast error
(MSFE) approximately equals Ln (w) when the observations are
strictly stationary, and thus the Mallows criterion can also be seen
as an approximately unbiased estimate of the MSFE. The one-step-
ahead out-of-sample forecast of yn+1 given xn+1 is

ŷn+1 = â(w)′xn+1

so the one-step-ahead second-order MSFE is

Rn(w) = E
(
yn+1 − ŷn+1

)2
− σ 2

= E
(
en+1 +

(
a− â(w)

)′ xn+1)2 − σ 2
= E

((
a− â(w)

)′ xn+1)2
' E

((
a− â(w)

)′ xt)2
= E

(
µt − µ̂t (w)

)2
= Ln (w) .

The approximation in the fourth line is valid for stationary
observations due to the approximate independence of xt and â(w)
in large samples (and similarly for xn+1 and â(w)).
Combined with Theorem 1, we deduce that the Mallows

criterion is an approximately unbiased estimate of the MSFE
Rn (w) .

7. Asymptotic efficiency of MMA

The previous sections showed that the Mallows criterion is
an asymptotically unbiased estimator of the MSE Ln (w) and
MSFE Rn (w) for strictly stationary observations. This suggests
that the weights which minimize the Mallows criterion may be
asymptotically optimal with respect to this criterion. We have not
been able to establish this result for dependent data, but building
on the work of Li (1987) for efficient model selection procedures,
Hansen (2007) established this asymptotic optimality property
when the observations are independent.We report this result here
for completeness.
For some finite integer N let the weights w(m) be restricted to

the set {0, 1
N−1 ,

2
N−1 , . . . , 1}, letH

∗ be the subset ofH restricted to
this set of weights, and let ŵ∗ be the MMA weights selected when
restricted toH∗:

ŵ∗ = argmin
w∈H∗

Cn(w).

Theorem 2. [ (Hansen, 2007)] If (yt , xt) are iid, satisfy (1)–(4),

sup
t
E
(
e4Nt | xt

)
<∞, (A.1)

inf
w∈H

E
((
µ− µ̂ (w)

)′ (
µ− µ̂ (w)

)
| x1, . . . , xn

)
→∞, (A.2)

and k(M)/n→ 0, then the MMA weights ŵ∗ are optimal in the sense
that

Ln
(
ŵ∗
)

inf
w∈H∗

Ln (w)
→p 1

as n→∞.
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Theorem 2 shows that MMA is asymptotically efficient in
the sense that its in-sample MSE is equivalent to the infeasible
optimal averaging estimator. The assumptions are fairly minimal.
Assumption (A.1) is a strongmoment bound butmay be a technical
artifact of the proof method. The restriction of H to H∗ also
appears to be a technical artifact of the proof method.2 However,
Assumption (A.2) is important. It states that there is no finitem for
which µt(m) equals µt—equivalently, that all finite-dimensional
models are approximations. This is an important condition for it
is well known that when the true model is finite dimensional,
then this class of model selection procedures is asymptotically
inefficient.
Theorem 2 excludes dependent data and is therefore not

directly relevant for time-series forecasting. However, there is a
closely related theory of optimal model selection for one-step-
ahead forecasting in the context of autoregressive models, and
we expect that the optimality property should carry over to
forecast combination. Themost relevant contribution is by Ing and
Wei (2005) who consider stationary infinite-order autoregressions
with iid innovations. Let ŷn+1(m) be the one-step-ahead forecast
of yn+1 using the least-squares estimate of an autoregressive (AR)
model of order m and let Rn(m) denote the second-order mean-
squared forecast error from these estimates:

Rn(m) = E
(
yn+1 − ŷn+1(m)

)2
− σ 2.

Let m̂ be the AR order selected by the Akaike or Mallows criterion.
Ing and Wei (2005) show that m̂ is asymptotically optimal in the
sense that

Rn
(
m̂
)

inf
1≤m≤M

Rn (m)
→p 1. (20)

Model selection is a restricted version of model averaging. Given
the similarity with Theorem 2 we conjecture that the optimality
result (20) will extend to the case of general weight vectors.
However, the technical challenges for establishing this result

are formidable. It is necessary to extend Lemmas 1, 2 and 3 of
Ing and Wei (2005) to the case of averaging estimators. (Ideally
the results would resemble Theorem 2 of Whittle (1960).) Such an
extension is beyond the scope of the present paper and is left for
future research.

8. Finite sample investigation

We now investigate the finite sample MSFE of the our model
average estimator in two simulation designs. The first is the
regression model

yt = θ0 +
K∑
k=1

θkxkt + et .

The error et ∼ N(0, σ 2) is independent of the regressors xkt , which
are independent AR(1) processes xkt = ρxkt−1+ukt where ρ = 0.5
and ukt ∼ N(0, 0.75). We normalize σ 2 = 1 and set the regression
coefficients by the rule

θk = cγk

γk =
kαβk

K∑
j=1
j2αβ2j

.

2 It is highly desirable, but technically quite challenging, to relax this restriction.
It is important to emphasize that this restriction is only relevant for the optimality
theory, not for empirical application of the method.
By varying α and β a variety of patterns for θk as a function of k can
be determined. Eight representative patterns were selected, and
the coefficients γk are displayed in the left panels of Figs. 1 and 2. In
the first six panels the coefficients γk aremonotonically decreasing
in k, as would be expected if the regressors were correctly ordered.
The final two panels display cases of non-monotonic coefficients.
The parameter c was set by the rule c =

√
R2/(1− R2) and R2

varied on a grid from 0.1 to 0.9, as this is the population R2 of this
regression. We set the sample size to n = 200 and set K = 12.
Forecasts of yn+1 given xn+1 are based on the linear regressions:

yt = θ̂0 +
m∑
k=1

θ̂kxkt + êt(m)

form = 0, . . . , 12, estimated by OLS.3
The second design is the moving average model

yt =
∞∑
k=0

θket−k

where et is iid N(0, σ 2) and n = 200. We normalize σ 2 = 1 and
set the coefficients using the rule

θk = (1+ k)α βk.

By varying α and β a variety of moving average patterns can be
generated. We varied α among {0, 0.25, 0.50 and 1.0} and varied β
on a grid from .6 to .9. The moving average coefficient patterns are
displayed in the four left panels of Fig. 3.
Forecasts of yn+1 are based on AR(m) models:

yt = µ̂+ α̂1yt−1 + · · · + α̂myt−m + êt(m)

form = 0, . . . , 12, estimated by OLS.
In both experiments a wide set of forecast combination

methods were compared, including AIC selection, smoothed AIC
(SAIC) (15), BIC selection, weighted BIC (WBIC) (14), PLS selec-
tion, median forecast, mean forecast, Bates–Granger combina-
tion (10), Granger–Ramanathan combination (12), Constrained
Granger–Ramanathan combination (13), and MMA combination
(18).
We compare the forecasting methods based on out-of-sample

second-order mean-square forecast error (MSFE)

MSFE =
n
σ 2

(
E
(
yn+1 − ŷn+1

)2
− σ2

)
.

The error variance σ 2 is subtracted because it is the leading term
in the MSFE, and is common across forecast methods. The scaling
(n/σ 2) is used to render the results scale-free. We compute MSFE
by computing averages across 20,000 simulation draws.
Comparing the forecast methods across the parameter settings,

we find that eight of the methods are dominated (either uniformly
or nearly so) by one of the three other methods. Specifically,
BIC selection is dominated by WBIC, AIC by SAIC and SAIC
by MMA. The mean and median forecasts are dominated by
the Bates–Granger combination. Granger–Ramanathan is strongly
dominated by constrained Granger–Ramanathan and PLS, which
are in turn dominated by MMA. To keep our graphs uncluttered,
only the three undominated methods (WBIC, Bates–Granger, and
MMA) are displayed.
For each experiment, MSFE is displayed in the right panels of

Figs. 1–3. (The left panels display the coefficient pattern.) Figs. 1
and 2 display results for the first simulation design (the regression
model) and Fig. 3 displays results for the second design (the

3 To assess robustness to misspecification, the simulation was also done with
the regression models restricted to m = 0, . . . , 6. The results were qualitatively
unchanged.
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Fig. 1. Regression model, cases 1–4.
moving average model). In Figs. 1 and 2 the coefficient pattern γk
is displayed in the left panel, and the right panel displays MSFE as
R2 is varied from 0.1 to 0.9. In Fig. 3 the coefficient α is held fixed at
one of the values {0, 0.25, 0.50 and 1.0}, and the right panel displays
MSFE as β is varied from 0.6 to 0.9.
In all plots, the MSFE of WBIC forecasts is displayed with the
dashed line, the MSFE of Bates–Granger forecasts with the dash-
dotted line, and the MSFE of MMA forecasts with the solid line.
Examining the twelve panels in the three figures, there is no one
method which uniformly dominates the others.
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Fig. 2. Regression model, cases 5–8.
One criterion to compare procedures is maximum regret. For a
given parameterization the regret of a procedure is the difference
between its risk (MSFE) and the best achievable risk—in this
case the best MSFE among the eleven forecasting methods. The
maximum regret of a procedure is the maximum value of this
regret across all parameterizations. If a procedure has low regret
it means that for all parameterizations the risk of that procedure
is not too far from the best achievable MSFE. We calculated the
maximum regret of the forecasting methods for each simulation
design and report the results in Table 1, roughly ordered from
worst performance (highest regret) to best performance (lowest
regret).
Table 1 shows that the procedures have dramatically different

performance as measured by regret. By a wide margin the
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Fig. 3. Moving average model.
procedure with the best performance is MMA, with SAIC and
constrainedGranger–Ramanathan closely behind.What the results
show (and this is consistent with a close scrutiny of Figs. 1–3)
is that for all parameterizations the MMA forecast has a MSFE
which is either the best, or reasonably close to the best. Other
procedures (such as WBIC and Bates–Granger) may perform quite
well for certain parameterizations, but there are parameterizations
for which these procedures have quite large MSFE relative to other
estimators.
The simulation exercises confirm our expectations. Forecast

combination generally achieves lower MSFE than forecast selec-
tion. A feasible and easy-to-apply method with particularly low
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Table 1
Maximum regret

Design 1 Design 2

Mean 146.0 100.0
Median 145.0 3.3
Granger–Ramanathan 37.1 31.2
Bates–Granger 70.0 3.0
BIC 20.1 4.1
WBIC 14.8 2.7
Predictive least squares 8.0 3.5
AIC 6.8 2.7
Constrained Granger–Ramanathan 4.0 3.3
SAIC 3.9 1.4
Mallows Model Averaging 2.6 1.0

MSFE for one-step-ahead forecasting is Mallows Model Averaging.
In our simulations, it performed uniformly well across a range of
models and parameterizations, yielding quite low regret, meaning
that it is hard to do better than this method.
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Appendix

Proof of Theorem 1. For any m, by the ergodic theory and the
central limit theorem for martingale difference sequences,

1
n
X(m)′X(m)

p
−→ V (m) = E

(
xt(m)xt(m)′

)
and
1
√
n
X(m)′e d

−→ N
(
0, V (m)σ 2

)
.

Therefore

e′X(m)
(
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)−1 X(m)′e d
−→ σ 2χ2k(m)

where χ2k(m) is chi-square with k(m) degrees of freedom, and
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)−1 X(m)′e) −→ σ 2k(m).

It follows that for any fixedM andw,
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as claimed.
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