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Factor-augmented regression is widely applied to forecasting
in a data-rich environment. For most papers in the literature, a
small number of factors are assumed to generate the comove-
ment of a large number of predictors, see Stock and Watson
(2002). In this inspiring article, Carrasco and Rossi look at the
problem from a fresh angle: they relax this key assumption and
provide a comprehensive investigation of various regulariza-
tion methods under misspecified factor models. Their theoreti-
cal results derived under different types of sparsity conditions
deepen our understanding of estimation and forecasting with
large dataset and serve as important practical guidance.

This discussion follows the lead by Carrasco and Rossi and
extends the study to several model averaging methods. First,
we extend the simulation study in Cheng and Hansen (2015,
hereafter CH) on forecast model selection and forecast model
averaging by allowing, as in Carrasco and Rossi, for a large num-
ber of factors. We find that forecast combination by multi-step
cross-validation (CV) is reasonably robust to the large factor
setting. Second, we extend the simulation study in Carrasco
and Rossi to include our proposed frequentist model averaging
methods. In their simulation design, we find that model aver-
aging (forecast combination) across factor models has lower
MSFE than model selection in small samples, but the methods
have similar MSFE in large samples.

We first summarize the frequentist model averaging methods
considered by CH and second present the simulation results.
Finally, we conclude with some additional remarks.

Frequentist Model Averaging. Following CH, we consider
forecasting with the factor-augmented regression model yt+h =
α0 + α(L)yt + β(L)′Ft + εt+h, where h ≥ 1 is the forecast
horizon, α(L) and β(L) are lag polynomials of order p and
q, respectively, and Ft ∈ R

r are unobserved common factors
satisfyingXit = λ′

iFt + eit .As discussed by Bai and Ng (2009)
and Carrasco and Rossi, important factors in the panel may
not be important for forecasting. CH treats the structures of
α(L) and β(L) as unknown and introduce methods to se-
lect the factors and lag structures for forecasting. Assuming
p ≤ pmax and q ≤ qmax for some large numbers pmax and qmax,

the largest possible approximating model includes the regressors
zt = (1, yt , . . . , yt−pmax , F

′
t , . . . , F

′
t−qmax

)′.Now suppose that the
forecaster is considering M approximating models indexed by
m = 1, . . . ,M, where each approximating model m specifies a
subset zt (m) of the regressors zt . The forecaster’s mth approxi-
mating model is then yt+h = zt (m)′b(m) + εt+h(m).

For estimation, we replace the unobservable factor Ft by its
principle component estimate F̃t . Let b̂(m) denote the least-

squares estimate of b(m) based on the mth approximating
model and ε̂t+h(m) = yt+h − z̃t (m)′b̂(m) denote the residual.
The least-squares forecast of yT+h by the mth approximat-
ing model is ŷT+h|T (m) = z̃T (m)′b̂(m). Forecast combinations
take the form ŷT+h|T (w) = ∑M

m=1w(m)̂yT+h|T (m), where 0 ≤
w(m) ≤ 1 for m = 1, . . . ,M and

∑M
m=1w(m) = 1, or equiva-

lently that w = (w(1), . . . , w(M))′ ∈ HM, the unit simplex in
R
M. We choose w by the Mallows averaging criterion (Hansen

2007) and leave-h-out CV criterion (Hansen 2010; Hansen and
Racine 2012).

The Mallows averaging criterion is

CT (w) = 1

T

T∑
t+h=1

(
M∑
m=1

w(m)̂εt+h(m)

)2

+2σ̂ 2
T

T

M∑
m=1

w(m)k(m), (1)

where k(m) denotes the number of regressors in the mth model
and σ̂ 2

T is a preliminary estimate of σ 2 = Eε2
t . The Mallows

selected weight vector is ŵ = argminw∈HM CT (w).
To apply leave-h-out CV Averaging, let ε̃t,h(m) be the resid-

ual obtained by least-squares estimation of the mth model
with {t − h+ 1, . . . , t + h− 1} omitted. For forecast com-
bination, the leave-h-out prediction residual is ε̃t+h,h(w) =∑M

m=1w(m)̃εt+h,h(m) and the leave-h-out CV criterion is

CVh,T (w) = 1

T

T∑
t=1

ε̃t+h,h(w)2

= 1

T

T∑
t=1

(
M∑
m=1

w(m)̃εt+h,h(m)

)2

. (2)

The CV selected weight vector is ŵ = argminw∈HM CVh,T (w).
For both Mallows averaging and leave-h-out CV averaging, re-
placing HM byw(m) ∈ {0, 1} and

∑M
m=1w(m) = 1 changes the

model averaging method to the corresponding model selection
method.

Simulation Design in Cheng and Hansen (2015). We
first consider the simulation design in CH, which follows a
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Figure 1. MSFE for simulation design in Cheng and Hansen (2015). Note: The MSFE of the least-squares forecast with all regressors is
normalized to be 1. CVAh is leave-h-out cross-validation averaging. MMA is Mallows model averaging. BMA is Bayesian model averaging.
CVh is model selection with leave-h-out cross-validation. BIC is model selection with Bayesian information criterion.

similar design in Bai and Ng (2009). The data-generating
process (DGP) of the panel data is xit = λ′

iFt +
√
reit ,

the jth component of Ft follows from Fjt = αjFjt−1 + ujt ,

eit = ρieit−1 + ξit , and the DGP for the forecast regression
equation is yt+h = β ′(F2t , F4t , F2t−1, F4t−1, F2t−2, F4t−2) +
εt+h and εt+h = vt+h + πvt+h−1 + · · · + πh−1vt+1, where
(ujt , ξit , vt+h, . . . , vt+1) ∼ N (0, Ih+2) is iid over t, for all
j and i. We consider r = 4, 20, 40 and h = 1, 4 in the
cases presented in Figure 1. The parameter values are
αj ∼ U [0.2, 0.8], ρi ∼ U [0.3, 0.8],λi ∼ N (0, rIr ), β = c ·
(0.5, 0.5, 0.2, 0.2, 0.1, 0.1). The constant c is a scaling param-
eter ranging from 0.2 to 1.2 for h = 1. For multi-step-ahead
forecasting, the moving average parameter π ranges from 0.1
to 0.9 and the scale parameter c is held at 1. The sample size
is N = 100 and T = 100. For lag length choices, pmax = 4
and qmax = 4. The number of simulation repetitions is 10,000.
The true number of factors is unknown in practice, therefore we
start by selecting the number of factors using the information

criterion ICp2 recommended by Bai and Ng (2002). The mean
squared forecast error (MSFE) of least-squares forecast with all
regressors is normalized to be 1.

Panel A of Figure 1 is the standard case where r = 4, much
smaller than N = T = 100. For h = 1, CH show that Mallows
model averaging and leave-h-out CV averaging perform better
than Bayesian model averaging (BMA)1, simple averaging with
equal weights, leave-h-out CV model selection, Mallows model
selection, AIC, and BIC.2 For h = 4, CH show that leave-h-out
CV averaging performs best when the forecast error exhibits
strong serial dependence. These patterns are demonstrated in
Panel A. In an empirical study, CH further show that leave-h-out

1Our BMA weights are set as w(m) =
exp(−BIC(m)/2)/

∑M
i=1 exp(−BIC(i)/2), where BIC(m) is the BIC for

the mth model. This is an approximate BMA for the case of equal model priors,
and diffuse model priors on parameters.
2Some results are not plotted due to space limit.
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Figure 2. MSFE for Simulation Design in Carrasco and Rossi (2016).

CV averaging compares favorably to many shrinkage methods
considered by Stock and Watson (2012).

Panels B and C of Figure 1 consider r = 20 and r = 40,
respectively. These results extend the study in CH to misspec-
ified factor models because the theory in CH assumes that r
is much smaller than N and T . For r = 20 and h = 1 we find
mixed results, with the MSFE of BMA and BIC sensitive to
the signal-to-noise ratio (c). They have lower MSFE for small
c but leave-h-out CV averaging has lower MSFE for larger c.
For h = 4 the CV averaging method has the lowest MSFE for
nearly all signal-to-noise values. For r = 40, BMA and BIC
have improved performance relative to leave-h-out CV averag-
ing, though the methods are nearly equivalent for h = 4.

Simulation Design in Carrasco and Rossi (2016). Here,
we consider DGP1 and DGP2 in Carrasco and Rossi to com-
pare different procedures under r = 4 and r = 50.We consider
N = 100 and T = 50, 100, 200, 300 for h = 1. The MSFE is
computed as the average over 10, 000 simulation repetitions,
where for each sample periods 1 to T − 1 are used to forecast
period T . No lags of Yt or Ft are used in this forecasting. The
largest number of factors rmax follows that in Carrasco and
Rossi.

Figure 2 plots the MSFE relative to the least-squares forecast
with all regressors, where the number of factors is estimated by
the Bai and Ng (2002) criterion PCp2 as in Carrasco and Rossi.
For DGP1 where r = 4, all methods work equally well as ex-
pected. For DGP2 with 50 relevant factors and T = 50, we find
that our recommended leave-h-out CV has meaningfully lower
MSFE than BMA and BIC selection. These advantages dimin-
ish for T = 100 and disappear for T = 200 and 300, where
all methods have similar MSFE.3 Table 2 in Carrasco and Rossi
suggests that some of their procedures, in particular the Landwe-
ber Fridman method, have even better forecasting performance
than the methods considered in Figure 2 for r = 50,N = 100
and T = 50.

The message from Figure 2 is that once again there are large
potential gains from model averaging across factor models, even

3We also have considered using Bai and Ng (2002) ICp2 criterion to select the
number of factors, as in CH. For DGP 1 where r = 4, these two criteria have
similar performances. For DGP 2 where r = 50, and thus the factor model is
severely misspecified, ICp2 produces a much smaller estimate for T = 50 and
N = 100. Sometimes ICp2 selects 0 factor in this misspecified case. When this
happens, we apply all procedures in Figure 2 with the number of factors set
to 10. Overall, we see the same pattern as that in Figure 2: Mallows model
averaging and CV averaging have some advantages over the other procedures
for T = 50 and T = 100 and these advantages disappear for larger T .

in the high-dimensional context of large factor models. We find
the most substantial reductions in MSFE for the case of small
samples (T = 50), but this is precisely the context where the
gains are most important.

Conclusion and Discussion. This thought-provoking article
by Carrasco and Rossi has shown that it is important to consider
methods that are robust to meaningful perturbations from classi-
cal assumptions on models for large-scale data. Our simulation
studies show that the CV averaging method continue to domi-
nate various popular alternatives in models with a large number
of factors, robustifying the observation in CH in the direction
pointed by Carrasco and Rossi. On the other hand, some reg-
ularization methods coupled with the tuning parameter choice
proposed by Carrasco and Rossi have shown even greater po-
tential when the sample size is moderate. Combining these two
observations, it would be interesting to see in future research
(i) whether the leave-h-out CV criterion could be used for tun-
ing parameter selection in the context of the proposed methods
of Carrasco and Rossi; and (ii) whether further improvements
could be obtained by forecast combination across classes of reg-
ularization methods, in particular by using the leave-h-out CV
criterion for weight selection.
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