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Overview

Most U.S. undergraduate economic students do not pursue PhDs

Many work for firms and government

They see, work with, and analyze time-series data

Time-series tools are useful for such work
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Core Models

Autoregressive (AR)

yt = α+ φ1yt−1 + · · ·+ φpyt−p + et

Regression
yt = α+ δ0xt + et

Distributed Lag (DL)

yt = α+ δ0xt + δ1xt−1 + · · ·+ δqxt−q + et

Autoregressive-Distributed Lag (ADL)

yt = α+ φ1yt−1 + · · ·+ φpyt−p + δ0xt + δ1xt−1 + · · ·+ δqxt−q + et
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Core Insights for Core Time-Series Models

1 The coeffi cients can be estimated by OLS
2 The appropriate standard error (robust or HAC) is important
3 The AR model helps understand serial correlation.
4 The coeffi cients in the DL and ADL can be interpreted as multipliers.
5 Multipliers are structural under exogeneity
6 Lags may be selected by AIC, not testing.
7 Spurious regression
8 Parameter change.
9 Use ADL model for one-step-ahead point forecasts.
10 Point forecasts should be combined with interval forecasts.
11 Multi-step forecasts can use a multi-step ADL model
12 Multi-step point forecasts should be accompanied by fan charts.
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Standard Errors

Three methods popular for time-series
I Classical (homoskedastic)
I Robust (Heteroskedastic)
I HAC (Newey-West)

Classical (old-fashioned) are not used in contemporary economics.
I Should only be taught as a stepping stone

Robust
I Appropriate for AR and ADL
I Inappropriate for non-dynamic regression or DL

HAC
I Important for regression or DL
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Illustration

Weekly retail gasoline and crude oil prices

Three standard errors: old-fashioned, robust, and HAC (appropriate)

gast = 0.029
(0.046)
(0.046)
(0.073)

+ 0.269
(0.011)
(0.015)
(0.021)

oilt + êt
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t-statistics versus standard errors

Always report coeffi cient estimates & standard errors

Never coeffi cient estimates & t-statistics

Standard errors convey degree of uncertainty —always important

t-statistics concern testing hypothesis of a zero coeffi cient
— rarely of key interest

De-emphasize significance testing in favor of measurement and
analysis
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Autoregressive Models

Useful for understanding dynamics

Illustration: U.S. quarterly real GDP growth rates, post-war

GDPt = 1.93
(0.32)

+ 0.34
(0.06)

GDPt−1 + 0.13
(0.06)

GDPt−2

− 0.09
(0.06)

GDPt−3 + êt
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Illustration

Weekly return on S&P 500

Useful to illustrate test of effi cient market hypothesis

Also illustrates importance of correct (robust) standard errors,
otherwise test will falsely reject.

returnt = 0.16
(0.04)

− 0.032
(0.029)

returnt−1 + 0.037
(0.025)

returnt−2 + êt
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Distributed Lag Models

Useful for understanding multipliers

Illustration: retail gasoline and crude oil prices

gast = −0.009
(0.057)

+ 0.243
(0.016)

oilt + 0.112
(0.012)

oilt−1 + 0.063
(0.011)

oilt−2

+ 0.064
(0.013)

oilt−3 + 0.030
(0.010)

oilt−4 + 0.032
(0.011)

oilt−5 + 0.018
(0.012)

oilt−6 + êt
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Auto-Regressive Distributed Lag Models

Phillips Curve: U.S. quarterly inflation and unemployment rate

∆Inft = 0.44
(0.42)

− 0.34
(0.11)

∆Inft−1 − 0.39
(0.09)

∆Inft−2

− 0.02
(0.11)

∆Inft−3 − 0.17
(0.07)

∆Inft−4 − 1.53
(0.56)

URt−1

+ 1.58
(1.06)

URt−2 + 0.11
(1.03)

URt−3 − 0.23
(0.47)

URt−4 + êt
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Model Selection

Economic theory does not inform about lag structure

In practice, choice implies a bias-variance trade

Akaike Information Criterion (AIC) is a simple practical tool to
compare models

Testing (t and F) is appropriate for assessing economic hypotheses

Testing is inappropriate for model selection
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Spurious Regression

Could be the single most important insight we can teach our students

Spurious regressions are commonplace

Teach students to recognize serial correlation and exercise caution
when interpreting regressions
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Illustration: Two Annual Series

y1t = −2.95
(0.52)

+ 0.95
(0.07)

y2t + êt , R2 = 0.54
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Spurious!

Both series were generated as independent random walks
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Trump-Era Exchange Rate Theory
Outsourcing causes displaced workers to be discouraged and leave
labor force, and the production shift alters the exchange rate

ExchangeRatet = 10.2
(0.56)

LaborParticipationt R2 = 0.35
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How to Detect a Spurious Regression

Dependent variable is highly serially correlated

Simple regression (no lagged dependent variable)

Solution: Include at least one lagged dependent variable

Ext = 1.43
(0.05)

Ext−1 − 0.59
(0.08)

Ext−2 + 0.18
(0.09)

Ext−3

− 0.05
(0.05)

Ext−4 − 0.013
(0.032)

LaborParticipationt
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Structural Change

Example: U.S. Real GDP Growth Rates

Mean Standard Deviation AR(1) Coeffi cient
1947-1956 4.0 5.3 0.44
1957-1976 3.6 4.2 0.30
1977-1996 3.2 3.5 0.31
1997-2016 2.3 2.5 0.41
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Forecasting

Using h-step ADL for multi-step point forecasts

Example: Inflation given unemployment rates

Estimates

πt+h − πt = α̂+ φ̂1∆πt + · · ·+ φ̂p∆πt−p+1

+δ̂1URt + · · ·+ δ̂qURt−q+1.

Point Forecasts

π̂n+h = πn + α̂+ φ̂1∆πn + · · ·+ φ̂p∆πn−p+1

+δ̂1URn + · · ·+ δ̂qURn−q+1
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Forecast Intervals

Uncertainty should be emphasized

Noise typically dominates signal

Emphasis on forecasts intervals

Simple normal approximation interval

π̂n+h ± ŝn+hz1−α/2

ŝn+h is the standard error of the forecast

ŝn+h ≈
(
n−1 ∑n

t=1 ê
2
t

)1/2
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Fan Charts
Multi-step forecasts are elegantly presented using fan charts
Illustration: U.S. quarterly inflation using estimated Phillips curve
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Conclusion

Time-series should be part of econometrics curriculum

Emphasis on core models used in applications
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