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This article derives the large-sample distributions of Lagrange muiltiplier (LM) tests for parameter
instability against several alternatives of interest in the context of cointegrated regression models.
The fully modified estimator of Phillips and Hansen is extended to cover general models with
stochastic and deterministic trends. The test statistics considered include the SupF test of
Quandt, as well as the LM tests of Nyblom and of Nabeya and Tanaka. It is found that the
asymptotic distributions depend on the nature of the regressor processes—that is, if the re-
gressors are stochastic or deterministic trends. The distributions are noticeably different from
the distributions when the data are weakly dependent. Itis also found that the lack of cointegration
is a special case of the alternative hypothesis considered (an unstable intercept), so the tests
proposed here may also be viewed as a test of the null of cointegration against the alternative
of no cointegration. The tests are applied to three data sets—an aggregate consumption func-
tion, a present value model of stock prices and dividends, and the term structure of interest
rates.
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Structural change.

One potential problem with time series regression
models is that the estimated parameters may change
over time. A form of model misspecification, parameter
nonconstancy, may have severe consequences on in-
ference if left undetected. In consequence, many ap-
plied econometricians routinely apply tests for param-
eter change. The most common test is the sample split
or Chow test (Chow 1960). This test is simple to apply,
and the distribution theory is well developed. The test
is crippled, however, by the need to specify a priori the
timing of the (one-time) structural change that occurs
under the alternative. It is hard to see how any non-
arbitrary choice can be made independently of the data.
In practice, the selection of the breakpoint is chosen
either with historical events in mind or after time series
plots have been examined. This implies that the break-
point is selected conditional on the data and therefore
conventional critical values are invalid. One can only
conclude that inferences may be misleading.

An alternative testing procedure was proposed by
Quandt (1960), who suggested specifying the alternative
hypothesis as a single structural break of unknown tim-
ing. The difficulty with Quandt’s test is that the distri-
butional theory was unknown until quite recently. A
distributional theory for this test statistic valid for weakly
dependent regressors was presented independently by
Andrews (1990), Chu (1989), and Hansen (1990). Chu
considered as well the case of a simple linear time trend.

Another testing approach has developed in the sta-
tistics literature that specifies the coefficients under the
alternative hypothesis as random walks. Recent expo-
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sitions were given by Nabeya and Tanaka (1988), Ny-
blom (1989), and Hansen (1990).

The preceding works did not consider models with
integrated regressors. This article makes such an ex-
tension. The test statistics mentioned previously are
examined here in the context of cointegrating regres-
sions, making use of the fully modified estimation method
of Phillips and Hansen (1990). The asymptotic distri-
butions of the test statistics are found to depend on the
stochastic process describing the regressors. It emerges
as an important conclusion that it is necessary to know
the stochastic process of the regressors before one can
apply the tests considered here.

An additional finding is that, since the alternative
hypothesis of a random walk in the intercept is identi-
cal to no cointegration, the test statistics are tests of
the null of cointegration against the alternative of no
cointegration.

A related research effort by Zivot and Andrews (1992)
and Banerjee, Lumsdaine, and Stock (1992) developed
a distributional theory for the test of the unit-root hy-
pothesis employed by Perron (1989). Perron specified
the alternative to be a single structural break of known
timing, but the aforementioned articles specify the time
of the break as unknown. These articles address a dif-
ferent question (testing the unit-root hypothesis), al-
though using similar methods.

Section 1 sets up the structure of the model, allowing
for quite general stochastic and deterministic trends in
the regressors. This model builds on and extends the
setup used by Phillips and Hansen (1990) and Hansen
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(1992a). Section 2 describes the method of fully mod-
ified estimation for the model. Section 3 describes the
test statistics for parameter instability. Section 4 gives
the asymptotic distribution theory for the test statistics
under the null hypothesis. Section 5 discusses the al-
ternative of no cointegration. Section 6 reports three
simple applications of the tests. Section 7 concludes.
Proofs are in the Appendix.

A GAUSS program that implements the estimation
methods and test statistics is available on request from
the author.

1. A COINTEGRATED REGRESSION MODEL

We will be working with a fairly standard multiple-
regression model under cointegration. The cointegrat-
ing equations are

y, = Ax, + uy,, t=1,...,n, 1)

where the process x, = (x1, x3,)' is determined by the
equations

Xy, = ky
X2 = Il—lklt + l;[k21+x(2)t

X5 = X5_1 + Uy, (2)
Define the vectors

u; = (uy w, ) ki = (ki k3).
m; m, + p, P1 P2

{u,} is a sequence of mean zero random vectors, but the
elements of k, are nonnegative integer powers of time.
Note that x;, has p, elements and x,, has m, + p, ele-
ments. More specific assumptions regarding u, and k,
will be made in Section 3. This model places the trends
k. directly in the regression equation (I will speak of
k, as trends although it may contain a constant). The
trends k,, determine the behavior of the stochastic re-
gressors x,, but are excluded from the regression. If k,
contains a constant, we assume that it is an element of
ki, and thus enters the levels regression.

The notation of (2) may appear confusing at first. It
turns out to be especially convenient for development
of a full theory for the cointegrated regression model
(1). In earlier work on cointegrated models, such as
that of Johansen (1988), Park and Phillips (1989), and
Phillips and Hansen (1990), allowing for general de-
terministic trends was intentionally excluded to allow
the clean development of a large-sample distributional
theory. Although theoretically elegant, this approach
excludes many applications of interest.

In most applications, it seems most reasonable to
specify the stochastic regressors x,, as I(1) with a de-
terministic trend. In this case, k, equals a constant and
a linear time trend. If y, and x,, are deterministically
cointegrated, using the terminology of Ogaki and Park
(1990), then the levels regression need only contain a
constant, so x;, = k;, = 1 and k,, = t. On the other

hand, if a time trend is required in the levels regression,
then x;, = k;, = k, = (1, ¢)’ and there is no k,,. Another
common specification is that there are no trends in the
system, so k;, = k, = 1 and there is no k,,.

Some applied researchers have considered using
breaking trend functions in addition to the simple in-
teger powers of time considered here. Although in prin-
ciple it is straightforward to define the estimators and
test statistics with these more general trend functions,
this extension will not be considered in this article for
two reasons. First, the restriction to powers of time
simplifies the asymptotic theory. Standardized powers
of time converge uniformly to limiting functions, but
this is not true of discontinuous trend functions. See
Zivot and Andrews (1992) for an econometric example
of weak convergence with discontinuous functions. Sec-
ond, breaking trends may only make sense in a prob-
ability model if the timing and magnitude of the break
is allowed to be random. This simply reintroduces 1(1)
or I(2) components into the system that are already
captured in system (1)—(2).

The following nuisance parameters play an important
role in the formulation of the statistics we will be con-
sidering. Define the matrices

A = lim i i E(uu;) 3)

partitioned in conformity with u:

Q5 Q Ay A
Q= 11 12); A= ( 11 12).
(921 922 AZl A22
When the vector i, is weakly stationary, ) is propor-
tional to the spectral density matrix evaluated at fre-
quency 0. It is sometimes referred to as the long-run

covariance matrix.
We also define

Qi = Oy — 0,050y 4)
and
A = Ay — ApQ5'Q0,.

One may loosely call £,., the long-run variance of u,,
conditional on u,,. Aj; represents the bias due to en-
dogeneity of the regressors after the fully modified cor-
rection discussed in Section 2.

2. FULLY MODIFIED ESTIMATION

The constancy tests we will discuss require an esti-
mate of A in (1) that has a mixture normal asymptotic
distribution. For concreteness, we will consider the fully
modified (FM) estimator of Phillips and Hansen (1990).
Alternative estimators with the same asymptotic dis-
tribution include the maximum likelihood estimator
(MLE) of Johansen (1988) or the “leads and lags” es-



timator of Saikkonen (1991) and Stock and Watson
(1991). (See Phillips and Loretan [1991] for an informa-
tive review.)

2.1 Estimation of Covariance Parameters

The semiparametric method of Phillips and Hansen
(1990) is a two-step estimator in which the first step
estimates the covariance parameters ();., and Aj; de-
fined in (4). Our suggestion is to use a prewhitened
kernel estimator with the plug-in bandwidth recom-
mended by Andrews and Monahan (in press). We out-
line the procedure in this subsection.

First, estimate (1) by ordinary least squares (OLS),
yielding the parameter estimates A and the residuals
i, = y, — Ax,. Second, estimate (2) by OLS in differ-
ences: Ax,, = II,Ak,, + LAk, + f,, yielding the re-
siduals d,,. Set &, = (dy,, t3,)-

The covariance matrices () and A could be estimated
directly from the residuals &, via a kernel. In most ap-
plications, the cointegrating residuals &, have a signif-
icant degree of serial correlation. In this event, the
kernel estimate will be highly biased, unless a large
bandwidth parameter is used, which increases the vari-
ance of the estimator. In such cases, an estimator based
on prewhitening is often preferable in moderate sample
sizes. We suggest using a (vector autoregressive) VAR(1),
although a higher order VAR could also be used. We
first fit a VAR to the residuals 4,: 4, = ¢u,_, + &, A
kernel estimator is then applied to the whitened resid-
uals é,. These take the form

A= Swims > e e

j=0 noi=j+1

and

n

Q.= 2 W(J/M)- 2 é_jél,

j=—n t=j+1

where w(-) is a weight function (or kernel) that yields
positive semi-definite estimates and M is a bandwidth
parameter. The estimator (), can be seen as a scaled
estimate of the spectral density of e, (when e, is covari-
ance stationary) and has its origin in the literature on
spectral density estimation, which dates back to Parzen
(1957).

The covariance parameter estimates of interest can
be obtained by recoloring: Q=u- d)) 0.1 -
¢)Pand A = (I - &AM - &)t - (I -
)43, where 3 = (1/n) =r_,a4,.

These estimates require a choice of kernel and band-
width parameter. Any kernel that yields positive semi-
definite estimates can be used. These include the Bartlett,
Parzen, and quadratic spectral (QS) kernels. Andrews
(1991) recommended the QS kernel, which takes the
form

25 (sin(67rx/5)

W) = e\ 6w

- cos(61rx/5)> .
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In most applications, it appears that the choice of
kernel is much less important than the choice of band-
width parameter. For current consistency proofs (see
Hansen 1992b), it is required that M — <« at some rate
slower than sample size. This, however, does not pro-
vide a useful guide for the selection of the bandwidth
parameter in a particular application. In a recent article,
Andrews (1991) provided some useful guidelines (based
on the minimization of asymptotic truncated mean
squared error) to their selection. He recommended a
plug-in bandwidth estimator. For the Bartlett, Parzen,
and QS kernels, the choices are

Bartlett: M = 1.1147(a(1)n)'?
Parzen: M = 2.6614(¢(2)n)"
Qs: M = 1.3221(a(2)n)s,

where @(1) and &(2) are obtained from approximating
parametric models. A particularly attractive choice sug-
gested by Andrews is univariate (autoregressive) AR(1)
models for each element, é,,(a = 1, ..., p) of é,. Let
(p4,62) denote the autoregressive and innovation vari-
ance estimates for the ath element. Then

45 5 o2
i = 3, TG pa)Z/ 20—y

and

a® = 2 (1 - pa)S/ (1 - pa)‘*

The use of a plug-in bandwidth parameter has several
advantages. First, it removes the arbitrariness associ-
ated with the choice of bandwidth. Many applied re-
searchers have been frustrated with the semiparametric
branch of the unit-root literature because the test out-
comes sometimes depend on the choice of bandwidth.
Second, simulation results of Park and Ogaki (1991)
demonstrated that its use can dramatically improve the
mean squared error of semiparametric estimates of
cointegrating relationships.

2.2 Estimation of the Regression Parameters

Partition A and () as A and Q, set le =0, -
Q,05'Q,, and As = Ay — AL05! Q,, and define
the transformed dependent variable y = y, —
Q.,Q5',,. The FM estimator of A is then given by

i = (3 o - 0 (S an)

Associated with these parameter estimates are the
residuals 4;; = y;* — A*x,. One interesting feature of
the FM estimates that will be important for our later
developments is that

2 h (A(},) ’
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although in OLS regression the sum of the products of
the regressors and residuals is identically 0. Thus the
scores of the problem are the variables

. I 0
5 = <x,uf; - (Az-ii))a (5)

which satisfy 37_, §, = 0.
3. TESTS FOR PARAMETER INSTABILITY

Hansen (1990) outlined a general theory of testing
for parameter instability in econometric models. The
test statistics can be derived as Lagrange multiplier (LM)
tests in correctly specified likelihood problems. In this
section, we describe these test statistics in the context
of fully modified estimation of cointegrated regression
models.

We can modify (1) to incorporate possible parameter
instability by allowing A to depend on time:

ye=Ax, + u,. (1)’

For all of the tests, the null hypothesis is that the coef-
ficient A, in (1)’ is constant, although the tests differ in
the treatment of alternative hypotheses.

The first two tests model A, is obeying a single struc-
tural break at time ¢, where 1 <t < n:

A=A, i=t
=A2, i>t.

The null hypothesis is Hy : A; = A,. For the first test,
the timing of the structural break is known under the
alternative H, : A; # A,, tknown. A test for H, against
H, is given by the statistic

Fnt = Vec(sm‘),(ﬂl'Z ® Vnt)_lvec(sm)
= tefS, V'S0,
where
t
S = 2 85 (6)
Vnt = Mnt - MmMn_nlea (7)
and
t
M, = X xx. (8)
i=1

For the second test, the timing of the structural break
is treated as unknown: H, : A; # A,, [t/n] € F, where
J is some compact subset of (0, 1), and [-] denotes
“integer part.” This test statistic is simply

SupF = sup F,,.
InEF

The third and fourth tests model the parameter A, as
a martingale process: A, = A,_; + ¢; E(¢|9,_;) = 0,
E(g£) = 8°G,. In this context, the null hypothesis can
be written as the constraint that the variance of the

martingale differences is 0: H, : > = 0. One alternative
hypothesis is Hy : 82> 0, G, = (0, ® V,.) L tin €
J, with test statistic

MeanF = —1; > F., where n* = >, 1.

n- yneg tneT
The final alternative is H, : 8> > 0, G, = (Q,, ®
M,,)~1, with test statistic

L. = tr{M,,‘,,l > S,Q;Z‘S,'}.
t=1

The F,, test (fixed ¢) is computationally simple, cor-
responding to the classical Chow test or sample split
test. The test statistic is computationally equivalent to
estimating A; and A, on the two subsamples and testing
their equivalence using a Wald test, using the variance
estimate for the full-sample estimates. This can be easily
seen if we consider the special case of least squares
estimation on a single equation (m,; = 1). Then note
that

1
[ L3

1o _ .

M.'S,, = (Z xix;) zxiui
1 T

t -ty t -1,
= (Z xixi’> iny.- - (Z xix;) Zx,-x{fi =A, -4
1 1 1 1

that is, the score from the first part of the sample,
evaluated at the estimate from the full sample, is pro-
portional to the difference between the estimates ob-
tained from just the first part of the sample and the full
sample. It follows (with a little algebra) that our statistic
F,, is essentially equivalent to the Wald statistic that
tests the equivalence of A, and A. The only difference
arises due to the choice of the variance estimates. It is
well known that this Wald statistic is algebraically equiv-
alent to the classic Chow statistic, which is based on
the difference between the estimates obtained from the
two subsamples. For example, see Snow and Im (1991).

The distributional theory developed for this test
(asymptotic chi-squared) is only valid when ¢ can be
chosen independently of the sample. This is a restrictive
assumption in practice and may be valid only when ¢ is
chosen in an arbitrary way, such as t = n/2. In this
event, the test might have low power against many al-
ternatives of interest.

The SupF test dates back to Quandt (1960). Several
recent works have explored the distributional theory in
several contexts—those of Andrews (1990), Chu (1989),
and Hansen (1990). The only difficulty in implemen-
tation is the choice of the region J. As pointed out by
Anderson and Darling (1952) and emphasized by An-
drews (1990), the region J must not include the end-
points 0 and 1; otherwise the test statistic will diverge
to infinity almost surely. The fix suggested by Andrews
is to select 7 = [.15, .85]. Although a reasonable ap-
proach, this introduces an element of arbitrariness that
dilutes the appeal of the test.



The MeanF test statistic is derived from a different
hypothesis structure but is seen to be simply the average
F,, test. Although in principle the averaging can include
all values of 7 for which F,,, can be computed, in practice
some trimming will be required (since F,, will not be
defined over all ¢). Thus the arbitrariness associated
with the SupF test is not completely avoided. For the
remainder of the article, we set = [.15, .85] as for
the SupF test.

The L. test has a long history in statistical theory,
although it has not been fully understood until quite
recently. It was first proposed by Gardner (1969) as a
Bayes test for structural change. It was later indepen-
dently proposed by Pagan and Tanaka (1981), Nyblom
and Makelainen (1983), and King (1987). These works
all concerned tests on a single coefficient in a Gaussian
linear regression model. First attempts at a large-sample
distributional theory were made by Nyblom and Make-
lainen (1983), Nabeya and Tanaka (1988), and Ley-
bourne and McCabe (1989). A fairly complete theory
for maximum likelihood was given by Nyblom (1989)
and was extended to general econometric estimators by
Hansen (1990). It has the advantage that it is much
easier to compute than the SupF and MeanF tests and
requires no decisions for trimming, hence excluding any
form of arbitrariness.

The three proposed tests—SupF, MeanF, and L.—
are all tests of the same null hypothesis but differ in
their choice of alternative hypothesis. In practice, all
of the tests will tend to have power in similar directions,
so the choice may be made on the computational grounds
that L_ is much easier to calculate. But the appropriate
test statistic for a particular application should also de-
pend on the purpose of the test. If the desire is to
discover whether there was a swift shift in regime, then
the SupF test is appropriate. On the other hand, if one
is simply interested in testing whether or not the spec-
ified model is a good model that captures a stable re-
lationship, the notion of martingale parameters is more
appropriate, since it captures the notion of an unstable
model that gradually shifts over time. If the likelihood
of parameter variation is relatively constant throughout
the sample, then the L. statistic is the appropriate choice.

4. DISTRIBUTIONAL THEORY

The assumptions we require for the asymptotic dis-
tribution theory are summarized in the following. Let

{a,,} denote the a-mixing (strong-mixing) coefficients
for {u,}.

Assumptions. For some g > 8 > 5/2,

E(uw) = 0;

a,, are of size —qpB/[2(q — B)];

Sup121 Elullq < m;

Q) as defined in (3) exists with finite elements;
Qy, >0and Q,, > 0;

rank(Il,) = p,;

AR
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7.k =Q,t,¢2,...,t°),p=p, + p, — 1; and
8. M°in = 0(1).

For the random sequence {u}, the assumptions im-
pose weak dependence through fairly mild conditions
on the strong mixing coefficients. The moment condi-
tions are only slightly stronger than square integrability.
Assumption 5 implies that the elements of x3, are not
mutually cointegrated, that x,, does not contain a lagged
dependent variable, and that x4, and the error u,, are
not multicointegrated (see Granger and Lee 1990). As-
sumption 6 says that the vector k, plays a role in the
asymptotic behavior of x,,. Assumption 7 restricts the
vector k, to integer powers of time.

Set Y, = Z{_; u;. Our assumptions are sufficient for
the following results:

(1A/1)Y(y > B(r) = BM(Q); ©)
[nr] r
(/n) D, Yul, 1> , Bdb’ + rA; (10)
t=1
and
A -, A, Q -, . (11)

Here and elsewhere, “="" denotes weak convergence
of the associated probability measures with respect to
the uniform metric, and BM(Q) denotes a Brownian
motion with covariance matrix (). The invariance prin-
ciple (9) was shown by Herrndorf (1984). Convergence
to the matrix stochastic integral (10) was shown by Han-
sen (1992c). Consistent covariance parameter estima-
tion (11) was shown by Hansen (1992b).

We need to find a sequence of weight matrices that
will appropriately standardize the regressors x, and the
estimates A*. We adopt a method from Hansen (1992a).

Set 6, = diag(l,n"', n=2,...,n"P)and k(r) = (1,
r, 2, ...,r?). Thus
8,kiny) = k(r) as n — 12)

uniformly in r. Partition §, = diag(é,,, 5,,) and k(r) =
(ky(r), ky(r))’ in conformity with k,.

Equation (2) specifies that the stochastic regressors
x,, are driven by the processes ky,, k,,, and x3,. Since &,
is also in the levels regression, least squares will project
x5, orthogonal to k,,, leaving only k,, and x4,. We would
like to isolate the effects of the stochastic trends from
the deterministic trends. Construct an (m, + p,) X m,
matrix I1 in the null space of II,. The matrix IT} will
then annihilate the remaining deterministic component
k,, from x,,. Now define the weight matrix for x,,,

I, = 8, (ILIL) ~ I
2 (V)13 Q,103) 12113 )

and the weight matrix for x,,

— 6ln 0
F" - ( —FZnHI an>.
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To see that this is a good choice for weighting matrix,
note that

_ Blnklt
Lox, = (FZn(HZth + xgr))

alnklt
= | Ouky + 8,(ILIL) 'Mxg, |, (13)
(V)13 Q,115) ~ V2113 %3,
so by (9) and (12),
kq(r)

Loxp = (kz(’)) = X(r), say, (14)
Wa(r)

where W,(r) = (I13'Q,I15)~Y2I13'B(r) = BM(I,,).
Since [3XX' > 0 for all 7 > 0 (Phillips and Hansen 1990,
lemma A.2), I, is an appropriate weighting matrix for
the process x,. Equation (14) says that x, is asymptoti-
cally dominated by the trend processes k;(r) and k,(r)
and an m,-dimensional stochastic trend (W,).

The test statistics of Section 3 are functions of partial
sample sums. It will be convenient to express these sums
as functions of the space [0, 1]. Specifically, define

[n7]
Mn(T) = Mn[n-r] = 2 XX

i=1

and Vn(T) = Vn[n‘r] = Mn(T) - Mn(T)Mn(l)‘an(T)'
We can now find the function-space distributional limits
of these random functionals.

Theorem 1.

@ irmensMe= [ xx;

() STV, (AT V() = M(s) ~ MEM()-M(s);
1 [n7]

© Jeln S xwi > fo XdB,, + 7( A%l),

where uy = uy, — Q,05',;

(d) v%rhAa—y(O*).

21

-1
1 1
(e) Vn(A+-Ar;'> fo dB,.zX’( L XX’) ,
where B,, = BM(Q,.,) is independent of X(r), and
AZy = (T13"QpI13) ~ 12113 A,
All of the test statistics considered in Section 3 were
functions of the stochastic process S,,,. Three of the tests
were also functions of the process F,,. It will be con-

venient to write these also as functionals on [0, 1].
Define

[n7]
Sn(T) = Sn[n-r] = 121 §i
F,(n)= Fn[n-r]
= vec(S,(7)) Q1.2 ® V(1) 7! vec(S,(7)).

We are now in a position to analyze the asymptotic
distribution of these processes.

Theorem 2.
@ =
(b) F,(7)=>F(r)onT€JT;
where S*(1) = S(r) — M(7)M(1)~'S(1), S(7)

[iXaw,, F(r) = wr(S*(7)'V(r)~'8*(7)), and W,
02 B,., = BM(l,,), independent of X.

The process $*(7) is a tied-down version of the pro-
cess S(7), which is a continuous time martingale. Con-
ditional on ¥, = o(X(r): 0 = r = 1), the sigma field
generated by the process X(r), both are Gaussian pro-
cesses. Their conditional covariance functions are given,
for 1, = 7,

E(vec(S(m,))vec(S(2))'|%,) = L. @ M(7,)
E(vec(S*(my))vec(S*(12))'|F,) = L. ® (M(7)
= M(m)M(1)~'M(7y)).

L.8,(1) = $*(15;

/]

The distributional theory for the limit process of S,,(7)
is analogous to the distributional theory that arises in
models without trends; for example, see Nyblom (1989)
or Hansen (1990). In models without trends, we find

L

Va SA(7) > BX(7) = B(7) - (rM)M~'B(1)

= B(1) - 7B(1),

a Brownian bridge. In this expression, M > 0 is a con-
stant matrix. The difference between this result and
Theorem 2 arises because, in models without trends,
sample covariance matrices converge to constant matri-
ces. In models with stochastic trends, sample covariance
matrices are random variables that change over time.
Thus the expression for $*(7) depends on the matrix
process M(), representing the sample covariance struc-
ture of the regressors.

We can now give expressions for the asymptotic dis-
tribution of the test statistics from Section 3.

Theorem 3.
(@) F—ax3,b =0+ p + mymy;
(b) supF —, sup F(7);
TE

() MeanF —, L F(r)dr;

@ Lo [) sy M) 5°()).

The asymptotic distribution of the standard F test is
chi-squared. This test, however, as suggested earlier,
has limited applicability due to the restrictive nature of
the alternative hypothesis involved. The other test sta-



tistics are nonstandard and depend on the nature of the
trends in X (i.e., p, m;, and m,).

Theorem 3 shows that it is important to know the
trend properties of the regressors before a parameter
constancy test can be mounted. Since the asymptotic
distributions only depend on a few parameters, appro-
priate critical values can be tabulated. If X contains
only deterministic trends, then analytic methods are
available. Nabeya and Tanaka (1988) derived the
asymptotic distribution of L. for x, = k, (in our nota-
tion) and iid errors u,,. In this case, they have found
expressions for the characteristic function of the limiting
distribution. Their method does not immediately extend
to stochastic trends, so here I resort to simulation
methods.

The asymptotic distributions are approximated by
draws from samples of size 1,000 using iid normal
pseudorandom numbers. The calculations were made
in GAUSS386 using its random-number generator.
Critical values for the three tests are tabulated in Tables
1, 2, and 3 for the single equation setting (m; = 1).
The tables include p = 0,1,2and m, = 0, 1, 2, 3, 4.
For m, = 0, 1, 2, 25,000 replications were made. For
m, = 3, 4, 10,000 replications were made. The critical
values are noticeably different from those for the case
of weakly dependent data. (For the supF statistic, see
Andrews [1990, table 1]; for the MeanF and L, statis-
tics, see Hansen [1990, table 1].

The critical values of Table 1 are useful but require
applied researchers to frequently look up tables when
making computations. It is more convenient to have
computer packages produce p values along with test
statistics. What we want is a function p value = p(x),
which maps an observed test statistic x into the appro-
priate value in the range [0, 1]. This is of special interest
when the p value falls into the range [0, .2]. Suppose
that we can well approximate the function p(x) by a
low-order polynomial: p(x) = ay + a;x + ax? + ax3.
Then if we can obtain the parameters a = (aq, a,, a,,
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as;), we can easily generate approximate asymptotic p
values automatically in the course of calculating the
statistic.

To calculate the parameters, I evaluated 38 upper
percentiles from the Monte Carlo distributions, from
.20 to .015 in steps of .005. Then I regressed the per-
centiles on a third-order polynomial in the associate
critical values. For all cases, the fit was very good over
this region. Experimentation with extending up to the
.010 percentile indicated a worsened fit, so it was not
done. The estimated parameters are reported in Table
1. On their own, they are not interesting. But when
incorporated into a computer program, they reduce the
need to use tables. The polynomials should only be
viewed as approximations that can produce p values
over the region [.20, .015]. This is not a major handicap,
since a p value below .20 is rarely termed *‘significant.”

The distributional theory of this section is asymp-
totic. An investigation of the behavior of the test sta-
tistics in finite samples was undertaken by Gregory and
Nason (1991). These authors assessed the testing pro-
cedures described in this article by applying the tests in
the context of a linear-quadratic model. Their Monte
Carlo design involved sample sizes of 100, 200, and 500.
They found that the tests exhibited very little size dis-
tortion in these samples. They also found that the tests
had good power against simple structural breaks at the
first, second, and third quarter of the sample. The power
of the tests depended on a cost-of-adjustment param-
eter, which induces serial correlation into the cointe-
grating error. As the degree of serial correlation in the
error increases, the power decreases. This is not entirely
surprising, because a highly serially correlated error is
close to a random walk, which is equivalent to a random
walk in the intercept. The ability of the test to discrim-
inate between these two cases breaks down, and the
power falls. Overall, Gregory and Nason’s study casts
a favorable light on the finite-sample performance of
the test statistics advocated here.

Table 1. Asymptotic Critical Values for SupF

Significance level

p-value coefficients

m, p 1% 5% 10% a, a, a, as
0 1 16.4 129 11.2 1.954 -.373 .0245 —.00055
0 2 20.0 15.8 14.1 2.487 —-.400 .0219 —.00041
1 0 16.2 124 10.6 1.960 —-.350 .0213 —.00044
1 1 19.0 15.2 134 2.666 —.424 .0230 —.00043
1 2 22.0 17.8 15.9 3.480 —-.505 .0250 —.00042
2 0 18.6 14.8 13.0 3.182 —.491 .0258 —.00046
2 1 21.4 17.3 153 3.652 —-.511 .0243 —.00039
2 2 23.9 19.7 17.7 4.003 —-.508 .0219 —.00032
3 0 21.0 17.2 153 2.882 —.403 .0193 —.00031
3 1 23.9 19.3 17.3 3.248 -.397 .0163 —.00023
3 2 26.0 214 194 4.488 -.523 .0206 —.00027
4 0 23.6 19.0 171 3.522 —.449 .0194 —.00028
4 1 25.2 21.2 19.1 4.030 —.472 .0187 —.00025
4 2 28.0 23.2 21.0 5.341 —-.594 .0224 —.00029

NOTE: These tables are for the single equation model (m, = 1). Critical values are calculated by Monte Carlo simulation using samples
of size 1,000. 25,000 replications were made for m, = 0, 1, 2. 10,000 replications were made for mz = 3, 4.
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Table 2. Asymptotic Critical Values for MeanF

Significance level

p-value coefficients

m, P 1% 5% 10% a, a, a, a;
0 1 6.83 4.48 3.73 1.080 -.511 .0843 —.00478
0 2 8.85 6.22 5.11 1.595 -.613 .0818 —-.00374
1 0 6.78 4.57 3.73 1.008 —.470 .0773 —.00438
1 1 8.61 6.22 5.20 1.386 —.501 .0629 -.00271
1 2 104 7.76 6.50 1.641 —.479 .0479 —.00163
2 0 8.50 6.17 5.18 1.477 —.557 .0729 —.00326
2 1 10.3 7.69 6.58 1.818 —.556 .0607 —-.00223
2 2 11.9 9.12 7.88 2.121 —.550 .0489 —.00148
3 0 10.1 7.68 6.66 1.448 -.397 .0370 —.00117
3 1 12.0 9.21 7.89 2.22 —-.580 .0520 —.00159
3 2 134 104 9.15 2.640 —.609 .0480 —.00128
4 0 11.7 9.08 7.87 2.162 —-.563 .0505 —.00154
4 1 133 10.6 9.28 2.440 —.551 .0426 —.00113
4 2 15.0 11.9 104 3.287 —.702 .0512 —-.00127

NOTE: See Note to Table 1.

5. A TEST OF COINTEGRATION AGAINST
NO COINTEGRATION

Many applied econometricians believe that it is im-
portant that an econometric model be able to survive
statistical tests of the assumptions underlying that model.
In the case of estimating a cointegrating relationship,
a natural hypothesis to test is that of cointegration itself.
In contrast, most cointegration tests, such as those of
Engle and Granger (1987), Stock and Watson (1988),
Johansen (1988), and Phillips and Ouliaris (1990), take
the null to be no cointegration. The one notable ex-
ception is the spurious regressor test of Park, Ouliaris,
and Choi (1988).

The specification tests developed in Section 3 are
clearly tests of the model of cointegration proposed by
Granger (1981) and developed by Engle and Granger
(1987). It is, of course, possible to generalize the def-
inition of cointegration to allow a nonstationary linear
relationship between the variables, but this would be a
radical departure from the idea Granger originally put
forward. But does the model of no cointegration, con-

ventionally defined, fall into the set of alternatives con-
sidered by the specification tests considered here?
For simplicity, rewrite Model (1) as

Ve = A+ Ay + Uy (15) -

that is, assume that k,, is simply a constant. Assume
that y, and x,, are not cointegrated. This is equivalent
to the statement that the error u, is I(1). Now we can
decompose u, as u, = W, + v,, where W, is a random
walk (AW, is white noise) and v, is stationary. Thus
Equation (15) can be written as

Yy, = Ay + Axxy, + v, (16)

where A}, = A, + W,. Equation (16) is a special case
of (1), which is our model of cointegration with non-
stationary coefficients. Specifically, we can see that no
cointegration is equivalent to one coefficient, the in-
tercept, following a random walk. This is a special case
of the alternative hypothesis for which the L, statistic
is an LM test statistic. We conclude that L. is a test of
the null of cointegration against the alternative of no
cointegration.

Table 3. Asymptotic Critical Values for L.

Significance level

p-value coefficients

m, P 1% 5% 10% a, a, a, a,

0 1 723 .468 .361 .927 —3.536 477 -2225
0 2 .758 .480 .382 1.120 —3.644 4.155 —-1.628
1 0 .898 .575 450 .769 -3.432 5.471 -3.041
1 1 .959 .623 .497 .996 —3.493 4.311 -1.834
1 2 .999 .654 .520 1.171 —3.421 3.507 —1.240
2 0 1.03 .690 .556 .855 —-3.829 6.085 —3.342
2 1 1.13 .778 625 1.074 —-3.658 4.358 -1.778
2 2 1.19 814 .666 1.263 -3.511 3.404 -1.133
3 0 1.18 .834 .680 1.247 -3.393 3.235 —-1.066
3 1 1.29 .901 .752 1.430 -3.623 3.185 -.959
3 2 1.33 .954 .793 1.496 —3.636 3.075 —-.894
4 0 1.31 .934 .780 1.451 -3515 2.942 —.841
4 1 1.45 1.03 .866 1.694 -3.835 2.992 —.795
4 2 1.51 1.10 .922 1.726 -3.729 2.792 -.716

NOTE: See Note to Table 1.



The SupF and MeanF statistics are not specifically
targeted for the alternative of random-walk coefficients,
but they will have asymptotic power against this alter-
native as well.

Interestingly, there is a connection between the SupF
test, the MeanF test, and the spurious regressor test of
Park et al. (1988). For each ¢, F,, is the F test for the
significance of sample-split slope dummies. In the ter-
minology of Park et al. (1988), these are “spurious
trends.” By the same argument used by these authors,
each F,, statistic is consistent against the alternative of
no cointegration. Therefore, the SupF and MeanF sta-
tistics will be also.

There is another intuitive concept linking no coin-
tegration and parameter instability. Under the null of
cointegration, regression coefficient estimates converge
uniformly in different parts of the sample space to the
cointegrating relationship. Under the alternative of no
cointegration, however, the regression estimates con-
verge to random variables, which will take on different
values in different samples. See Phillips (1986). Thus
sequential parameter estimates will display apparent
parameter instability. This simple observation implies
an important message. Rejection of the null of constant
parameters does not imply the particular alternative the
test was designed to detect. There are many possibili-
ties. If the SupF test rejects, for example, it would be
quite inappropriate to conclude (on this piece of evi-
dence alone) that there were two cointegrating regimes,
which shifted at a particular point in the sample. The
only statistically justified conclusion is that the standard
model of cointegration, including its implicit assump-
tion of long-run stability of the cointegrating relation-
ship, is rejected by the data.

6. APPLICATIONS

We now apply this testing method to three applica-
tions. In each example, the fully modified estimation
method is used. The covariance parameters are esti-
mated using a QS kernel on residuals prewhitened with
a VAR(1). (All of the reported regressions were also
estimated using the Parzen and Bartlett kernels, and
the results were nearly identical.) The bandwidth pa-
rameter was selected according to the recommendations
of Andrews (1991), using univariate AR(1) approxi-
mating models. In all regressions reported, the esti-
mates and standard errors are the fully modified esti-
mates of Phillips and Hansen (1990). The estimated
plug-in bandwidth parameter (M) is reported. All of
the SupF and MeanF statistics are calculated using the
trimming region [.15, .85]. The constancy test statistics
are reported along with their asymptotic p values (in
parentheses), which are calculated according to the
method of Section 4.

6.1 Aggregate Consumption Function

The notion of an aggregate relationship between con-
sumption and income has a long history in macroeco-
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nomics. In a recent article, Campbell (1987) showed
that a strict infinite-horizon permanent-income model
yields a cointegrating relationship between aggregate
consumption and aggregate disposable income. We
can now test the constancy of this cointegrating rela-
tionship.

The data, from Blinder and Deaton (1985), are sea-
sonally adjusted aggregate quarterly U.S. consumption
and total disposable income (DI,) in real per capita
units, for the period 1953:2-1984:4. Campbell esti-
mated the equation for both total consumption (TC,)
and nondurables and services consumption (NDS,). In
the following regressions, a constant and a time trend
were included:

TC, = —113 + —1.02r + .982D],
(194)  (1.83)  (.088)
M = .89
SupF = 12.3 (.15)
MeanF = 6.2 (.05)
Lc = .51 (.09);

NDS, = 518 + 2.96t + .526D],

(103)  (.97)  (.047)
M= 97
SupF = 8.7 (>.20)
MeanF = 3.0 (>.20)

Lc = .14 (>.20).

First, examine the fully modified estimates. It ap-
pears that the corrections are having an important ef-
fect. The OLS estimates of the first equation, for ex-
ample, yield a coefficient for disposable income of .85
rather than the economically more plausible .98. Note
that the estimated bandwidth parameter for both equa-
tions is less than 1, indicating that nearly all of the serial
correlation in the residuals was captured by the pre-
whitening procedure.

The tests when applied to the first equation do not
yield clear results, with p values ranging from .05 to
.15. Although the evidence suggests that the relation-
ship may indeed be unstable, the data are not suffi-
ciently informative to be able to reject the null of sta-
bility. On the other hand, the second equation (for
nondurables and services consumption) does not sug-
gest instability at all, since none of the test statistics are
significant at the 20% level. These results (for both
equations) are robust to the choice of kernel and whether
the equations are estimated after taking logarithms.

It is informative to visually examine the sequence of
F statistics for structural change. Figures 1 and 2 display
these sequences for each regression, along with 5%
critical values for its largest value (SupF), its average
value (MeanF), and for a fixed known breakpoint.
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Figure 1. Total Consumption, 1953—1984: ——, F Statistic Sequence; ——, 5% Critical, SupF; . . . .. , 5% Critical, MeanF; ---, 5% Critical,

Known Break.

6.2 Present-Value Model

Campbell and Shiller (1987) argued that a standard
rational-expectations model of asset markets implies
that real stock prices and dividends should be cointe-
grated. Using price (P,) and (D,) indexes for the period

1871-1986, they found evidence to support this claim.
In a later series of articles, Campbell and Shiller (1988a,b)
argued for a logarithmic approximation that implicitly
assumes that the logarithms of the price and dividend
indexes are cointegrated. Using their data, we can test
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Figure 2. NDS Consumption, 1953—1984: ——, F Statistic Sequence; ——, 5% Critical, SupF; . . ... , 5% Critical, MeanF; ---, 5% Critical,

Known Break.



the stability of each specification:

P, = —.15 + 32.1D,
(06) (3.5

M = .78

SupF = 6.9 (>.20)

MeanF = 3.3 (.14)

L¢ = .30 (>.20);

In(P) = 4.44 + 133 In(D,)
(51)  (.12)

M = 1.07

SupF = 11.7 (.06)

MeanF = 5.1 (.03)

Le = .35 (.18).

The levels equation yields estimates very close to
those from OLS (which gives a slope coefficient of 31.1).
This corresponds to a long-run real-interest rate of 3.1%,
which, as noted by Campbell and Shiller (1987), is be-
low the sample mean return of 8.2%. The relationship
appears very stable, however, with no significant test
statistics. The plot of the sequence of F statistics is
displayed in Figure 3.

The logarithmic specification does not perform as
well. The model predicts that the slope coefficient should
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be unity, but the point estimate is significantly above
this value. The SupF and MeanF tests statistics suggests
that the relationship is not stable. The plot of the se-
quence of F statistics is displayed in Figure 4.

This evidence suggests that stock prices and dividends
are indeed cointegrated, but the logarithmic approxi-
mation used by Campbell and Shiller (1988a,b) may be
misspecified.

6.3 Term Structure of Interest Rates

The theory of the term structure of interest rates
suggests that, if interest rates can be characterized as
I(1) processes, then they should be cointegrated. Stock
and Watson (1988), for example, tested for cointegra-
tion among three postwar U.S. interest rates and found
evidence of two cointegrating vectors (i.e., only one
common trend). They used monthly data from January
1960 to August 1979, presumably to exclude a possible
regime shift in the term structure due to the change in
the Federal Reserve’s operating procedures in 1979. We
now test the hypothesis that these relationships are sta-
ble over the entire period from January 1960 to March
1990. We use the same series—the federal funds rate
(FF), the 90-day treasury-bill rate (TB3), and the one-
year treasury-bill rate (TB12)—and obtained the series
from the Citibase data base.

We report the results of two fully modified regres-
sions, TB3 on TB12 and TB3 on FF (the regression of
TB12 on FF yields results very similar to the regression
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Figure 3. Stock Prices and Dividends, 1871—-1986: ——, F Statistic Sequence; ——, 5% Critical, SupF; . . ... , 5% Critical MeanF; ---, 5%

Critical, Known Break.
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Figure 4. Logged Stock Prices and Dividends, 1871~1986: ——, F Statistic Sequence; ——, 5% Critical SupF; . . . .. , 6% Critical, MeanF;

---, 5% Critical, Known Break.

of TB3 on FF):
TB3, = —.62 + 1.06TB12,
(:22) (.03)
M =254
SupF = 3.6 (>.20)
MeanF = 1.6 (>.20)
Lo = .21 (>.20);
TB3, = .49 + .83FF,

(14)  (.02)
M =251
SupF = 22.8 (.01)
MeanF = 8.4 (.01)
Lc = 45 (.06).

Over the entire period, it appears that the two treasury-
bill rates are cointegrated with a stable relationship,
with a near-unity slope coefficient. This is strong sup-
port for the theory of the term structure. In contrast,
the relationship of the treasury-bill rate with the federal-
funds rate appears unstable, with the SupF and MeanF
statistics highly significant. Figures 5 and 6 display the
sequences of F statistics for the two regressions. The
sequence for the second regression crosses the 5% SupF
critical value several times, achieving its maximal value
approximately in 1980. This supports the conjecture
that the change in the Federal Reserve’s operating pro-
cedures altered the relationship between some interest
rates. It is interesting that this regime shift only appears

to have affected the relationship between the federal-
funds rate and the treasury-bill rates but not the rela-
tionship between the treasury-bill rates of different
maturities.

7. CONCLUSION

As shown by example in Section 6, in some appli-
cations the three test statistics (SupF, MeanF, and L,)
may appear to be in conflict. There is no reason why
all three tests should reject (or not reject) at a particular
level of significance in a particular sample. The tests
are looking in different directions and will have more
power against some alternatives than others. All of the
tests, however, will have asymptotic power against the
same set of alternatives. The possibility of conflicting
test statistics is not new to applied economists. There
are many tests for heteroscedasticity, for unit roots, for
cointegration, and so forth. The same care needs to be
exercised in the present context. Calculation of all three
test statistics seems the most judicious suggestion at this
time.

The tests were described here using the Phillips—Hansen
fully modified estimator. This is not the only possibility.
It is quite straightforward to calculate the test statistics
for other asymptotically efficient estimates of cointe-
grating vectors, such as the MLE due to Johansen (1988)
or the “leads and lags” estimator of Saikkonen (1991)
and Stack and Watson (1991). Since the estimators are
asymptotically equivalent, the test statistics would have
the same asymptotic distributions as those tabulated in
this article. It is quite likely, however, that the asymp-
totic proofs would be more difficult. '

This article only discussed joint tests on all of the
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Figure 5. Three-Month and One-Year Treasury-Bill Rates, 1960—1990: ——, F Statistic Sequence; —~, 5% Critical SupF; . .. ... , 5%

Critical MeanF; ---, 5% Critical, Known Break.

regression parameters in a cointegrating regression. It
should be possible to extend these results to tests on a
subset of the parameters as well. This will be left to
future research.
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APPENDIX: PROOFS OF THE THEOREMS

Proof of Theorem 1

(a) The finite-dimensional result is immediate from
(14). Weak convergence follows from the continuous
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mapping theorem (see Billingsley 1968, p. 30) since

M(7) is a continuous function of 7 and X(-).
(b) This follows from part (a) and continuity.
(c) By (13) and theorem 4.1 of Hansen (1992c),
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by parts (a), (c), and (d), and (11).

Proof of Theorem 2

(a)
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by Theorem 1 and the continuous mapping theorem.
(b)
Fy(1) = t{S,(1)' V(1) "'Su(1 Qi3

1 -1
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Proof of Theorem 3

Part (a) follows from Theorem 2 (b) and the fact that
conditional on %,, for any » € 7, vec(S*(7)) = N(0,
0., ® V(1)), and therefore

F(7)ls, = x3-

Since this distribution is independent of ., it is the
unconditional distribution as well.

Part (b) follows from Theorem 2(b) and the contin-
uous mapping theorem.

Part (c) follows from Theorem 2(b), the continuous
mapping theorem and the fact that [;F(7)dr is well
defined.

Part (d) follows from Theorem 1(a), Theorem 2(a),
and (11).

[Received January 1991. Revised January 1992.]
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