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The study of seasonal fluctuations has a long history in
the analysis of economic time series. Traditionally, seasonal
fluctuations have been considered a nuisance that obscures,
the more important components of the series [presumably the
growth and cyclical components; e.g., see Burns and Mitchell
(1946)], and seasonal adjustment procedures have been de-
vised and implemented to eliminate seasonality (Shiskin,
Young, and Musgrave 1967). This view dominated applied
time series econometrics until quite recently. In the past few
years a new viewpoint has emerged. Seasonal fluctuations
are not necessarily a nuisance, but they are an integral part of
economic data and should not be ignored or obscured in the
analysis of economic models. Contributors to this view in-
clude Ghysels (1988), Barsky and Miron (1989), Braun and
Evans (1990), Chattarjee and Ravikumar (1992), and Hansen
and Sargent (1993).

Many reasonable time series models of seasonality are
conceivable. One approach is to model seasonality as de-
terministic, as did Barsky and Miron (1989), or as periodic
with unchanged periodicity, as done by Hansen and Sargent
(1993). A second approach is to model seasonality as the sum
of a deterministic process and a stationary stochastic process
(Canova 1992). A third approach is to model seasonal pat-
terns as nonstationary by allowing for (or imposing) seasonal
unit roots (Box and Jenkins 1976).

It is hard to know a priori which approach yields the best
statistical description of the data. The assumption of sta-
ble seasonal patterns seems reasonable when one considers
that Christmas has been in December for as many years as
we can remember and that this period is historically the ma-
jor retail season. On the other hand, selected series have
shown monumental changes in the seasonal patterns, in which
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even the location of seasonal peaks and troughs has changed.
Examples include the energy consumption series examined
by Engle, Granger, and Hallman (1989), the Japanese con-
sumption and income series examined by Engle, Granger,
Hylleberg, and Lee (1993), the industrial production series
examined by Canova (1993), and some of the gross domes-
tic product series ahalyzed by Hylleberg, Jorgensen, and
Sorensen (1993). Although there certainly are examples of
such large changes in seasonal patterns, one might conjecture
that they are relatively rare events and isolated to just a few
of the many aggregate macroeconomic series.

It is unsatisfactory to rely on hunchies, intuition, stylized
facts, and/or ad hoc statistical techniques to determine which
statistical model makes the best fit. We need simple statisti-
cal techniques that can discriminate between various forms
of seasonality. One such testing framework was introduced
by Dickey, Hasza, and Fuller (DHF) (1984) and Hylleberg,
Engle, Granger, and Yoo (HEGY) (1990), who generalized
the unit-root testing methodology of Dickey and Fuller (1979)
to the seasonal case. They took the null hypothesis of a unit
root at one or more seasonal frequencies and tested for evi-
dence of stationarity. Rejection of their null hypothesis im-
plies the strong result that the series has a stationary seasonal
pattern. Due to the low power of the tests in moderate sample
sizes, however, nonrejection of the null hypothesis unfortu-
nately cannot be interpreted as evidence “for” the presence
of a seasonal unit root.

A useful complement to the preceding testing methodol-
ogy would be tests that take the null hypothesis to be sta-
tionary seasonality and the alternative to be nonstationary
seasonality. In this context, rejection of the null hypothe-
sis would imply the strong result that the data are indeed
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nonstationary, a conclusion that the DHF or HEGY tests can-
not yield. Viewed jointly with these tests, such a procedure
would allow researchers a more thorough analysis of their
data. A family of such tests is introduced and studied in this
article. Even though our null is stationary seasonality, we will
for simplicity refer to our tests as seasonal unit-root tests.

The idea is perfectly analogous to that of testing the null
of stationarity against the alternative of a unit root at the
zero frequency. A Lagrange multiplier (LM) statistic for this
null and alternative was recently proposed by Kwiatkowski,
Phillips, Schmidt, and Shin (KPSS) (1992). The KPSS test
is analogous to the tests of Tanaka (1990) and Saikkonen
and Luukkonen (1993), who examined the null hypothesis
of a moving average (MA) unit root. In the same sense that
HEGY generalized the Dickey—Fuller framework from the
zero frequency to the seasonal frequencies, we generalize
the KPSS framework from the zero frequency to the seasonal
frequencies.

Another set of tests, which may appeal to applied macro-
economists, is to examine whether or not seasonal patterns
can be accurately represented with a set of deterministic func-
tions of time. Within our framework, we can also intro-
duce tests of the proposition that the seasonal intercepts are
constant over time. Under the null hypothesis of stationarity,
seasonal intercepts represent the deterministic component of
seasonality and are assumed to remain constant over the sam-
ple. In this case our tests apply the methodology of Nyblom
(1989) and Hansen (1990), who designed LM tests for param-
eter instability. Interestingly, the LM test for joint instability
of the seasonal intercepts is numerically identical to the LM
test for unit roots at all seasonal frequencies. Thus the test we
describe can be viewed as either a test for seasonal unit roots
or for instability in the seasonal pattern, and both views are
equally correct.

Our test statistics are precisely LM tests in models with
iid Gaussian errors. Because this is not a reasonable assump-
tion for time series applications, we show how to modify the
test statistics (by using robust covariance matrix estimates)
so that the tests can be applied to a wide class of data, in-
cluding heteroscedastic and serially correlated processes. We
only require relatively weak mixing conditions on the data.
It is important to note that we exclude from the regression
any trending regressors, such as a unit-root process or a de-
terministic trend. This is not simply for technical reasons
because it is possible to show that the asymptotic distribution
is not invariant to such variables. We also require that our
dependent variable be free of trends. Thus, we are presuming
that the data have already been appropriately transformed to
eliminate unit roots at the zero frequency.

The test statistics are derived from the LM principle, which
requires only estimation of the model under the null, so least
squares techniques are all that is needed. The statistics are
fairly simple functions of the residuals. The large-sample dis-
tributions are nonstandard but are free from nuisance parame-
ters and only depend on one “degrees-of-freedom” parameter.

To study both the power and the size of the proposed tests,
we conducted a Monte Carlo exercise, and we compared their

performance with two other standard types of tests, a test for
the presence of stochastic (stationary) seasonality and the
HEGY tests for unit roots at seasonal frequencies. We show
that our tests have reasonable size and power properties.

We apply the tests to the data set originally examined by
Barsky and Miron (1989). We are interested in establishing
if their maintained hypothesis that quarterly seasonal fluc-
tuations in U.S. macrovariables are well approximated by
deterministic patterns is appropriate or not. The second data
set used is the set of quarterly industrial production indexes
for eight industrialized countries used by Canova (1993). The
third is a data set on stock returns on value-weighted indexes
for seven industrialized countries. This last data set deserves
special attention because “January effects” and other abnor-
mal periodic patterns in stock returns have been repeatedly
documented and known for a long time [see Thaler (1987)
for a survey of these anomalies]. It is therefore of inter-
est to examine whether the knowledge of these patterns has
changed their properties or; in other words, if information
about the existence of periodic patterns has led to structural
changes due to profit-taking activities. We show that for
20 of the 25 series examined by Barsky and Miron the as-
sumption of unchanged seasonality is problematic and that,
in some cases, the economic significance of these changes is
substantial. Similarly the seasonal patterns of the European
industrial production indexes display important instabilities.
On the other hand, we find that the seasonal pattern of stock
returns has substantially changed only in Japan and in the
United Kingdom.

The rest of the article is organized as follows. Section 1
describes the regression model. Two methods to model the de-
terministic component of seasonality are discussed. Section2
derives LM tests for unit roots at seasonal frequencies and
develops an asymptotic theory of inference for the tests.
Section 3 presents LM tests for instability in the seasonal
intercepts. Section 4 presents a Monte Carlo exercise. Three
applications to economic data appear in Section 5. Conclu-
sions are summarized in Section 6.

1. REGRESSION MODELS WITH
STATIONARY SEASONALITY

1.1 Regression Equation

We start from a linear time series model with stationary
seasonality:

Yi=p+xf+S +e, i=1,2,...,n. )

In (1), y; isreal valued, x; is a k x 1 vector of explanatory vari-
ables, S; is a real-valued deterministic seasonal component
of period s, where s is a positive even integer, to be discussed
in Subsection 1.2, and e; ~ (0,0?) is an error uncorrelated
with x; and S;. The number of observations is 7. If there are
exactly T years of data, then n = Ts.

To distinguish between nonstationarity at a seasonal fre-
quency and at the zero frequency, we must require that the
dependent variable y; not have a unit root at the zero fre-
quency (or any other form of nonstationarity in the overall
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mean). This does not restrict the set of possible applications
of the tests because it is widely believed that most macro-
economic time series are stationary at the zero frequency after
suitable transformations, such as taking the first-difference of
the natural logarithm. For some series, such as the price level,
double-differencing may be necessary to eliminate the zero
frequency unitroot. In either case, the deterministic seasonal
component S; of the differenced series y; can be related to
the seasonal component of the original undifferenced series
through a result of Pierce (1978, theorem 1).

The regressors x; may be any nontrending variables that
satisfy standard weak dependence conditions. To identify
the regression parameters (3, we exclude from x; any variables
that are collinear with S;. In many cases, no x; will be included.
One suggestion we discuss in Section 1.3 is to use the first
lag of the dependent variable, x; = y;_,.

When there are no regressors x;, the error e; represents
the deviation y; from its seasonal mean. Thus, ¢; includes
all of the random variation in the dependent variable, will
be serially correlated, and may include fluctuations that are
seasonal in nature. Because we have no desire to exclude a
priori stationary stochastic seasonal patterns under the null
hypothesis, our distributional theory is derived under mild
mixing-type conditions for the error term e; that allow for
general forms of stochastic behavior, including stationary
(and mildly heteroscedastic) stochastic seasonality.

1.2 Modeling Deterministic Seasonal Patterns

A common specification for the deterministic seasonal
component in (1) is
S, =da, @

where d; is an s x 1 vector of seasonal dummy indicators and
ais an s x 1 parameter vector (e.g., s = 4 for quarterly data
and s = 12 for monthly data). Combined with (1), we obtain
the regression model

yi=xf+da+e, i=12,...,n, 3)

where we have dropped the intercept p from the model to
achieve identification. The advantage of this formulation is
that the coefficients « represent seasonal effects. Plotting
recursive estimates of the subcoefficients o, against time is
often used to reveal the structure of seasonal patterns (Franses
1994).

A mathematically equivalent formulation is obtained using
the trigonometric representation

q
Si= Y fi “
=l

where g = 5/2, and for j < g, fj = (cos((j/q)mi),sin((j/q)
i)), while for j = g, f; = cos(mi) = (—1), where the latter
holds because sin(i) is identically O for all integer i. Stacking
the g elements of (4) in a vector, we have S; = f/y, where

=1 |, £f=| |- 5)
Yq Jai

Note that both -y and f; have s — 1 elements. Inserting in (1),
we have the regression equation

Vi=pu+xB+ fly+e, i=1,2,...,n 6)

Note that f; is a mean zero process because for any n that
is an integer power of 5, ) f; = 0. It is also a full-rank
process (by the properties of trigonometric series) so that if
we define the s X (s — 1) matrix

fl'
R 1= . y
fl

then f; = R\d;. Because 1 = ¢'d;, where ¢ is an (s x 1) vector
of ones, we have (f/ 1Y = R'd;, where R = [R, (). Thus, (3)
and (6) are equivalent, and (') = R 'a.

The formulation (6) is useful because it allows seasonality
to be interpreted as cyclical. By construction, the elements of
Jf: are cyclical processes at the seasonal frequencies: (j/g),
j=1,...,q,and the coefficients ; represent the contribution
of each cycle to the seasonal process S;. The dummy formu-
lation (2) is primarily employed in applied macroeconomics
(Barsky and Miron 1989), but the trigonometric represen-
tation (4) is common in the time series literature (e.g., see
Granger and Newbold 1986, p. 36, Hannan 1970, p. 174;
Harvey 1990, p. 42).

1.3 Lagged Dependent Variables

The distribution theory we present in Sections 2 and 3 will
not be affected if the regressors x; include lagged dependent
variables. But if lagged variables capture one or more sea-
sonal unit roots, the tests we present may have no power.
Essentially, what must be excluded are lags of the dependent
variable that capture seasonal unit roots. This may be easier
to see if we take (1), where the x; are exclusively lags of the
dependent variable:

yi=p+B0yi-1 +Si+e;, Q)

with () = By + -+ + B:£~'. When { = 1 and B, # —1, the
autoregressive polynomial 3(£) will not be able to extract a
seasonal pattern from y;. Butif ¢ > 2, 8(£) may absorb some
of the seasonal roots. Thus, testing for a seasonal unit root
in S; will be useless.

This discussion should not be interpreted as suggesting that
all lagged dependent variables should be excluded from x;.
Indeed, exclusion of lagged dependent variables means that
the error ¢; will be serially correlated in most applications.
Because the inclusion of a single lag of the dependent variable
in x; will reduce this serial correlation (we can think of this as
a form of pre-whitening), yet not pose a danger of extracting
a seasonal root, we recommend that x; contain y;_,. The fact
that the e; may be serially correlated will be accounted for at
the stage of inference.

1.4 Estimation and Covariance Matrices

Both (3) and (6) are valid regression equations and can
be consistently estimated (under standard regularity condi-
tions) by ordinary least squares (OLS). Let the estimates
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from (3) be denoted (ﬁ, @) and the estimates from (6) be
denoted (i, 3,7). Due to the equivalence in parameteriza-
tion, the estimates of 3 and the regression residuals €; in the
two equations are identical.

Our tests will require a consistent estimate of €, the long-
run covariance matrix of de;:

= lim —E(D D)), D, = Zdieia

where Q depends on the stochastic structure of the error.
When e¢; is serially uncorrelated and seasonally homoscedas-
tic, then

a=1 id-de(ez) -7
n p i i s s

(since (1 /M), did! = I /s), which can be estimated by
Q = (6%/s)I,. When ¢; is uncorrelated but poss1bly seasonally
heteroscedastic, then Q = diag{c/s,...,02/s}, where o7
is the variance of e; for the jth season. In many cases of
interest, however, ¢; is likely to be serially correlated so that
we need an estimate of © that is robust to serial correlation
as well. Following Newey and West (1987), we suggest a
kernel estimate of the form

0= Z ( ) Zd.*e,ud Y @®)

k=—m

where w(-) is any kernel function that produces positive
semidefinite covariance matrix estimates, such as the Bartlett,
Parzen, or quadratic spectral. It is desirable to select the
bandwidth number m sufficiently large to be able to capture
the serial correlation properties of the data. Andrews (1991)
proposed methods for minimum mean squared error estima-
tion of such variances, and Hansen (1992a) gave sufficient
conditions for consistent estimation. Here we assume that
m — 0o as n — oo such that m*/n = O(1) as recommended
by Andrews (1991) for the efficient Parzen and quadratic
spectral kernels.

" We will also require an estimate of the long-run covariance
matrix of fie;:

F,= z":ﬁe;.
i=1

Since f; = R\ d;, we see that F, = R|D,, and thus Q' = R{QR,.
Hence a consistent estimate is given by

Qf = lim %E(F,,F,’,),

m

~ ~ k\1 -~
Q' =R|OR, = z W(;) n Zﬁuemﬂa’- &)

k=—m

2. TESTING FOR SEASONAL UNIT ROOTS
2.1 The Testing Problem

Our goal here is to develop tests of the hypothesis that (6)
is valid against the alternative that there is a seasonal unit root
in S;. To do so rigorously, we have to write down a specific
alternative hypothesis. Hannan (1970, p. 174) suggested that
one reasonable model for changing seasonal patterns can be
obtained by allowing the coefficients y to vary over time as

a random walk, in which case (6) is
Yi=p+xB+fiv+e (10)
with
Vi = Vi1 + Ui, (11)

v fixed, and ; iid. If the covariance matrix of u; is full
ranked, then Models (10)—(11) imply that y; has unit roots at
each seasonal frequency. His model reduces to the station-
ary seasonal model (6) when the covariance matrix of u; is
identically 0.

We would like to generalize Hannan’s model to allow for
unit roots potentially at only a subset of the seasonal frequen-
cies. This is equivalent to allowing only a subset of the vector
4; to be time varying. We can do so by defining a full-rank
(s — 1) x a matrix A that selects the a elements of -; that we
wish to test for nonstationarity. For example, to test whether
the entire vector vy is stable, set A = /;_,, and to test for a unit
root only at frequency j/gm, set A = (0 I ( 0)’ (commensurate
with ;) and for frequency , set A = (0 1)’. Then modify
(11) as

A=Ay +u. 12)

‘We assume that, for some increasing sequence of sigma fields
Fi, {u;, F:} is an a x 1 martingale difference sequence (MDS)
with covariance matrix E(u;u}) = 7°G, where G = (A'QfA)™!
is a full-rank a x a matrix and 72 > 0 is real valued. When
72 = 0, the parameter +; = 7, and the model has no seasonal
unit roots. When 72 > 0, y; has a unit root at the seasonal
frequencies determined by A.

Our model specification is closely related to the trigono-
metric seasonal model of Harvey [1990, eq. (2.3.49)]. For
quarterly data (s = 4) Harvey specified S; = Sy; + S, where
1+ Sy = €ui, (1 + 0)Sy; = &y, and &; and &y are mutually
independent. Hence his model also produced unitroots at the
seasonal frequencies but imposed a somewhat different set of
correlations across seasonal fluctuations. Bell (1993) showed
that the models of Hannan and Harvey generate equivalent
structures for the seasonal components.

2.2 The Hypothesis Test

When 72 = 0, S; is purely deterministic and stationary in the
models (10)-(12). This suggests considering the hypothesis
test of Hy: 72 = 0 against H,: 72 > 0. Nyblom (1989) showed
that this testing problem is particularly easy to implementin a
correctly specified probability model using maximum likeli-
hood estimation. Hansen (1990) extended Nyblom’s analysis
to general econometric estimators, and Hansen (1992b) de-
veloped their specific form for linear regression models. Be-
cause (6) is linear, these techniques are directly applicable.

Following these articles, a good test for H, versus H, takes
the form of rejecting H, for large values of

1 r -~ _~ o~
L=~ > FAA&A)AF,
i=1

1 (st o=
=t ((A a’a)7'A ZF,-F{A), (13)

i=1



Canova and Hansen: Are Seasonal Patterns Constant Over Time? 241

where F, = E::l 2., ¢, are the OLS residuals from (6), & is
defined in (9), and tr(Q) stands for the trace of Q. When ¢;
are iid normal and the x; are strictly exogenous, L is the LM
test for H, against H,. When these assumptions are relaxed,
L can be interpreted as an “LM-like” test derived from the
generalized least squares criterion function or as an asymp-
totic equivalent of the true LM test. In addition, when ¢; is
directly observed (rather than a residual), L is an asymptotic
approximation to the locally most powerful test for H, ver-
sus H,, suggesting that L should have good power for local
departures from the null of no seasonal unit roots.

To be precise, (13) is the LM statistic for H, against
H; under the assumption that G = (A’YA)~! [recall that
E(uu}) = 7*G, where y; is the error in (12)]. This choice for
G may seem arbitrary, but it is guided by the fact that only
this choice produces an asymptotic distribution for L that is
free of nuisance parameters and hence allows the tabulation
of critical values for use in applications. This technique is
not without precedent. Indeed, the same criterion is used to
construct the standard Wald test. It may be helpful to digress
briefly on this point. The general form of the Wald test for
the hypothesis y = 0 against v # 0 is W = 4'G7. The matrix
G determines the direction of the hypothesis test. Indeed, for
any G the power of the Wald test W against an alternative
is determined by the noncentrality parameter v’ G+, and thus
the power is maximized against alternatives v, which are pro-
portional to the eigenvector of G corresponding to its largest
eigenvalue. Hence G could (in principle) be selected to max-
imize power against particular directions of interest. This is
never done in practice. Instead, we set G = V", where Visa
consistent estimate of the asymptotic covariance matrix of 5.
This is not because the eigenvector of V~' corresponding
to its largest eigenvalue is a particularly interesting direc-
tion for the alternative -y but because it is the unique choice,
which yields an asymptotic distribution for W free of nui-
sance parameters. The same reasoning applies to our L tests.
Although better power against particular alternatives could in
principle be obtained by selecting an appropriate matrix G,
this would result in a test with unknown asymptotic size and
would hence be useless in practice.

The large-sample distribution of L was studied by Nyblom
(1989) and Hansen (1990, 1992b). To simplify the presenta-
tion, we introduce the following notation. Let —, denote
convergence in distribution, W, denote a vector standard
Brownian bridge of dimension p, and let VM(p) denote a
random variable obtained by the transformation

1
VM(p) = / W, W, (dr. (14)
0

When p = 1, the distribution of VM(p) simplifies to that
known as the Von Mises goodness-of-fit distribution widely
used in the statistical literature (e.g., see Anderson and
Darling 1952), so we will refer to VM( p) as the generalized
Von Mises distribution with p degrees of freedom. Critical
values are given in Table 1.

Theorem 1. Under Hy, L —; VM(a).

Table 1. Critical Values for VM(p)

Significance level
p 1% 2.5% 5% 7.5% 10% 20%
1 .748 .593 470 .398 .353 243
2 1.070 .898 .749 670 610 469
3 1.350 1.160 1.010 913 .846 679
4 1.600 1.390 1.240 1.140 1.070 .883
5 1.880 1.630 1.470 1.360 1.280 1.080
6 2.120 1.890 1.680 1.580 1.490 1.280
7 2.350 2.100 1.900 1.780 1.690 1.460
8 2.590 2.330 2.110 1.990 1.890 1.660
9 2.820 2.550 2.320 2.190 2.100 1.850

10 3.050 2.760 2.540 2.400 2.290 2.030
1 3.270 2.990 2.750 2.600 2.490 2.220
12 3.510 3.180 2.960 2.810 2.690 2410

Source: Hansen (1990), table 1.

Proof. 'The proof is omitted and available onrequest from
the authors.

Theorem 1 shows that the large-sample distribution of the
L statistic does not depend on any nuisance parameters other
than a (the rank of A), which refers to the number of elements
of «y that are being tested for constancy.

2.3 Joint Test for Unit Roots at All Seasonal
Frequencies

If the alternative of interest is seasonal nonstationarity, then
we should simultaneously test for unit roots at all seasonal
frequencies. This can be accomplished by using Statistic (13)
with A = I,_,. This yields the statistic

| RN
L=—> F@)'F
i=1

1 [ - "
= ;u((nf)-‘E :F,»F,f). 15)
i=1

The subscript f on L indicates that the test is for non-
stationarity at all seasonal frequencies.

‘We would like to emphasize that, although the form of the
statistic L, is nonstandard, it is quite simple to calculate. It
only requires estimation under the null hypothesis of station-
ary seasonality, and it is calculated directly from the OLS
residuals and the trigonometric coefficients f;.

The large-sample distribution of L; follows directly from
Theorem 1.

Theorem 2. Under Hy, Ly —, VM(s — 1).

Theorem 2 indicates that the large-sample distribution of
the test for unit roots at all seasonal frequencies is given by the
generalized Von Mises distribution with s — 1 df. This result
shows that not only is the test statistic L, easy to calculate but
that its large-sample distribution theory takes a simple form.
For quarterly data, the appropriate critical values are found
in Table 1 using the row corresponding top = s — 1 = 3. For
monthly data, the appropriate critical values are found using
the row correspondingtop =s — 1 = 11.



242 Journal of Business & Economic Statistics, July 1995

2.4 Tests for Unit Roots at Specific Seasonal
Frequencies

Writing (6) to emphasize the seasonal components at in-
dividual seasonal frequencies, we have

q
Y= p+XB+Y _fiy+en

j=1
Recall that the jth coefficient 4; corresponds to the seasonal
cycle for the frequency (j/q)w. Testing for a seasonal unit
root at frequency (j/q)m therefore reduces to testing for a
unit root in +;. This corresponds to the hypothesis test Hy
versus s Hy, where the A matrix has the block diagonal form
=(0 L0y forj<gqgandA = ©1y for j = g, where the
ls correspond to the subvector 7;. Letting Qf denote the jth
block diagonal element of of (commensurate with 7), we

find that the test statistic L reduces to

LS B@)'F a7

Lo =
(j/q) n? £
i=1

i=12,...,n. (16)

forj=1,...,q, where F; = Y\ fé, is the subvector of F;
partitioned conformably with .

Again, we would like to emphasize the convenience of the
statistics Lxj/,. They can be computed as by-products of
the calculation of the joint test Ly because L/, only make
use of subcomponents of the vector F; and of the matrix O/
Their asymptotic distributions are readily obtained:

Theorem 3. Under H,,

1. Forj <gq, Lgj,—a VM(2).
2. L, —; VM(1).

Theorem 3 states that the large-sample distributions of the
tests for seasonal unit roots are given by the generalized Von
Mises distribution with 2 df for frequencies different than 7
and with 1 df for frequency w. This stems from the dimen-
sionality of the subvectors ~; in the two cases. For quarterly
data, the two seasonal frequencies are at /2 (annual) and 7
(biannual).

The L, tests are useful complements to the joint test Ly.
If the joint test rejects, it could be due to unit roots at any of
the seasonal frequencies. The L./, tests are specifically de-
signed to detect at which particular seasonal frequency non-
stationarity emerges.

3. TESTING FOR NONCONSTANT SEASONAL
PATTERNS

3.1 The Testing Problem

The tests for seasonal unit roots proposed in Section 2 were
derived from the trigonometric seasonal model (6). To study
whether the seasonal intercepts o have changed over time,
we return to the more conventional seasonal dummy model

(3), which we modify as
yi=xB+do;+e, i=1,2,...,n. (18)

There are many forms of potential nonstationarity for a; that
could be considered. Here we consider stochastic variation

of a martingale form:
Ala,' = A'ai_l +u;, (19)

where a is fixed and {u;, 7;} is an MDS with covariance
matrix E(u;u!) = 72G. The s X a matrix A selects the elements
of o that we allow to stochastically vary under the alternative
hypothesis. Note that when 7 = O the coefficient vector is
fixed at ay for the entire sample.

This specification of coefficient variation is quite general.
One special case is the Gaussian random walk, under which
the seasonal intercepts o; slowly (but continuously) evolve
over time. Another interesting case discussed by Nyblom
(1989) is when the martingale differences »; come from an
“infrequent innovation” process. Let u; = §,v;, where v; is iid
N(0, 1) and §; is a discrete random variable equaling 1 with
probability 1 and 0 with probability 1 — 9 (and v; and §; are
independent). For v sufficiently small, the martingale o; will
be constant for most observations but will exhibit infrequent
and unpredictable “structural breaks.” If desired, (19) can be
generalized to a random array o,;, which can have exactly
one “structural break” of unknown timing (in all or a subset
of the seasonal intercepts a,;) in a given sample.

As in Section 2.2, the LM test for Hy : 7 = 0 against
H, : 7 # 0 s given by the statistic [setting G = (A’QA4)~"]

| R
L= FZD;A(A'QA) IA'D,

=1

1 T AV-147 - N
= tr {(A QA4)'a’) DDA|, (20)

=1

where D, = 3.1 diéi, tr(Q) is the trace of Q, and Q is defined

in (8).

3.2 Testing for Instability in an Individual Season

Testing the stability of the ath seasonal intercept (where
1 < a < s) can be achieved by choosing A to be the unit
vector with a 1 in the ath element and zeros elsewhere. This
produces the test statistic

Z D2, @1)

where D, is the ath element of D,, and £, s the ath diagonal
element of Q.

aanz

Theorem 4. Under Hy, L, —,; VM(1) for each a =
1,...,s.

Theorem 4 shows that the asymptotic distribution of the
test for instability in an individual seasonal intercept is given
by the generalized Von Mises distribution with 1 df, for which
critical values are given in the first row of Table 1.

To calculate these test statistics, note that, because the ath
dummy variable is 0 for all but one out of every s observations,
the cumulative sum D,,, is only a function of the residuals from
the ath season. Thus the test statistic L, can be calculated
using only the residuals from the ath season. To see this,
letj = 1,...,T, denote the annual observations for the ath
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season, and lete;, j = 1,..., T}, denote the OLS residuals for
this season. Then

1 T j _ 2
La=ﬁ2(§e,) : (22)

J=1

where 62 =) w(k/m)1/T\ Y ese;.

Hence the statistics L, are essentially the KPSS statistic
applied to the seasonal subseries (only the observations from
the ath season are used). Thus, the KPSS test is for instability
in the average level of the series, but the L, tests are for
instability in the seasonal subseries.

3.3 Joint Test for Instability in the Seasonal
Intercepts

Just as we computed a joint test for unit roots at all the
seasonal frequencies, we can construct joint tests for insta-
bility in all the seasonal intercepts. One straightforward test
statistic can be obtained by taking (20) with A = I, yielding

1 < naon
L= EZD,Q 'D,. (23)
=1

Standard analysis shows that, under Hy, L, —, VM(s). Note
that L; is a test for instability in any of the seasonal intercepts
so that it will have power against zero-frequency movements
in y;. In other words L, is a joint test for instability at the zero
frequency as well as at the seasonal frequencies. This is an
undesirable feature because rejections of Hy could be a con-
sequence of long-run instability at the zero frequency. This
objection could also be raised with individual test statistics
L,, but the problem appears more acute with the joint test L.

To cope with this problem one could test for variation in the
joint seasonal intercept process that keeps the overall mean
constant. Specifically, decompose the seasonal intercepts o
in (3) into an overall mean and deviations from the mean. We
can write this as

a = pu+ Hy, (24)

where (, is an s vector of ones, u = t/a/s is the overall mean,
7 is the (s — 1) x 1 vector of deviations from p for the first
s — 1 seasons (the deviation for the sth season is redundant),
and H is the s X (s — 1) matrix

I
H= (—L;_ll ) ,

where ¢,_; is an (s — 1) vector of ones. This is simply a repar-
ameterization of the model (3), which can now be written as

yi=p+xf+d’n+e, 25)

where d} = H'd; is a full-rank, (s — 1)-dimensional, mean-
zero deterministic seasonal process. We can test for stability
of the seasonal intercepts, holding constant the overall mean
i, by testing for the stability of the coefficients n via the
specification

yi=p+xB+din+e (26)

and
Ni = Ni—1 + Uiy 27

where u; ~ (0, 72G), using the methods outlined in the pre-
vious sections. Rejection of the null hypothesis implies that
some seasonal intercepts have changed. Note that Models
(26)—(27) allow for time variation in the seasonal pattern, but
the seasonal intercepts are constrained to sum to the constant
u. As the associate editor has pointed out, this unusual speci-
fication embeds as special cases the periodic models of sea-
sonality studied by Osborn and Smith (1989) and Hansen and
Sargent (1993).

The fact that (26)—(27) are unusual is not crucial, however,
once one considers the algebraic structure of the models and
test statistics. Because f; and d; are linear combinations of
one another, in the sense that, for some invertible matrix B,
d: = B'f,, (6) can be written as

Yi=p+xB+fly+e, (28)

where v = B~!7. By uniqueness of the representation, this
< is the same as the coefficients in (6). By linearity, testing
the joint stability of 7 in (25) using the alternative (26)—(27)
is algebraically equivalent to testing the joint stability of v
in (28) against (10)—(11). It follows that the joint test for
seasonal instability obtained from (26)—(27) is exactly L.

To put the finding in another way, we have found that either
construction—testing for instability as viewed through the
lens of seasonal intercepts or from the angle of seasonal unit
roots—gives exactly the same joint test. There is no need
to choose one approach or the other because both yield the
same answer. Thus the appearance of the alternative model
given by (26)—(27) as overly restrictive is an artifact of the
analysis of the seasonal dummy model and not a substantive
restriction.

4. A MONTE CARLO EXPERIMENT

To examine the performance of our proposed test statistics,
we conducted a small Monte Carlo exercise. We consider two
quarterly models, one roughly consistent with our specifica-
tion and the other consistent with the setup of HEGY. The
first model is

2
ye=by_+ E.f;')’;t + €,

=

&~N(O,D, (29)

and
Ye = Ye—1 + Uy, Uy ~ N(Oa TzG)a (30)

where v, = [0, 0, 0]. The second model is
(1 —bL)(1 + g,L) (1 +g3Lz)
X[y, —10+4.0d, —4.0d, +6.0d;] =¢,, (31)

where ¢, ~ N(0,1) and d’s are seasonal dummies. For
the first model [(29)—(30)] we use three data-generating pro-
cesses (DGP) under the alternative:

000

DGP1:G= [0 0 o], (32)
00 1
100

DGP2:G= |0 1 o, (33)
000
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100
DGP3:G= [0 1 0f. (34)
00 1

The model implied by DGP1 is exactly that for which the test
L, isdesigned: When 7 = 0, there are no unit roots, but when
T # 0, there is a unit root at frequency 7. DGP2 is designed
for the L, test, in that 7 = 0 implies no unit roots and 7 # 0
implies a pair of complex conjugate roots at frequency /2.
DGP3 has no unit roots when 7 = 0 but has unit roots at both
seasonal frequencies when 7 # 0.

For the second model (31) we consider several speci-
fications—a case in which seasonality is deterministic (g, =
g3 = 0), another in which there is a deterministic and a
stochastic component to seasonality (0 < g, and g5 < 1),
a third in which there is a unitroot at 7 (g; = 1 and g3 < 1),
a fourth in which there are a pair of unit roots at /2 (g, < 1
and g; = 1), and finally one with unit roots at both 7 and /2
(&2=g=1.

For both seasonal models we vary the first-order autore-
gressive parameter among b = [.5, .95, 1.0}, and the sample
size among T = [50, 150]. For model (29)—(30) we select the
strength of the seasonal unit-root component among 7 = [.00,
.10, .20]. For model (31) we select the strength of the stochas-
tic seasonal component among g,, g; = [.0, .5, .95, 1.0]. The
choices for the first-order autoregressive parameter and sam-
ple size were selected to correspond to typical macroeco-
nomic time series (and our applications).

For each parameter configuration, we created 1,000 inde-
pendent samples for each DGP and calculated the tests for
unit roots at the seasonal frequencies 7 and /2, the joint test
at both frequencies, and the tests for instability in the four
seasonal dummies. Because the alternative here is a seasonal
unitroot, the tests for instability in the four individual seasons
had similar performances, so we only report the results for
the first seasonal dummy, D1. We ran the tests on the level
of simulated data, but we also experimented, for the case in
which b = 1, running the test on the first difference of the
simulated data. Furthermore, we follow the suggestion of
Section 1.3 and include one lag of the dependent variable.
Thus the model for OLS estimation is

V= p+ Py +fy+e. (35)

To implement the tests, we need to select estimates of the
long-run covariance matrix &, which reduces to the choice
of kernel and lag truncation number m. In the simulations
reported here, we use the Bartlett kernel and, following
Andrews (1991, table 1), select m =3 if T=50and m =5
if T = 150. The effect of selecting other values is discussed
later.

The performance of our LM tests is compared with two
alternative testing methodologies. The first is a simple ¢ test
for the existence of stochastic seasonality, which is obtained
from testing 6, = 0 in the model

4
(1-6,0 (16,2 <y, - Za,d,,) =e. (36)

j=1

Within our Monte Carlo design, the null hypothesis for this
test is the same as for our LM tests (although this would not be
true in more general models because our tests take the null to
include stationary stochastic fluctuations) and thus provides
a valid basis for comparison.

The second alternative testing procedure is that developed
by HEGY. The approach is based on testing the nullity of the
coefficients p; in the auxiliary regression

AWy, = piwy_y + paWa_y + psWa—y

4
+ PaWa—2 + Z oydy + e, (37)
Jj=1

where wi, = (1 — 8y, wy, = (1 + £+ 2 + Py, wy, =
—(1—£+£ - P)y,, and wy, = —(1 — £2)y,. We examine aug-
mented Dickey—Fuller ¢ statistics for the hypothesis p, = 0
(unitroot at frequency 7) and the HEGY F statistic for the hy-
pothesis p; = p, = 0 (a pair of conjugate complex unit roots at
frequency 7 /2). For each experiment we use six-lag augmen-
tation; thatis, A(€) = 1 —a,£—a,2 — a3 ? —a,0* — asl® — agft.
As an anonymous referee and an associate editor have pointed
out, model (29)—(30) generates moving average (MA) com-
ponents in y, so that the lag augmentation should be suffi-
ciently long for the HEGY test to be reasonably powerful.
Our LM tests and the HEGY tests take the opposite null and
alternative hypotheses and are thus not directly comparable.

Other Monte Carlo experiments to evaluate tests for
unit roots at seasonal frequencies have been conducted by
Hylleberg (1992) and Ghysels, Lee, and Noh (GLN) (1992).
Hylleberg also contrasted the HEGY tests with our tests for
structural stability in the dummies but used a simple AR pro-
cess for the DGP of the data. GLN examined the relative
performance of the HEGY and DHEF tests.

The results of the experiments are contained in Tables 2—4
for Models (29)—(30) and Tables 5-6 for Model (31). Each
table reports the percentage rate of rejection of the relevant
null hypothesis at the asymptotic 5% significance level.

4.1 First Seasonal Model

4.1.1 Size of the Test. Table 2 reports the results for
Models (29)+30) when 7 = 0, which corresponds to the
hypothesis of no seasonal unit roots.

All of our LM tests have good size, especially for T = 150.
In nearly every case, the rejection frequency is close to or
slightly above the nominal level of 5%. The size of the tests
does not appear to be very sensitive to the magnitude of b.

The test for stochastic seasonality also takes the null 7 = 0;
thus, the rejection frequencies in Table 2 are also the finite
sample sizes of the test. The results are somewhat mixed.
The test tends to underreject, regardless of the sample size,
when b < 1, but it overrejects when b = 1.

The HEGY tests take the null of unit roots at the seasonal
frequencies, so the parameter configurations of Table 2 lie in
the alternative hypothesis for these tests. Thus, we should
expect the statistics to reject frequently. Indeed, the tests
for frequency 7 and 7 /2 reject in nearly every trial when
T = 150, but the power of the tests is substantially reduced
when T = 50.
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Table 2. First Seasonal Model, Size and Power of Asymptotic 5% Tests,
Monte Carlo Comparison, 1,000 Replications: T = 0

Sample HEGY Dummy Seasonals

size b T n/2 Stationary D1 ™ w/2 Joint

150 .50 97.6 100.0 2.2 4.8 4.6 5.6 5.8

150 .95 98.8 100.0 3.4 6.6 6.4 4.0 5.2

150 1.00 98.4 100.0 74 3.6 6.4 5.4 5.6
50 .50 29.6 19.2 23 6.4 4.6 8.6 6.0
50 .95 38.8 26.4 22 5.4 4.8 5.6 4.6
50 1.00 29.6 37.2 8.4 4.2 7.6 7.4 8.2

NOTE: “HEGY" is the Hylleberg, Engle, Granger, and Yoo (1990) test for unit roots at seasonal frequencies, “Stationary” is a test for
the presence of stochastic seasonality. “Dummy” is the test for the instability of the first seasonal dummy proposed in Section 3, and
“Seasonals” are the tests for unit roots at seasonal frequencies proposed in Section 2. The HEGY test is run with a six-lag augmentation.

4.1.2 Power Under the Alternative. Tables 3 and 4 re-
port the rejection frequency of the tests under the hypothesis
of seasonal unit roots. In Table 3 we set 7 = .1, and in Table 4
T=.2.

Our proposed LM tests perform remarkably well. First,
examine the test for nonconstancy in the first seasonal dummy
(D1). Because all three alternative models induce seasonal
unit roots into the model, this will appear as an unstable
seasonal intercept, and we should expect this test to reject the
null of stationarity. Indeed, for T = 150, the statistic rejects
in 28%-44% of the trials when 7 = .1, and in 54%-72% of
the trials when 7 = .2. As expected, the power is less for
T =50.

Second, examine the test for a unit root at frequency 7. For
illustration, take T = 150 and 7 = .1. Under DGP1 (a unit
root at the frequency ), the test rejects in 73%—77% of the
trials. When both seasonal unit roots are present (DGP3),
the test rejects in only 43%—45% of the trials, indicating an

adverse effect of the presence of a contaminating unit root.
A remarkable result is that under DGP2, when there is a unit
root at the frequency 7 /2 (the wrong seasonal frequency), the
test rejects in only 3%—4% of the trials. This is good news,
for it implies that the statistic has no tendency to “spuriously
reject” due to the presence of another seasonal unit root.

The results are similar for the test at frequency 7 /2. Again
taking T = 150 and 7 = .1, we note that in the presence
of a unit root at /2 (DGP2) the rejection frequency is
64%—65%, and in the presence of both seasonal unit roots
(DGP3) the rejection frequency is 41%—46%. In the pres-
ence of the wrong unit root (DGP1), the rejection rate is an
excellent 2%-3%.

The joint test also performed quite well, having power
against a unit root at frequency 7 or /2 close to that found
by the L, or L/, test. When unit roots are present at both
frequencies, then typically the joint test has greater power
than either individual test.

Table 3. First Seasonal Model, Size and Power of Asymptotic 5% Tests,
Monte Carlo Comparison, 1,000 Replications: T = .1

Sample HEGY Dummy Seasonals
size b DGP ™ /2 Stationary D1 T w/2 Joint
150 5 DGP1 400 100.0 38.6 39.8 73.4 36 61.4
DGP2 98.8 87.2 25.2 30.8 34 648 59.6
DGP3  77.2 96.2 224 28.2 432 4438 65.2
150 .95 DGP1 424 100.0 49.6 42.4 77.8 2.0 70.4
DGP2 98.6 93.6 29.8 28.6 44 646 61.8
DGP3 778 99.0 294 31.0 456  46.2 65.8
150 1.00 DGP1 420 100.0 21.8 448 74.2 3.2 67.2
DGP2 976 95.2 25.0 28.2 30 654 61.6
DGP3 75.8 98.8 20.0 31.8 45.2 41.8 64.0
50 .50 DGP1 19.4 18.2 5.6 114 30.0 6.8 214
DGP2 244 15.4 3.0 7.4 40 1838 14.2
DGP3  24.0 15.6 42 6.4 11.6 3.0 14.6
50 .95  DGP1 21.8 31.0 8.8 13.2 30.0 44 206
DGP2  34.0 244 5.4 7.2 66 14.6 13.6
DGP3 316 26.2 46 9.2 108 10.8 13.0
50 1.00 DGP1 18.4 34.2 124 9.4 31.4 56 218
DGP2 28.8 28.8 9.8 5.0 5.6 18.4 138
DGP3  26.2 28.4 10.6 48 146 104 15.6

NOTE: See note to Table 2.
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Table 4. First Seasonal Model, Size and Power of Asymptotic 5% Tests,
Monte Carlo Comparison, 1,000 Replications: T = .2

Sample HEGY Dummy Seasonals

size b DGP ™ /2 Stationary D1 ™ w/2 Joint
150 5 DGP1 13.0 100.0 78.6 59.6 90.0 .6 82.4
DGP2 984 39.0 77.0 57.8 2 918 90.0

DGP3 404 65.2 77.8 54.8 678 732 92.0

150 .95 DGP1 142  100.0 89.0 69.6 93.0 1.0 88.0
DGP2  96.2 49.0 81.4 58.4 1.6 926 91.6

DGP3  38.0 71.6 86.4 58.2 69.6 77.8 94.0

150 1.00 DGP1 152  100.0 39.6 724 94.4 1.0 87.8
DGP2  96.0 55.4 64.8 54.2 16 912 88.4

DGP3  38.6 79.2 56.4 57.0 752 738 95.2

50 .50 DGP1 12.2 214 18.6 21.0 55.8 24 404
DGP2  37.0 10.0 10.0 17.0 28 472 386

DGP3  20.6 13.0 10.0 17.4 272 248 36.6

50 .95 DGP1 14.6 28.0 27.0 26.8 60.0 28 46.6
DGP2 338 12.2 15.4 16.8 28 406 342

DGP3 248 16.6 13.8 19.0 310 238 39.0

50 1.00 DGP1 11.8 39.0 19.0 214 59.8 22 478
DGP2 28.8 174 15.2 16.0 2.2 454 37.6

DGP3 156 23.2 14.2 15.2 270 260 36.6

NOTE: See note to Table 2.

Summarizing, the power performance of the LM tests, with
the first seasonal design, is essentially independent of the
parameter b and increases with 7 and T, and the tests reject
against the correct alternatives.

The rejection frequency of the test for stationary stochastic
seasonality is similar to that of the LM test for a nonstationary
dummy variable, and both are lower than the power of the
LM test for seasonal unit roots when 7 = .1. The power
dramatically improves when 7 = .2. It also drops when b = 1
regardless of the size of the other parameters. Because the
test misbehaved when b = 1 under the null hypothesis as well,
however, this result may be an artifact of size distortion.

The HEGY tests have trouble dealing with this design.
First consider the test for a unit root at frequency w. Since
7 > 0, DGP1 and DGP3 lie in the test’s null hypothesis
(because there is a unit root at 7), while DGP2 lies in the
alternative hypothesis. Yet for T = 150, the rejection rate
against DGP1 when 7 = .1 is 40%-42%, and when 7 = .2
it is reduced to 13%—15%. Against DGP3, the rejection rate
when 7 = .1 is 75%-77% and is 38%—40% when 7 = .2.

These are rejections under the null, and hence this indicatesv

massive size distortion.

Second, consider the test for a pair of complex conjugate
unit roots at the frequency 7 /2, for which DGP2 and DGP3
are included under the null hypothesis and DGP1 is the alter-
native. Under the local alternative 7 = .1, the test rejects in
nearly every trial under the null (87%-100% when T = 150),
indicating that the statistic cannot discriminate between the
null and the alternative. In this case also, this massive distor-
tion diminishes when we increase 7 to .2, even though it is
still very sizable (39%-79% rejection rates when T = 150).
Apparently, HEGY tests find it hard to deal with designs in
which unit roots appear as large masses as opposed to sharp
peaks in the spectrum.

4.1.3 Some Robustness Experiments. The simulation
results for the LM test reported previously used a consistent
kernel-based estimate of the long-run covariance matrix. It
is fairly straightforward to see that, under the alternative hy-
pothesis of a seasonal unit root, the value of the L statistic
will be decreasing (at least in large samples) as a function
of m. Thus, selecting too large a value will have adverse
effects on power. Selecting a too-small value, however,
risks size distortion if there is unaccounted-for serial cor-
relation in the errors. This is the same problem as arises
in the LM test for a unit root at the zero frequency and
was discussed by Kwiatkowski, Phillips, Schmidt, and Shin
(1992).

To investigate the robustness of the results to alternative
estimates of the covariance matrix, we have experimented
with two other values for m. As an extreme choice, we set
m = +/n [as done, for example, by Hylleberg (1992)]. This
decreased the power of our LM tests by approximately 50%.
'We consider this an upper bound on the power loss. At the
opposite extreme we used a naive OLS estimator, which can
be viewed as setting the lag window m = 0 in the general
expression, and it is optimal within our design. For this last
choice, we found the gain of power of our test to be approxi-
mately 5%-10%. We conclude that a conservative choice of
m along the lines of Andrews (1991) is important to retain
significant finite-sample power.

We also experimented with the larger sample size T = 300
and for the case in which no lagged y, was included in (35).
As expected, all of the tests performed much better in terms
of both size and power when T was larger, but no significant
size or power distortion occurred when no lagged dependent
variable was included in the estimated model.

We also examined the size and the power of our tests whena
preliminary first-order differencing transformation was used
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Table 5. Second Seasonal Model, Size and Power of Asymptotic 5% Tests,
Monte Carlo Comparison, 1,000 Replications

Sample HEGY Dummy Seasonals
size b g2 g3 ) /2 Stationary D1 ) n/2  Joint
150 5 .0 0 98.6  100.0 1.9 5.2 3.6 49 38
150 95 .0 0 98.6  100.0 15 35 3.8 3.6 35
150 1.0 .0 0 97.7 99.7 1.8 5.7 3.1 3.8 38
150 5 5 5 95.8 95.9 64.4 8.7 40 156 126
150 95 5 5 96.9 98.6 96.1 17.6 50 158 129
150 100 5 5 97.7 98.4 98.2 20.2 62 168 152
150 5 95 95 167 10.0 100.0 68.6 425 942 969
150 95 95 95 1741 7.7 100.0 65.3 511 925 966
150 100 95 95 178 9.7 100.0 68.3 559 90.8 954

50 5 0 0 32.6 20.6 15 5.5 4.4 4.4 4.0
50 95 .0 0 35.0 25.0 1.8 6.4 42 5.6 47
50 1.0 .0 .0 36.3 28.8 8 43 4.0 3.8 33
50 5 5 5 235 9.0 14.9 12.7 40 211 169
50 95 5 5 33.0 12.2 36.7 16.0 41 171 156
50 100 5 5 28.7 13.3 427 175 54 17.7 159
50 5 95 985 111 4.6 98.4 55.1 480 834 905
50 95 95 95 114 3.6 99.4 55.2 51.0 823 895
50 100 95 95 109 4.2 99.6 57.0 522 814 900

NOTE: See note to Table 2.

on the simulated data when b = 1. None of the results are
changed by this modification. We believe that the inclusion of
one lag of the dependent variable in the regressions effectively
soaks up the unit root at the zero frequency without the need
for any preliminary transformation.

4.2 Second Seasonal Model

4.2.1 Size of the Tests. Table 5 reports the results for
Model (31) when 0 < g,, g3 < 1, which corresponds to
the null hypothesis of deterministic or deterministic-plus-
stochastic stationary seasonality. In this case we should ex-
pect our tests to reject in 5% of the trials and the HEGY tests
to reject often (because the design lies in the alternative).

The performance of all tests is reasonable when only de-
terministic seasonality is present (g2 = g3 = 0). When
there are also stationary stochastic seasonal components (e.g.,
g, = g3 = .5) our seasonal tests overreject in many cases, in
particular the test for a unitroot at /2. As g, and g5 approach
unity (so that stochastic seasonality approaches the nonsta-
tionary region), both the seasonal unit root and the dummy
tests exhibit size distortion and cannot distinguish a unit-root
from a non-unit-root process. Again the size of the test is
independent of T and, to a certain extent, b.

The performance of the stationary test is very similar to the
one for dummies, even though the distortions become very
large as b approaches 1.

The HEGY tests are reasonable regardless of b when g,
and g; are small. As g, and g; increase, although remaining
less than 1, the power of the tests decreases substantially.
Reducing the sample size from 150 to 50 greatly affects
the performance of the HEGY test but has practically no
influence on our LM tests or on the stochastic seasonality
test.

4.2.2 Power Under the Alternative. Table 6 reports the
rejection frequency of the tests under the hypothesis of at least
one seasonal unit root. (There is a unit root at frequency
m when g, = 1 and a pair of conjugate unit roots at 7/2
when g; = 1.) Therefore we should expect our tests and the
stochastic stationarity test to reject frequently and the HEGY
tests to reject in about 5% of the trials.

With this simple AR DGP, the performance of our dummy
test is in general good, rejecting in about 80% of the trials
when T = 150. The power is independent of b and lower
when T = 50.

Our LM test performs reasonably well with this DGP even
though the tests at 7 reject less frequently than expected when
a unit root appears. Moreover, when g, and g; are close to
unity, the test overrejects the null of stationarity. This is par-
ticularly evident when g, = 1 and g; = .95. The performance
of the test is slightly worse when the sample size is small and
is independent of b.

The power of the stochastic stationarity test is good with
this design, and the test rejects whenever unit roots are present
regardless of the size of the parameters b and T.

Finally, the HEGY tests perform well when T = 150,
even though some power losses appear when there are near
unit roots at the other seasonal frequency. As previously
noted, the performance of the HEGY tests strongly de-
pend on the sample size, but it is practically independent
of b.

Overall, these results suggest that neither our new tests
nor the HEGY tests are “superior” in either Monte Carlo de-
sign. For Models (29)~(30) our new LM tests perform as
expected, just as the HEGY tests work somewhat well with
the DGP (31). At this stage we see the two testing proce-
dures as complementary to each other, and making meaning-
ful comparisons between these testing frameworks will be
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Table 6. Second Seasonal Model, Size and Power of Asymptotic 5% Tests,
Monte Carlo Comparison, 1,000 Replications

Sample HEGY Dummy Seasonals
size b g2 g3 m n/2  Stationary D1 1r n/2  Joint
150 5 5 1.0 97.3 3.9 100.0 84.3 .0 984 963
150 5 1.0 5 38 976 98.1 82.9 87.9 21 783
150 .95 5 1.0 98.6 4.6 100.0 83.0 30 988 96.7
150 95 1.0 5 51 988 100.0 78.1 87.8 1.0 745
150 1.00 5 1.0 98.9 48 100.0 85.0 .0 987 970
150 1.00 1.0 5 6.1 98.9 100.0 83.4 87.2 1.0 725
150 5 95 1.0 17.3 48 100.0 84.5 414 985 99.1
150 5 1.0 .95 6.0 9.9 100.0 76.0 83.1 898 985
150 .95 95 100 1841 4.0 100.0 81.1 43.7 978 99.2
150 .95 1.00 .95 5.4 7.2 100.0 75.4 81.3 89.0 987
150 1.00 95 100 179 4.0 100.0 80.3 491 98.0 99.2
150 1.00 1.00 .95 65 103 100.0 81.2 847 858 979
150 5 1.00 1.00 44 4.6 100.0 85.5 79.2 982 99.7
150 95 1.00 1.00 6.7 46 100.0 79.2 786 977 99.8
150 1.00 1.00 1.00 5.0 4.1 100.0 82.8 81.8 965 99.7
50 5 5 1.0 32.6 34 98.4 65.4 32 406 86.6
50 5 1.0 5 88 127 94.6 56.9 675 154 645
50 .95 5 1.0 36.0 28 99.2 62.5 27 899 865
50 95 1.0 5 80 137 91.1 54.0 66.3 117 62.1
50 1.00 5 1.0 333 3.9 99.0 62.1 38 886 852
50 1.00 1.0 5 89 133 94.9 61.2 683 117 646
50 5 95 1.0 121 34 99.3 63.9 484 900 939
50 5 1.00 .95 8.7 47 99.3 60.9 67.8 827 9441
50 .95 95 1.0 11.8 3.0 99.7 61.8 50.1 887 943
50 95 1.00 .95 9.3 35 99.7 63.0 67.8 813 931
50 1.00 95 1.0 11.2 45 99.7 63.8 512 894 940
50 1.00 1.00 .95 9.6 42 99.6 64.7 634 812 927
50 5 1.00 1.00 8.8 4.0 99.0 64.8 634 902 955
50 95 1.00 1.00 42 35 99.6 63.9 66.1 868 957
50 1.00 1.00 1.00 9.0 3.0 99.8 64.0 65.3 864 954

NOTE: See note to Table 2.

an interesting subject for future research (see also Hylleberg
1992; Hylleberg and Pagan 1994).

5. APPLICATIONS
5.1 U.S. Post World War |l Macroeconomic Series

The first data set we examine is that originally exam-
ined by Barsky and Miron (1989) in their study of the re-
lationship between seasonal and cyclical fluctuations. The
data set includes 25 variables- that cover practically all of
the major nonseasonally adjusted U.S. macroeconomic vari-
ables (total fixed investment, fixed residential investments,
fixed nonresidential investments, fixed nonresidential struc-
tures, fixed nonresidential producer durables, total consump-
tion, consumption of durables, consumption of nondurables,
consumption of services, federal government expenditure,
imports and exports, final business sales, changes in business
inventories, Consumer Price Index (CPI), one-month treasury
bill (T-bill) rates, M1, unemployment, labor force, employ-
ment, monetary base, money multiplier, and hours and wage
rates). The original sources are described in the appendix
of Barsky and Miron. The sample covers data from 1946,1
to 1985,4 except for M1 (starting date 1947,1), for unem-
ployment and labor force (starting date 1948,1), employment

(starting date 1951,1), the monetary base and the money mul-
tiplier (starting date 1959,1), and hours and wage (starting
date 1964,1).

In constructing an estimate of the covariance matrix Q,
we use the Newey and West (1987) procedure using Bartlett
windows with lag truncation m = 5 for all series but hours
and wage, for which we choose m = 4. For all variables we
run the tests on the log differences to maintain comparability
with previous analyses, and one lag of the dependent variable
is included among the regressors. Table 7 reports significant
dummies, the value of the L; statistic for testing the stabil-
ity of each separate dummy coefficient (i = 1,2,3,4), the
values of the L, and L, , statistics for nonstationarity at the
seasonal frequencies, and the joint test statistic L;. For four
variables that display unstable seasonal patterns (fixed invest-
ment, consumption, government expenditure, and unemploy-
ment rate), Figure 1 plots recursive least squares estimates
of the dummy coefficients in the spirit of Franses (1994).
Under the assumption of unchanged seasonal patterns, the
plot should depict four almost parallel lines. If lines intersect
(e.g., spring becomes summer) unit-root behavior at seasonal
frequencies is likely to occur. If changes in seasonal patterns
changed primarily in the intensity of the fluctuations, the lines
should tend to converge or diverge.
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Table 7. Test for Structural Stability in the Seasonal Pattern of
U.S. Macroeconomic Variables. Sample 46,1-85,4

Series Quarter1  Quarter2 Quarter3  Quarter 4 T n/2  Joint
Investments X 78"  x .29 .89* .46 10 2.16* 2.29*
Residential

investments X 66* x .09 93" x .04 .09 1.35* 1.52*
Nonresidential

investments X 33 x .28 X .26 X .35 A7 1.13* 137"
Nonresidential

structures X 43 X .38 X 43 X .55* .99* .38 1.36*
Nonresidential

producer durables 41 x AT X 19 x .30 33 94* 138"
Consumption x 216* x 1.00* x 63* x 1.66* 211 273" 498"
Consumption

durables X 2 X 12 .36 X 31 .39 57 .96
Consumption

nondurables x 1.26* x 160 x 110* x 1.74* 170+ 222* 392*
Consumption

services x 136 x 700 x 121 x 98"  1.49* 124+ 274"
Gross national

product x 105" x 114 x 57" x .88* 46 288" 3.44*
Government

expenditure x 115* x 70" x 07 x 67" .99* .80* 1.79*
Imports 15 X 44 X .08 .29 .30 54 .85
Exports 19 x A7 x 38 x 22 .25 .33 .60
Final sales x 203 x .26 X A7 x 147 209 297 5.01*
CPI 39 X 67 X .29 .29 .26 .61 .87
T-bill rate .35 .20 .09 .07 .32 34 .66
Business

inventories X .24 1.53* 34 .60* 47 1.08* 1.56*
M1 X .07 210 «x A3 x 18 1.79* 177 3.67*
Unemployment

rate x 111 x 1.23 44 x 12 .88* 220 3.10*
Labor force x 133" x 31 X 09 «x .45 1.05* 121* 2.29*
Employment X 36 X 31 X .09 57" .32 .84* 1.16*
Monetary base X 58" x 33 X 20 X 23 12 .93* 1.08*
Monetary multiplier 57" 81* 30 X 72* .31 1.59* 1.98*
Hours X 07 x 81" x 30 x 72 .08 1.35* 1.44*
Wage X 29 X 43 X 16 x .36 .83* .30 1.14*

NOTE: An*“x” indicates a dummy that is significant at the 5% level. The numbers reported in the columns for Quarters 1-4 are the values
of the L statistics for each quarter. The next two columns report the values of the L and L, /, statistics, and the last column reports the
joint test for instability at both frequencies. An asterisk indicates significance at the 5% level.

The results indicate that 24 out of the 25 variables dis-
play statistically significant seasonal patterns (the one-month
T-bill rate is the only exception) and that for 20 of these
the seasonal pattern has changed over the sample (accord-
ing to the joint L, test). The four variables that possess sta-
ble seasonal patterns are consumption of durables, imports,
exports, and CPI. We also find that changes occur almost
equally in all seasons but the third, that for 18 variables
the null of constant seasonality is rejected at the annual
frequencies, and that at the biannual frequency the test re-
jects the null in 11 cases. These results indicate that the
comparison of deterministic seasonal and stochastic cycli-
cal patterns as done by Barsky and Miron (1989) may not
be appropriate because there are important time variations
neglected in the analysis. They may also be viewed as con-
sistent with results recently obtained by Ghysels (1991)
that show that the seasonal pattern displayed by this set

of macroeconomic variables tends to change with business-
cycle conditions.

Itis encouraging to observe that the individual dummy sta-
bility tests give similar conclusions to “eyeball” tests on the
recursive estimates displayed in Figure 1. The first-quarter
fixed-investment dummy trends toward 0, and the test re-
jects its constancy. The test also rejects the constancy of
all government-expenditure dummies, except for the third-
quarter dummy, a result that conforms with the plot of the re-
cursive estimate. For the consumption series, the first and the
fourth quarter dummies are the largest in absolute value, they
trend toward 0 over time, and the test rejects their stability at
the 1% level. A similar picture arises for the unemployment
rate, except that it is the first- and the second-quarter dum-
mies that are “large” in absolute value. In general, for all four
variables considered in Figure 1 there is a tendency for the
overall mean to be constant, for seasonals to become milder,
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and for the intensity of the fluctuations to be reduced with
some dummy coefficients turning insignificant in the last two
decades. In addition, for the consumption and unemployment
series, the coefficients of the dummies of two quarters change
sign throughout the sample even though their value is always
close to 0. Despite these large changes, none of the variables
examined display a significant change in the location of sea-
sonal peaks and troughs over time. Because these patterns
are very typical of those we found among all the variables in
the sample, one conclusion that emerges is that the intensity
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of seasonal fluctuations has substantially subsided in the past
two decades, but no major seasonal inversion has occurred.

5.2 European Industrial Production

The second data set includes quarterly nonseasonally ad-
justed industrial production (IP) indexes for eight European
countries (the United Kingdom, Germany, France, Italy,
Spain, Austria, Belgium, and the Netherlands) for the sample
1960,3 to 1989,2. Canova (1993) described the original
sources of the data. In this case, we also selected m = §

Table 8. Test for Structural Stability in the Seasonal Pattern of Quarterly
Industrial Production Indexes, Sample 60,1-89,2

Series Quarter 1 Quarter 2 Quarter 3 Quarter 4 T w/2 Joint
France 13 X 57 x .25 X .43 57" .39 .99
Germany X .33 x 115" .35 x .14 A7 159"  2.06"
UK. X 19 116" x 76 x 12 1.09* 111~ 2.20*
Italy X .39 X 40 X 1.42* X .78* .85* 2.42* 3.20*
Austria X .18 X 46 X 69" x .15 .10 1.30*  1.45*
Belgium 119 x 53" x 81" x .24 .36 1.59*  2.01*
Netherlands 64"  x  1.15* 1.58* x  .92* 21 272 2.89*
Spain 22 X .45 X 1.15* X .56* .87* 1.16* 211"

NOTE: An “x” indicates a dummy that is significant at the 5% level. The numbers reported in columns for Quarters 1—4 are the values
of the L statistics for each quarter. The next two columns report the value of the L statistics at each of the two seasonal frequencies. The
last column reports the joint test for instability at both seasonal frequencies. An asterisk indicates significance at the 5% level.
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Table 9. Test for Structural Stability in the Seasonal Pattern of Monthly
Stock Returns: Sample 50,1-89,9

us. Japan Germany France UK. Italy Canada

Significant dummies 1 1,2, 11 7 1,4,7 7 1,8 1

January .07 57" .34 .05 44 .61* .08
February .06 .39 a2 .40 .33 .10 15
March 14 14 .18 .05 .28 13 19
April .32 11 .16 .28 .21 14 14
May .33 .08 .25 .07 .24 1 .16
June 11 .30 15 1 .10 12 11
July .06 .26 22 a7 .08 .05 .05
August .05 12 a2 .09 41 .26 .26
September .30 .18 .28 .06 11 .07 .06
October 1 .52* 12 15 12 .16 11
November .09 .33 .22 .07 42 15 .10
December a7 19 14 a2 4 22 .08
Joint 1.74 3.02* 2.17 1.43 2.88* 1.84 1.25
/6 .56 1.78* .65 .70 1.44* .70 31

NOTE: The first 12 rows after the space report the values of the L statistic for each month. The next row reports the value of the L
statistic for the joint test of instability at all seasonal frequencies. The last row reports the test for seasonal instability at frequency = /6.

An asterisk indicates significance at the 5% level.

and estimated the model in log differences with a lag of the
dependent variable. The results of testing for seasonal insta-
bility appear in Table 8.

The joint test indicates that all series, except possibly
France, clearly display statistically significant changes in
their seasonal patterns. The evidence of instability is stronger
at the annual frequency, where the tests reject the null of no
instability for all variables but the French IP index. At the
biannual frequency, the test rejects the null for the IP index of
the five largest countries. When we examine the stability of
individual dummy coefficients, we find that, over the cross-
section, all quarters appear to be subject to structural change
but that the highest concentration of rejections of the null
hypothesis of constancy emerges in the third quarter. This
does not come as a surprise because the third quarter has
been traditionally the vacation time in European countries,
and in the last decade rescheduling programs have reduced
the closing time of factories and offices to 10-14 days only,
down from the 21 days which was the average in the 70s.
Finally, the estimated coefficients of the dummies over three
different decades and the recursive least squares plots (not
presented for reasons of space) indicate changes in intensity,
pattern and, in some cases, location of seasonal peaks and
troughs over time.

5.3 Monthly Stock Returns

The third data we examine are a set of monthly stock
returns on value-weighted indexes for seven industrialized
countries (the United States, Japan, Germany, France, the
United Kingdom, Italy, and Canada). This data set was ob-
tained from the Citibase Tape and covers the period 1950,3 to
1989,9. As with the previous data sets, we set m = 5 and add
one lagged dependent variable in the regression. The results
of testing for the instability of the seasonal patterns in these
variables are presented in Table 9.

All stock returns display some form of seasonality. The
most significant seasonal dummies are for January returns

(except for Germany and the United Kingdom). July and
August returns have significant coefficients in four European
countries. When we test for the structural stability of indi-
vidual dummy coefficients, we find that significant time vari-
ations have emerged only for returns on a value-weighted
index in Japan, the United Kingdom, and Italy. The joint
test only rejects for Japan and the United Kingdom, where
the rejection is due to a unit root at the annual frequency.
It appears, therefore, that knowledge of predictable returns
in four of the seven countries did not result in changes in
these patterns, possibly indicating an inefficient propagation
of information across these markets.

6. CONCLUSIONS

This article proposes a set of tests to examine the structural
stability of seasonal patterns over time. The tests are built on
the null hypothesis of unchanged seasonality and can be tai-
lored to test for unit roots at seasonal frequencies or for time
variation in seasonal dummy variables. We derive the asymp-
totic distribution of the statistics under general conditions that
accommodate weakly dependent processes. A small Monte
Carlo exercise demonstrates that the asymptotic distribution
is a good approximation to the finite-sample distribution, and
the test has good power against reasonable alternatives.

‘We apply the test to the three data sets. We find that in most
cases deterministic dummies poorly capture the essence of
seasonal variation in U.S. macroeconomic variables and that
significant time variations are present in the seasonal patterns
of the IP indexes of eight major industrialized countries and in
the stock return indexes of some G-7 countries. The presence
of seasonal time variations in quarterly U.S. macroeconomic
variables partially invalidates some of the conclusions ob-
tained by Barsky and Miron (1989), confirms recent findings
of Ghysels (1991), and suggests the need for a more thorough
and comprehensive examination of the statistical properties
of macroeconomic variables.
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The extension of our testing procedures to a vector of time
series is straightforward. In that framework one can examine,
for example, whether at least one of the seasonal intercepts of
the system has changed. This extension would be analogous
to that which Choi and Ahn (1993) made to the KPSS tests.
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