Approximate Asymptotic P Values
for Structural-Change Tests

Bruce E. HANSEN

Department of Economics, Boston College, Chestnut Hill, MA. 02167-3806

Numerical approximations to the asymptotic distributions of recently proposed tests for structural
change are presented. This enables easy yet accurate calculation of asymptotic p values. A GAUSS
program is available to perform the computations.
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Recently, Andrews (1993) found the asymptotic distribu-
tion of a wide class of tests for structural change in econo-
metric models. In a related article, Andrews and Ploberger
(1994) developed an analogous class of tests with stronger
optimality properties. The asymptotic distributions of the
tests are nonstandard and depend on two parameters, the
number of parameters tested and the range of the sample
that is examined for the break date.

Although a selected set of asymptotic critical values has
been tabulated, the nonstandard nature of these distributions
means that p values cannot be calculated from previously
published information. This is a disadvantage in applica-
tions because applied economists are frequently more in-
terested in p values than in classical Neyman—Pearson sig-
nificance tests.

This article presents computationally convenient approx-
imations p*(z) to the asymptotic p-value functions p(z) for
the Andrews and Andrews-Ploberger asymptotic distribu-
tions. The approximation methods proposed here may find
use in a wide range of nonstandard statistical contexts.

Previous attempts to estimate p-value functions for non-
standard test statistics in econometrics were made by
Hansen (1992) and MacKinnon (1994). Hansen (1992) set
p*(z) to be a simple polynomial

(1)

and fitted the coefficients by a least squares polynomial
regression of upper percentiles on quantiles. MacKin-
non (1994) improved the approach by setting p*(x)
U(ay(x|6)), where ¥(-) is a leading distribution function of
interest (in his case, the standard normal). He fitted the coef-
ficients by a least squares polynomial regression of ¥~1(p)
(where p are upper percentiles) on quantiles.

The methods presented in this article extend this lit-
erature. Similarly to MacKinnon (1994), 1 set p*(z) =
U(ay,(x|0)|n), where a,(z|f) is a polynomial and ¥(z|n)
is a leading distribution of interest. One difference is that I
allow the distribution to depend on an unknown parameter
7. To fit the approximation, I use a weighted loss function
over the p-value space. I find that my approximations are
extremely accurate, even though my models are quite par-
simonious.

In independent and complementary work, Adda and Gon-
zalo (1995) used the seminonparametric approach of Gal-

oy (z|0) =09 + 61+ -+ + G,2°

60

lant and Nychka (1987) to approximate the asymptotic dis-
tribution of the Dickey-Fuller test. Although their approx-
imating p-value function is different, their method to fit the
coefficients is quite similar to mine.

Section 1 reviews the tests and distribution theory of An-
drews (1993) and Andrews and Ploberger (1994). Section 2
presents the methodology used to approximate the p-value
function. Section 3 presents the approximations. A GAUSS
program that computes the test statistics and asymptotic p
values can be downloaded from the JBES web site and from
http://fmwww.bc.edu/EC-V/Hansen.fac.html.

1. TESTS FOR STRUCTURAL CHANGE

An m x 1 parameter 3, describing some aspect of a time
series z;, takes the value §; for ¢ < k and the value 35 for
t > k, where m < k < n — m. Let F,,(k) denote a Wald,
Lagrange multiplier (LM), or likelihood ratio statistic of the
hypothesis of no structural change (8; = ;) for given k.
When £ (the date of structural change) is known only to lie
in the range [k1, k2], the Quandt or “sup” test statistic is

SupF, = sup F,(k).

k1<k<k2

The Andrews and Ploberger (1994) “Exp” and “Ave” tests

are
1 b 1
EXpF =In (m tgk:l exp (5 Fn(k))) ’
and
1 k2
AveF, = ———— F, (k).
VeLn ko— ki +1 t=Zk1 ( )

As shown by Andrews (1993) and Andrews and Ploberger
(1994), under a wide set of regularity conditions, these
statistics have the asymptotic null distributions

sup F(7),

m ST

SupF,, —4 SupF(mp) = ?2)
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Figure 1. SupF Distribution.

and

AveF, —4 AveF(my) = 4)

F(r)dr,

/ A
i

(W(r) - W) (W(r) — W (1))

T2 — M

where

®)

F(r) = T(1—7) ’
W(7) is an m x 1-vector Brownian motion, 7; = k; /n, and
72 = ko /n. These distributions are nonstandard. In addition
to m, the distributions depend on 7; and w5 through the
single index

1

o = ma (6)
where
_ 71'2(1 ——71'1)
ST 7

Note that, when the range [k, k2] is symmetric in the sam-
ple, g =m =1 —m,.

2. METHODOLOGY

Let T}, denote one of the three tests SupF,, ExpF,, or
AveF,, for some 7y, and let T denote the associated asymp-
totic distribution [e.g., SupF'(mo), ExpF (), or AveF(m)].

Let p(z) = P(T > z) denote the p-value function of 7.
Define the inverse function of p(z) : Q(q) = p~!(q) that
satisfies ¢ = p(Q(q)). Note that Q(1 — ¢) is the quantile
function of the distribution. For simplicity, I shall refer to
Q(q) as the quantile function.

Although p(z) may be (in principle) calculable, it may be
computationally burdensome in applications, so I desire a
parametric approximation, valid at least for small p values.
In the following sections I describe how I obtain such an
approximation.

2.1 Approximating P-Value Functions

I need a parametric function p(z|f) that can be made
close to the true function p(z) by appropriate selection of
the parameter 6. In principle, I would like my functional
choice p(z|#) to have the standard properties of a distribu-
tion function (bounded between 0 and 1 and monotonically
decreasing in z), although these properties are not essential
if the function gives good approximations.

A general approach is to pick a flexible function class
with known approximation properties. Let o, (z|6) be the
vth-order polynomial in z defined in (1). By the Stone—
Weierstrass theorem, any bounded continuous function f(z)
can be arbitrarily well approximated on a compact set by
ay,(x|0) for a suitable choice of 4. It thus makes sense to
consider setting p(z|0) = a,(z|¢), which is the approach
of Hansen (1992). An improvement suggested by MacKin-
non (1994) is to set p(z|0) = 1 — ¥(a,(x|6)), where ¥(-)
is a distribution function of leading interest. This retains
the approximation properties of the polynomial but may
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Figure 2. ExpF Distribution.

be more parsimonious, at least when ¥(:) is close to the
true distribution function. I extend this idea one step fur-
ther and allow ¥ to depend on an unknown parameter 17—
namely, ¥(-|n)—so that my approximating p-value function
is p(z0) = 1 — ¥(cw(16)In).

In my specific applications, I set ¥(:|n) = x2(n), the chi-
squared distribution with 7 df, although other distribution
functions could be selected in appropriate contexts. In sum-
mary, my approximating function is

p(z]8) =1 —x*(6o + b1z + -+ 0,2°|n),  (8)
where
z /2—-1_—y/2
2 _ y" €
) = [ S

is the cumulative chi-squared distribution and 6 = (6o,
917""01”77)'

Why this particular choice? The asymptotic theory of
Section 1 shows that when m, = %, the SupF(mo),
ExpF(m), and AveF(mo) distributions simplify to the x2,
distribution. By continuity, their distributions will be close
to the x2, for mo close to % For other values of 7y, we can
get a sense of the distributions through numerical plots.
Figures 1, 2, and 3 display estimated plots of the density
functions of the SupF'(mo), ExpF(mo), and AveF (7o) distri-
butions, respectively, for m = 1,5, 10, and 20, and several
values of 7. The densities appear to resemble those of the
chi-square but with shifts in location and spread. It there-
fore seems reasonable to use the chi-squared distribution as
our “leading case” distribution.

2.2 Loss Function

Given the function p(z|0) of (8), I need to select 6 to make
p(z|@) as close as possible to the true p-value function p(z).
Because the objects of interest are the p values themselves,
I wish to make the difference |p(z|0) — p(z)| small. This
is equivalent to making |p(Q(q)|6) — ¢| small. In principle,
I want all errors, not just the “average” error, to be small.
The natural metric to measure the statement “all errors are
small” is the uniform metric

doo(6) = max [p(Q(9)6) — gl- ©
The uniform metric is difficult to implement numerically.
A close relative is the L™ norm

I ' 1p(Q@I) — " i "

for r large. (I use 7 = 8 in the work that follows.) Metric
(10) seems inappropriate, however, because it weights all
quantiles equally. It seems reasonable to believe that I am
more concerned with precision in p values when the p values
are small. This desire can be incorporated by including a
weight function in (10):

dr(g) = (10

1/r

1
o) = [ [ wQ@e) ~aru@ar) v
0
where w(q) > 0. Beyond the fact that w(q) should be de-

creasing in g, it is not clear exactly what shape it should
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Figure 3. AveF Distribution.

take. After some experimentation, I settled on the following  The weight function w(q) in (12) has the following features.

choice: It gives highest weight to p values in the region [0, .1] and
zero weight to those in the region [.8, 1.0]. It is continuous
between these points, with a quadratic decay.

1, 0<g<.1 When Q(q) is not analytic, I can replace the continuous

w() = (.8_11)2 l<q<38 (12) region [0, 1] by a discrete set [g1,...,qn] to approximate

7)) = the integral (11). I use the set {.001, .002, ..., 999} in the

0, 8<¢<1.0 work that follows.
Table 1. Absolute Error in Fitted Distributions
SupF distributions ExpF distributions AveF distributions
p value Median error Maximum error Median error Maximum error Median error Maximum error

.00 .0001 .0006 .0001 .0013 .0001 .0009
.01 ~.0004 .0015 .0004 .0017 .0004 .0014
.02 .0005 .0019 .0005 .0021 .0005 0018
.03 .0006 .0023 .0006 .0023 .0006 .0018
04 .0006 .0025 .0006 .0021 .0006 0018
.05 .0006 .0021 .0006 .0019 .0006 .0021
.06 .0006 .0021 0006 .0019 .0005 0021
.07 .0005 0019 .0005 .0020 .0006 .0020
.08 .0005 0019 .0006 .0024 .0005 .0019
.09 .0005 .0018 .0005 .0024 .0005 .0020
.10 .0005 .0018 .0005 .0019 .0005 .0018
15 .0005 .0024 .0005 .0020 .0005 0017
20 .0005 .0020 .0006 .0021 .0005 .0024
25 .0006 .0024 .0006 .0025 .0005 0019
.30 .0005 .0020 .0006 .0027 .0006 .0023
40 .0006 .0024 .0006 .0025 .0006 .0025
.50 .0006 .0030 .0006 .0025 .0006 .0023
.60 .0006 .0027 .0006 .0027 .0006 .0026
.70 .0008 .0024 .0008 .0032 .0008 .0028
.80 .0017 .0058 .0019 .0068 .0015 .0066
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Table 2. SupF Distribution, m > 1
7o = .01 w0 = .05 T = .15 79 = .25 T = .35
m 6o 0y U] o 01 n 0o 0y n 6o 01 n 6o 01 n
1 -1.79 117 4.5 -1.39 1.07 3.6 -.99 1.02 3.0 -.73 .98 25 —.50 .96 21
2 -3.06 1.18 6.1 —-2.38 1.1 54 —~1.65 1.06 4.7 —-1.16 1.02 4.1 -.78 97 35
3 —4.09 1.21 7.8 -3.31 1.10 6.5 —~2.05 1.13 6.8 -1.61 1.03 55 —1.06 1.01 49
4 -5.33 1.21 8.9 —4.08 1.14 8.2 -2.52 1.1 8.0 -1.91 1.04 7.0 —-1.45 .97 5.7
5 -6.39 1.18 9.4 —-4.84 1.15 9.3 ~3.46 1.07 8.3 —2.63 1.02 7.5 -1.82 1.00 7.0
6 —7.08 1.26 11.8 -5.37 1.19 11.2 —4.05 1.08 9.5 —2.94 1.05 9.0 -1.79 1.03 8.6
7 —8.49 117 111 —6.21 1.21 12.6 —4.42 1.10 11.0 -3.23 1.05 10.1 —-2.21 1.01 9.3
8 —9.20 1.17 12.2 —-7.24 1.13 11.9 -5.36 1.08 11.3 -3.65 1.06 114 -1.69 1.10 12.2
9 —10.22 1.14 123 -8.07 1.1 12.4 -5.43 1.10 1341 ~-4.38 1.01 11.3 —-2.83 1.00 111
10 -11.01 1.14 13.3 —8.84 1.1 13.2 —-6.47 1.06 12.8 —-4.97 1.01 12.0 —-2.92 1.05 13.0
1 —11.90 111 134 —9.56 1.06 131 —6.79 1.04 135 —4.62 1.05 14.4 -3.26 1.01 13.4
12 —12.88 1.06 12.8 -10.35 1.09 14.5 -7.80 1.02 13.6 -5.32 1.05 151 -3.91 1.00 13.8
13 —13.88 1.09 141 -11.07 1.07 14.8 ~7.93 1.07 1569 —5.80 1.04 15.8 —4.14 1.00 14.9
14 —14.61 1.15 16.6 —11.52 111 16.8 —8.54 1.05 16.1 -5.90 1.05 17.2 —4.06 1.02 16.5
15 —15.49 1.04 141 —12.44 1.08 16.6 -9.05 1.05 17.2 —6.59 1.04 17.6 -3.10 1.08 20.0
16 —16.34 1.15 17.8 —12.27 1.20 214 -9.13 1.09 19.3 —7.00 1.04 18.5 —~4.79 .99 17.6
17 —-17.20 1.15 18.8 —-13.73 1.15 201 —10.45 1.05 18.3 —-7.23 1.05 19.8 —5.01 1.02 191
18 —18.10 117 20.0 —-14.15 1.14 21.2 —10.63 1.05 19.5 -7.76 1.04 20.2 ~5.11 1.02 20.2
19 -18.19 1.04 17.2 —14.94 .97 16.3 —12.14 .90 149 —-9.84 .89 15.3 —-7.09 91 16.8
20 —18.99 1.02 17.0 —-16.09 .99 17.0 —-12.14 97 18.3 -8.87 1.00 205 —-5.94 1.00 21.3
25 —23.42 1.06 21.0 —19.06 1.06 234 —-14.16 1.05 25.0 —-10.65 1.03 25.7 -6.57 1.02 271
30 —27.30 1.03 225 —22.91 1.04 25.1 -17.06 1.03 27.8 -11.51 1.07 32.8 —6.79 1.05 34.1
35 —30.01 .92 20.0 —-25.88 .97 25.2 —20.09 .98 28.4 —-15.78 97 30.2 —-10.44 .98 33.1
40 —34.24 97 24.8 —29.24 .98 28.0 —21.65 1.05 36.7 ° —14.18 1.07 42.7 -1195 94 35.0

Minimization of d,.(f) yields the parameter value that
best fits the approximation p(z|6) to the true p-value func-
tion p(z). Let the minimum value be denoted by 6*:

6" = Argmingy o d,(9),

the loss-minimizing p-value function by p*(z) = p(z|6*),
and the approximate p values by p}, = p(T,,|6*).

Alternative choices for loss' function (11) and weight
function (12) may be made. For example, Hansen (1992)
and Adda and Gonzalo (1996) set » = 2. This penalizes
large errors less severely than my choice. My choice to set
r high implies that I am concerned about large approxima-
tion errors and am not very willing to trade off a few large
errors in return for many other small errors. I think this
corresponds to my idea that I want a reported p value in
any application to be accurate.

One can also view the fitting of p(Q(q)|6) to g as a re-
gression, a point made in particular by MacKinnon (1994).
Because this regression has nonclassical statistical proper-
ties, MacKinnon (1994) suggested that reweighting be done
to account for heteroscedastic errors. I do not believe this
is appropriate. A correctly specified loss function, such as
(11)«12), incorporates all information necessary for loss-

minimizing curve fitting. I think it is most constructive to
discuss the choice of loss function rather than the statistical
qualities of the regression fit.

2.3 Approximating the Quantile Function

Minimization of the criterion (11) requires the computa-
tion of the true quantile function Q(g), which is unknown.
It may be numerically approximated using analytic tech-
niques. DeLong (1981) provided expansions for the SupF
distribution for m < 4. Anderson and Darling (1952) pro-
vided expansions for the AveF distribution for m = 1 and
mo = 0. It is possible that these techniques could be gen-
eralized to handle my applications. It is not clear, however,
that this is desirable. Such numerical approximations in-
volve considerable analytic effort and in the end still pro-
duce approximations (such as truncated infinite sums).

Another approach is to use analytic methods to approxi-
mate p(z) for large z (i.e., for small p values) as did Kim
and Siegmund (1989). The downside is that this approach
does not necessarily give good estimates for the entire sup-
port of the distribution.

I took the analytically simpler approach of Monte Carlo
simulation. The cost is a relatively heavy use of computer
resources. I approximated the distributions (2), (3), and (4)

Table 3. ExpF m = 1,2,3

m=1 m=2 m=3
o o 0y 02 03 n 6o 21 02 n 0o 0y 02 n
.01 —74 5.23 —-1.16 a7 2.3 —-1.34 3.32 —.14 3.1 —-2.10 3.54 —-.13 4.9
.05 —.61 4.66 -1.01 .16 2.1 —1.07 3.05 - 11 2.9 —1.66 3.29 -1 4.6
.15 —.42 3.75 —.65 10 1.7 -77 2.66 -.07 2.6 —1.16 2.91 —.08 4.2
.25 —-.30 3.33 —-.54 .09 1.5 —-.55 2.32 —.03 2.3 —.67 2.74 —-.07 4.1
.35 —-.19 2.81 —.41 .08 1.2 -.38 2.13 -.02 2.1 —.56 2.08 —.01 3.0
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Table 4. ExpF Distribution, m > 4
mo = .01 7o = .05 mo = .15 w9 = .25 mo = .35
m ) 01 n 6o 04 n 0o 04 n 0o 01 n 6o 01 n
4 —248 2.41 45 —2.05 2.34 4.5 —1.47 2.26 4.4 —1.09 212 4.1 -0.72 2.03 4.0
5 -3.19 2.34 5.2 —2.66 2.29 5.2 —1.95 2.20 5.2 —-149 208 4.9 —0.89 2.05 5.0
6 —3.94 2.20 5.5 -334 217 5.6 —245 213 5.8 —-1.77 2.09 5.9 —1.18 2.00 5.8
7 —4.67 2.23 6.3 -3.88 2.20 6.6 —2.73 2.19 71 —1.90 212 7.1 —1.26 2.05 7.0
8 —5.26 2.20 71 —4.37 219 7.5 —2.91 2.22 8.5 —1.86 2.23 9.0 —.80 2.20 9.3
9 —6.08 217 7.6 -507 220 8.3 —-3.58 220 9.1 —2.58 212 9.0 —1.46 2.10 9.4
10 —6.74 217 8.4 —-556 216 9.0 —4.03 2.1 9.4 —3.08 2.00 9.0 —1.78 2.03 9.8
11 —7.49 2.25 9.6 —6.21 2.23 10.1 —466 215 10.3 —-3.13 2.15 11.1 —1.44 218 12.2
12 —8.19 2.10 9.2 —6.86 2.1 10.0 —5.20 2.07 105 -379 2.0 10.7 —224 200 114
13 —8.89 2.07 9.6 -7.39 2.12 10.9 —5.49 2.04 11.3 —4.16  2.00 11.5 —2.55 2.01 12.3
14 —9.65 2.16 11.0 —7.79 2.25 13.0 —5.56 217 135 —3.68 217 145 —2.15 2.11 146
15 —10.51 2.07 10.6 —8.97 2.13 12.0 —6.66 2.1 13.1 —-527  2.00 12.7 -3.57 1.98 13.3
16 —-11.26 2.00 10.5 —9.63 2.01 11.5 —6.92 2.1 14.2 —4.82 2.13 15.6 —2.48 2.1 16.7
17 —11.89 2.13 125 —10.07 2.1 134 —7.58 2.08 14.4 —5.34 2.09 15.8 —2.53 2.15 18.2
18 —12.57 1.98 115 —10.62 2.00 129 —8.15 1.94 13.5 —-596 2.00 15.5 —4.05 1.96 15.9
19 —-13.17 2.01 12.6 —11.26 1.98 13.2 —8.78 1.93 14.0 —6.51 1.99 16.0 —4.47 1.96 16.5
20 —13.84 2.03 134 —11.91 2.00 141 —8.96 2.02 16.1 —6.43 2.06 18.0 —417 2.01 18.6
25 —17.50 1.97 15.0 —15.05 1.92 15.8 —-12.18 1.88 16.7 —-9.27 1.91 18.9 —6.04 1.97 21.7
30 —20.92 1.90 16.4 —18.16 1.91 18.3 —14.19 1.93 21.0 —-11.25 1.89 21.9 —8.47 1.85 226
35 —23.97 1.80 16.9 —20.86 1.87 20.2 —16.50 1.95 247 —12.00 2.01 28.8 -710 2.07 33.3
40 —27.29 1.84 19.9 —23.96 197 251 —18.64 1.93 27.8 —14.44 1.92 30.2 -5.07 220 438

using a grid on [0, 1] with 1,000 evenly spaced points. This
is equivalent to simulating (5) using a sample of size 1,000.
then constructed the empirical quantile function Q(gq) from
R = 50,000 independent replications. This should be suffi-
ciently precise for my purposes. Indeed, let p(z) = Q1 (z)
be the empirical p-value function. By the central limit theo-
rem, P(|p(z) — p(z)| > .0044) =~ .05. Thus at the 95% con-
fidence level, the maximum simulation error is about .0044.
Most simulation errors, of course, are much less than this
amount.

To summarize, my p-value approximations involve two
separate approximations. First, I estimate the true p values
p(x) by p(x) using simulation. Second, I use a parametric
function p(z|#) to approximate the estimated p values p(z).
These two errors do not necessarily offset one another. To
reduce the total error, I need to make both errors small,
which is possible only by (a) increasing the number of sim-
ulation replications and (b) increasing the order v of the
polynomial «,(z|6).

2.4 Results

I fit p-value functions of the form (8) to the SupF(wy),
ExpF (7o), and AveF(mo) distributions for m = 1,2,...,40
and 7y = .01,.03,.05,...,.49. There are thus 3,000 distinct
distributions. For each distribution, I selected the polyno-
mial order v to get a good yet parsimonious fit. For the
SupF distributions, I found that v = 1 was sufficient for

all m. For the ExpF distributions, v = 3 was necessary for
m=1,v =2 was needed for m=2and m=3,andv =1
was sufficient for m > 4. For the AveF distributions, v = 3
was used for m = 1,v = 2 for m = 2, and v = 1 for m > 3.

For any distribution, the absolute error from my paramet-
ric approximation is d(z) = |p(z|0) — p(z)|. Table 1 reports
a summary of the errors for 20 p values of interest. The
column “Median error” reports the median of the absolute
errors across the 1,000 distributions for each test (SupF,
ExpF, and AveF). The column “Maximum error” reports
the maximum absolute error across all 1,000 distributions.
It appears that the errors are quite small. For example, we
see that for the 1% p value the distributions err at most by
.0017, with a median error of only .0004. Interestingly, the
numerical approximations are almost as precise for large p
values. For example, at the 50% p value, the SupF distri-
bution has a maximal error of .0030 and a median of .0006.
The accuracy of these approximations is much better than
necessary for empirical applications.

Despite the parsimony of the fitted models, I still have
over 9,000 coefficients to report, which is too many to print
in this article. The complete estimates are available in a
GAUSS program. I report here the coefficients for 7y =
.01,.05,.15,.25,.35, and for m = 1,2, .. ., 20, 25, 30, 35, and
40. Table 2 reports the coefficients for the SupF distribu-
tions. Tables 3 and 4 report those for the ExpF distributions,
and Tables 5 and 6 for the AveF distributions.

Table 5. AveF Distribution, m = 1, 2

m=1 m=2
o 6o 01 02 02 n 2 91 02 n
.01 —-1.02 5.39 —.95 11 3.2 —-1.78 3.12 —-.10 4.0
.05 —74 4.95 —.84 .09 3.2 —1.42 2.80 —.08 3.8
.15 —.47 3.63 —.51 .05 25 —.94 2.21 —.05 3.2
.25 -.35 2.56 -.30 .03 1.8 —.62 1.70 —.02 2.7
.35 —.22 1.79 —.16 .02 1.3 —.41 1.21 -.00 2.0
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Table 6. AveF Distribution, m > 3
7o = .01 7o = .05 o = .15 T = .25 7o = .35
m 6o 601 n 6o 64 n 0o 2] n 0o 6y n 6o 64 n
3 —2.41 2.24 4.3 —2.03 2.06 4.2 —1.41 1.70 3.7 —1.01 1.40 3.2 —.59 1.22 3.1
4 —3.28 2.20 5.5 —276  2.02 5.3 —1.94 1.68 4.8 -1.29 1.45 45 —-.72 1.26 4.3
5 —-3.91 2.24 7.3 —-3.27 2.07 7.1 —2.23 1.72 6.4 —1.59 1.44 5.6 —.89 1.24 5.3
6 —4.85 2.26 8.7 —4.09 2.07 8.4 —2.87 1.71 7.4 —1.86 1.48 70 —-1.05 1.28 6.6
7 —5.30 2.21 10.2 —445 202 9.7 —-3.24 1.63 8.2 —2.41 1.34 7.0 —1.50 1.17 6.7
8 —6.24 217 111 —-5.27 1.99 10.7 —-3.84 1.60 9.0 —2.95 1.32 7.6 —1.84 1.16 75
9 —7.39 2.07 11.3 —6.17 1.94 11.3 —4.34 1.62 10.2 —2.80 1.41 9.9 —-1.77 1.21 9.1
10 —7.88 2.1 13.3 —6.65 1.94 12.8 —4.65 1.61 115 -3.20 1.38 10.6 —-1.77 1.22 104
11 -845 217 15.5 -7.25 1.98 14.6 —4.74 1.70 14.0 -3.72 1.39 11.6 —2.37 1.21 10.9
12 —9.41 2.15 16.4 —7.94 1.98 15.9 —5.48 1.66 14.4 —3.45 1.45 14.0 —1.44 1.31 14.2
13 —10.43 2.16 17.7 —8.93 1.97 16.7 —6.38 1.63 14.8 —4.47 1.40 13.7 —2.69 1.22 13.2
14 —-11.32 2,02 17.0 —9.89 1.82 15.6 —6.90 1.58 15.2 —4.35 1.43 15.6 -3.18 1.17 13.3
15 —12.01 217 204 —10.36 1.97 19.1 —-7.19 1.67 17.9 —-5.21 1.42 16.1 —2.98 1.26 15.9
16 —10.48 2.47 289 —8.66 225 273 —5.34 1.87 24.5 —-3.24 1.57 21.8 —1.88 1.31 19.1
17 —12.92 2.22 24.9 —10.95 2.03 23.5 —7.44 1.71 21.5 —4.39 1.52 21.3 —1.75 1.34 21.0
18 —13.31 2.25 271 —10.94 2.09 26.6 —8.82 1.58 19.6 —5.92 1.39 19.1 —-3.52 1.21 18.3
19 —13.02 236 31.9 —-10.53 217 308 —8.30 1.68 23.6 —5.69 1.43 215 —4.37 1.17 17.9
20 —14.41 2.23 30.1 —12.65 1.97 26.8 —9.69 1.54 21.2 —6.95 1.33 19.6 —-5.05 1.13 176
25 —19.33 2.10 33.2 —16.14 195 326 —-11.79 1.60 28.1 —9.03 1.33 241 —5.88 117 233
30 —24.32 2.11 39.1 —19.98 2.01 404 —14.53 1.64 34.7 —10.24 1.39 315 —2.41 1.36 38.4
35 —26.94 2.19 49.8 —22.85 2.01 47.3 —16.38 1.66 41.6 —8.60 1.55 45.4 —4.38 1.33 42.0
40 —31.58 2.04 50.0 —27.55 183 458 —19.54 157 430 —12.15 142 445 —3.76 1.33 49.5

3. EMPIRICAL ILLUSTRATION

To illustrate the usefulness of these p-value approxima-
tions, I report two simple applications using autoregressive
(AR) models. The first application is an AR(6) fit to the
growth rate (log-difference) of U.S. monthly total personal
income for the period 1946.1-1995.7, extracted from the
Citibase file GMPY. The second is an AR(12) fit to the first-
difference of the monthly three-month U.S. treasury-bill (T-
bill) rate for the period 1947.1-1995.7, extracted from the
Citibase file FYMG3. The results are reported in Table 7.
I report the numerical value of the Sup LM, Exp LM, and
Ave LM versions of the tests for constancy of all regression
coefficients, setting m; = .15 and 7 = .85 (so mp = .15). I
also report the asymptotic 10%, 5%, and 1% critical values
from Andrews (1993) and Andrews and Ploberger (1994).
Finally, I report the approximate asymptotic p values.

To compute the p values, I use Formula (8) and the co-
efficients from Tables 2-6 for 7y = .15. For example, take
the Sup LM statistic for personal income. From Table 2,
I find that, for m = 7 (the number of parameters in the
regression) and mp = .15,6p = —4.42,6; = 1.10, and
n = 11.0. Thus, I take the test value of 12.5, make the
computation —4.42 + 12.5 % 1.10 = 9.33, and use the chi-

squared distribution with » = 11.0 df evaluated at 9.33 to
obtain the p value of .59. Or consider the Ave LM statistic
for the T-bill rate. From Table 6, I find that for m = 14
and mp = .15 that 6, = —6.38,6; = 1.63 and n = 14.8.
So my approximate p value for the test value of 18.4 is
1—x2(—6.38 + 1.63 * 18.4/14.8) = .07.

A reading of the table shows that the p values yield much
more information than simply the critical values. Take, for
example, the SupLM test applied to the T-bill series. The
test statistic of 25.0 appears to be quite “close” to the 10%
critical value of 29.1, so on the basis of the critical values
alone a researcher might conclude that the test is “close” to
significant. But the asymptotic p value turns out to be only
.27. Similarly, the ExpLM statistic is 10.2, which appears
close to the 10% critical value of 11.1, yet has a p value of
only .18. In summary, the p values are relatively simple to
calculate, given the tables provided, yet they enable a re-
searcher to come to more informed conclusions than would
be possible simply on the basis of the asymptotic critical
values.
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Exp LM 4.6 6.7 7.7 9.5 41 10.2 111 12.3 14.6 18
Ave LM 74 10.3 115 143 .37 18.4 17.2 18.8 225 .07
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