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ABSTRACT
This paper makes a case for the use of jackknife methods for standard error, 𝑝 value, and confidence interval construction for
difference-in-difference (DiD) regression. We review cluster-robust, bootstrap, and jackknife standard error methods and show
that standard methods can substantially underperform in conventional settings. In contrast, our proposed jackknife inference
methods work well in broad contexts. We illustrate the relevance by replicating several influential DiD applications and showing
how inferential results can change if jackknife standard error and inference methods are used.

1 | Introduction

Difference-in-difference (DiD) regression is one of the most com-
mon empirical tools in current applied economic practice. The
vast majority of applications report standard errors clustered at
the level of treatment. These standard errors, however, are biased
towards zero, and the magnitude of bias can be arbitrarily severe.
As a consequence, conventionally reported standard errors, 𝑝 val-
ues, and confidence intervals are unreliable.

In this paper, we argue that two simple changes can greatly alle-
viate these problems. First, standard error calculation should be
made by the jackknife. If the jackknife is implemented as pro-
posed, the variance estimator is guaranteed to be never down-
ward biased. Jackknife variance estimation is simple to imple-
ment and is computationally efficient when there are a moderate
number of clusters, which is typical in applications.

The second change we recommend is the use of adjusted student
𝑡 𝑝 values and confidence intervals based on a finite-sample distri-
butional approximation. These 𝑝 values and confidence intervals
are typically more conservative than conventional methods and
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provide more accurate inferences in simulations. The adjusted
student 𝑡 approximation is computationally simple to implement,
allowing for routine default use.

To illustrate the methods, we investigate a set of results from
four influential DiD applications: Card and Krueger (1994),
Bailey (2010), MacKinnon and Webb (2020), and Rao (2019).
Using the original data from these papers, we calculate standard
errors, 𝑝 values, and confidence intervals both by conventional
cluster-robust and our proposed jackknife methods. We find that
some results change considerably, while other results are unaf-
fected. These examples illustrate the magnitude of the changes
due to our proposed changes in relevant applications.

Heteroskedasticity-robust covariance matrix estimation was
introduced to econometrics by White (1980), building on the
work of Eicker (1963) and Huber (1967). This family of estimators
is often abbreviated as HC (for heteroskedasticity-consistent).
This class of estimators includes HC0 (White 1980), HC1 (Hink-
ley 1977), HC2 (MacKinnon and White 1985), and HC3 (MacK-
innon and White 1985). (For definitions of these estimators, see
Appendix A.1.)
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In the context of heteroskedasticity-robust variance estimation,
a substantial literature has developed investigating the poor per-
formance of HC0 and HC1. This literature includes MacKinnon
and White (1985), Chesher and Jewitt (1987), Chesher (1989),
Chesher and Austin (1991), Long and Ervin (2000), and
Young (2019). This literature has coalesced on the recommenda-
tion to switch to HC3/jackknife standard errors, which are simple
to calculate, never-downward-biased, and robust to a variety of
regressor settings.

There is also a literature exploring unbiased or approximately
unbiased variance estimators, including Bera, Suprayitno, and
Premaratne (2002), Cattaneo, Jansson, and Newey (2018), and
Kline, Saggio, and Solvsten (2020). These estimators can be com-
putationally prohibitive in large samples, are not necessarily non-
negative, and have not yet been generalized to cluster-robust
estimation.

Cluster-robust variance estimation was introduced by Liang and
Zeger (1986) and Arellano (1987) as a natural extension of
the heteroskedasticity-robust variance estimator. The common
implementation codified by the Stata cluster variance option
adds an ad hoc degree-of-freedom correction as an analog to the
HC1 estimator. Since the influential work of Bertrand, Duflo, and
Mullainathan (2004), this estimator has become the ubiquitous
approach for standard error construction for DiD regression.

An analog of HC2 was proposed by Bell and McCaffrey (2002),
endorsed by Imbens and Kolesár (2016), and codified in Stata 18.
An analog of HC3 was proposed and evaluated by MacKinnon,
Nielsen, and Webb (2023a, 2023b, 2023c). MacKinnon, Nielsen,
and Webb (2023b) develop an efficient jackknife computational
implementation. Hansen (2024) analyzed the statistical proper-
ties of this estimator with some modifications, and showed that
this is the only known cluster-robust variance estimator (CRVE)
which is never downward biased.

A number of papers investigate the poor performance of
cluster-robust methods in regressions with a small number of
clusters and/or a small number of treated clusters. This includes
Ibragimov and Müller (2016), Rokicki et al. (2018), Ferman
and Pinto (2019), Hagemann (2019), and Niccodemi and Wans-
beek (2022).

The jackknife estimator of variance was introduced by
Tukey (1958) and was developed in the monographs of
Efron (1982) and Shao and Tu (1995). Efron and Stein (1981)
examined its statistical properties and showed that a version
of the jackknife estimator is never downward biased in certain
settings.

A modified student 𝑡 distributional approximation to 𝑡 ratios con-
structed with the Bell–McCaffrey standard error was proposed
by Bell and McCaffrey (2002), Imbens and Kolesár (2016), and
Pustejovsky and Tipton (2018), and a related method for the con-
ventional cluster-robust 𝑡 ratio was proposed by Young (2016).
Inference based on the Wild bootstrap was proposed by Cameron,
Gelbach, and Miller (2008) and its statistical properties investi-
gated by Djogbenou, MacKinnon, and Nielsen (2019) and Canay,
Santos, and Shaikh (2021). Randomization inference was pro-
posed by MacKinnon and Webb (2020).

The performance of cluster-robust methods deteriorates when
there are a small number of treated clusters. In the extreme
case of one treated cluster, conventional inference methods fail.
In contrast, as shown by Hansen (2024), a properly constructed
jackknife variance estimator remains never-downward-biased in
this context, resulting in conservative inference (100% coverage).
Other methods have been developed for inference with a single
treated cluster under somewhat stronger assumptions by Conley
and Taber (2011) and Hagemann (2023).

A Stata and R program jregress that calculates our recom-
mended jackknife method is available on the author’s website
users.ssc.wisc.edu/˜bhansen/, in addition to data and
code for full replication of all numerical results reported in this
paper.

2 | Framework

The ubiquitous DiD equation is the clustered two-way fixed effect
regression

𝑌
𝑖𝑔𝑡
= 𝜃𝐷

𝑖𝑔𝑡
+ 𝛾 ′𝑍

𝑖𝑔𝑡
+ 𝛼

𝑔
+ 𝜙

𝑡
+ 𝑒

𝑖𝑔𝑡
, (1)

where 𝑔 = 1, … , 𝐺 denotes group/cluster, 𝑖 denotes individual,
and 𝑡 denotes the time period. The variable 𝑌 is the outcome,
the binary variable 𝐷 is treatment status, the vector 𝑍 contains
a set of possible controls, 𝛼

𝑔
is a group-level fixed effect, 𝜙

𝑡
is a

time-level fixed effect, and 𝑒 is a regression error. Typically, the
treatment 𝐷 applies to a subset of groups (the treated groups) for
a subset of time periods (the treatment period). The coefficient
𝜃 is often the primary parameter of interest and equals the aver-
age treatment effect on the treated (ATT) under a set of widely
studied conditions.1 The observations are typically assumed to
be cluster dependent within each group and independent across
groups.

In the model (1), it is possible for the same individuals to be
observed each time period or for different individuals to be
observed in each period. The “time” index can also be a stand-in
for other subgroupings, such as different classrooms within a
school.

While the classic DiD model (1) specifies fixed effects coincident
with the level of clustering, many applications deviate from this
structure. Some applications, for example, include a smaller set of
fixed effects, presumably for small sample considerations. Other
applications may include more extensive interactive fixed effects.
To allow these possibilities, we generalize (1) by allowing gen-
eral fixed effects specifications, absorbing all fixed effects into the
control vector 𝑍

𝑖𝑔𝑡
by inclusion of a suitable set of fixed effect

dummy variables, and notationally omitting 𝛼
𝑔

and 𝜙
𝑡

from the
regression.

Notationally, let 𝑋
𝑖𝑔𝑡
= (𝐷

𝑖𝑔𝑡
, 𝑍

′
𝑖𝑔𝑡
)′ denote the 𝑘 full set of regres-

sors including all fixed effects, and let 𝛽 be the full set of coeffi-
cients. Stacking the observations by cluster, this regression model
can be written at the cluster level as

𝒀
𝑔
= 𝑿

𝑔
𝛽 + 𝒆

𝑔
. (2)

Journal of Applied Econometrics, 2025292

 10991255, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.3110, W

iley O
nline L

ibrary on [05/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://users.ssc.wisc.edu/~bhansen/


The coefficients of (2) are typically estimated by least squares.
This equals

𝛽 =

(
𝐺∑
𝑔=1
𝑿
′
𝑔
𝑿

𝑔

)−1(
𝐺∑
𝑔=1
𝑿
′
𝑔
𝒀
𝑔

)
. (3)

In the classic DiD model (1) with group and time fixed effects,
this corresponds to the two-way fixed effects estimator. The
least squares estimator (3) is the dominant estimator of DiD
regressions in empirical applications and therefore is our focus.
However, the general ideas should be generalizable to other
estimators.

We are interested in standard error construction and inference on
the coefficients in (2).

We illustrate our goals with a well-known application. Card
and Krueger (1994) estimated the effect of the 1992 increase
of the New Jersey minimum wage on worker hours, by sur-
veying fast-food restaurant employee hours both before the
wage increase (February–March 1992) and after the wage
increase (November–December 1992) in a sample of restau-
rants in New Jersey and eastern Pennsylvania. Their estimate
can be calculated by a linear regression of restaurant hours on
three variables: (1) treatment (a binary indicator for New Jer-
sey after the wage increase), (2) state (a binary indicator for
New Jersey), and (3) time (a binary indicator for the postin-
crease period). We calculate and report these regression esti-
mates in Table 1, along with conventional clustered standard
errors.

We present the output as commonly displayed by regression
packages. This is a list of all variables included in the regres-
sion. For each variable is displayed its coefficient estimate,
standard error, 𝑡 ratio, 𝑝 value (for the test of the hypothesis
that the coefficient equals zero), and a 95% confidence inter-
val. Each of these pieces is useful to the researcher in their
evaluation of the regression estimates, even though only a
subset of this information is typically reported in a research
paper.

After the coefficient estimate itself, the second most important
statistic reported is the standard error. It is a direct measure of pre-
cision and is also the foundation for the reported 𝑡 ratio, 𝑝 value,
and confidence interval.

Our contention is that all statistics displayed in this table are
important, as all are examined by an empirical researcher in
the course of their investigation. It is desirable for all default
reported statistics to be accurate in broad settings without user
intervention. There should be default choices for their calcu-
lation which are reasonably accurate in any regression setting.
It is important that these default methods apply to all coeffi-
cient estimates (not just a single estimate of interest), as the full
regression output is often studied by researchers, even if the full
model is not reported in their paper. Finally, it is important that
default methods are computationally efficient, as users require
quick results for routine calculations. These goals motivate our
proposals.

3 | Variance Matrix Estimation

The most common method for variance matrix estimation for (3)
is the CRVE of Liang and Zeger (1986) and Arellano (1987) with
a degree of freedom correction. This equals

�̂� 1 =
𝐺(𝑛 − 1)

(𝐺 − 1)(𝑛 − 𝑘)
(
𝑿
′
𝑿
)−1

(
𝐺∑
𝑔=1
𝑿
′
𝑔
�̂�
𝑔
�̂�
′
𝑔
𝑿

𝑔

)(
𝑿
′
𝑿
)−1

, (4)

where �̂�
𝑔
= 𝒀

𝑔
−𝑿

𝑔
𝛽 is the least squares residual vector for

the 𝑔 th cluster, 𝑛 is the total number of observations, and 𝑘 is
the total number of regressors. We call the estimator (4) CRVE1.
The CRVE1 estimator (4) is the natural cluster-dependence gen-
eralization of the heteroskedasticity-robust estimator HC1 (see
Equation A2).

The CRVE1 estimator is simple and intuitive. However, it can be
highly downward biased. Indeed, Hansen (2024) shows that the
downward bias of �̂� 1 can be arbitrarily large. One consequence of
this downward bias is that confidence intervals constructed using
CRVE1 standard errors can have coverage rates arbitrarily close
to zero.

An alternative is the variance estimator of Bell and McCaf-
frey (2002), promoted by Imbens and Kolesár (2016). It is moti-
vated as an unbiased estimator under the auxiliary assumption
that the errors 𝑒

𝑖𝑔𝑡
are i.i.d. Define the partial projection matrices

𝑴
𝑔
= 𝑰

𝑛
𝑔

−𝑿
𝑔

(
𝑿
′
𝑿
)−1
𝑿
′
𝑔
, (5)

let 𝑨1∕2 denote the symmetric square root of the matrix 𝑨, and
let𝑨+ denote the Moore–Penrose generalized inverse of𝑨. Their

TABLE 1 | Card and Krueger (1994): Effect of minimum wage on employment.

Coefficient Std Err 𝒕 𝒑𝒗 95% interval

Treatment 2.75 1.34 2.05 0.041 [0.12, 5.38]
State −2.95 1.48 −1.99 0.047 [−5.86,−0.04]
Time −2.28 1.25 −1.83 0.068 [−4.74, 0.17]
Intercept 23.38 1.38 16.92 0.000 [20.66,26.10]
Clusters Store (384)
Observations 768
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estimator is

�̂� 2 =
(
𝑿
′
𝑿
)−1

(
𝐺∑
𝑔=1
𝑿
′
𝑔
𝑴

+1∕2
𝑔

�̂�
𝑔
�̂�
′
𝑔
𝑴

+1∕2
𝑔

𝑿
𝑔

)(
𝑿
′
𝑿
)−1

. (6)

We call the estimator (6) CRVE2. The use of the generalized
inverse in (6) was introduced by Kolesár (2023) so that CRVE2
is defined even when 𝑴

𝑔
is noninvertible. This is a potentially

important generalization, as the matrix 𝑴
𝑔

is not invertible in
many important contexts, including when treatment is applied
to only a single cluster. The CRVE2 estimator is available in Stata
18 through its vce(hc2 clustvar) option. The CRVE2 esti-
mator (6) is the natural cluster-dependence generalization of the
estimator HC2 (see Equation A3).

As mentioned above, the CRVE2 estimator has the attractive fea-
ture that it is unbiased when the errors are i.i.d. However, unbi-
asedness can fail when the errors have within-cluster correlation,
are conditionally heteroskedastic, or one of the 𝑴

𝑔
matrices is

noninvertible. Indeed, as shown by Hansen (2024), the down-
ward bias of �̂� 2 can be arbitrarily large. This implies that con-
fidence intervals constructed using CRVE2 standard errors can
have coverage rates arbitrarily close to zero.

A bootstrap variance estimator can be obtained by nonparamet-
ric pairs clustered resampling. Each bootstrap sample is con-
structed by resampling 𝐺 clusters (𝒀

𝑔
,𝑿

𝑔
) with replacement

from the original sample of clusters. Least squares estimation
is applied to the bootstrap sample, producing the bootstrap esti-
mator 𝛽∗. This is repeated 𝐵 times, yielding the bootstrap repli-
cations

{
𝛽
∗
1, … , 𝛽

∗
𝐵

}
. The bootstrap variance estimator is their

empirical covariance matrix

�̂� boot =
1

𝐵 − 1

𝐵∑
𝑏=1

(
𝛽
∗
𝑏
− 𝛽

∗)(
𝛽
∗
𝑏
− 𝛽

∗)′

. (7)

A complication is that it is possible that in some bootstrap sam-
ples the regressor matrix will not be full rank, implying that the
bootstrap least squares estimator will not be uniquely defined.
(This will occur with high probability if the number of treated
clusters is small, for then it is possible to draw an entire boot-
strap sample with no treated clusters.) It is typical (e.g., the Stata
implementation) to discard these bootstrap samples and calculate
the bootstrap variance only on the subset of bootstrap samples
which have full rank regressor matrices. This seemingly technical
workaround may be inconsequential if the frequency of discarded
bootstrap samples is small, but if the frequency is high, then this
implementation induces selection bias. Consequently, we should
not expect bootstrap variance estimation to be generically well
behaved.

The final variance matrix estimator we consider is the jackknife.
There are several implementations; our recommendation is

�̂� jack =
𝐺∑
𝑔=1

(
𝛽−𝑔 − 𝛽

)(
𝛽−𝑔 − 𝛽

)′
, (8)

where
𝛽−𝑔 =

(
𝑿
′
𝑿 −𝑿′

𝑔
𝑿

𝑔

)+(
𝑿
′
𝒀 −𝑿′

𝑔
𝒀
𝑔

)
(9)

is a generalized delete-one-cluster estimator. By defining the
jackknife variance estimator this way the estimator (9) is
uniquely defined2 and the sum (8) includes all clusters. In con-
trast, the most common implementation of the jackknife dis-
cards clusters from the sum (8) if the delete-one-cluster least
squares estimator is not uniquely defined, which occurs, for
example, when treatment is applied to a single cluster. This can
severely downward bias the variance estimator. Two other dif-
ferences between the definition (8) and some other definitions
of the jackknife are that (8) does not use a degree-of-freedom
correction,3 and (8) centers the delete-one-cluster estimators at
the full-sample estimator 𝛽 rather than at the mean of 𝛽−𝑔 . We
do not use either modification as either leads to violation of the
“never-downward-biased” property of (8) discussed below. The
jackknife estimator (8) is the natural cluster-dependence gener-
alization of the estimator HC3 (see Equations A4 and A5).

Hansen (2024) established two important properties of the jack-
knife estimator (8). First, �̂� jack is never downward biased, in
the sense that the expected value of �̂� jack is never less than (in
a positive definite sense) the true variance matrix. This holds
under broad conditions, including arbitrary cluster sizes, number
of treated clusters, regressor leverage, within-cluster correlation,
and heteroskedastisticity. Second, if the errors are normally dis-
tributed (but potentially heteroskedastic and within-cluster cor-
related) and the matrices 𝑿′

𝑿 −𝑿′
𝑔
𝑿

𝑔
are all invertible, then

the finite-sample distribution of a 𝑡 ratio constructed with the
jackknife standard error is bounded by the Cauchy distribution.
This implies that confidence intervals constructed with jackknife
standard errors have guaranteed coverage rates, unlike intervals
constructed with CRVE1 and CRVE2 standard errors.

The most common purpose of covariance matrix estimation is
standard error construction. Let𝑅 be the 𝑘 × 1 vector that selects
the coefficient of interest, for example, for 𝜃, 𝑅 = (1,0, . … , 0)′.
Then, a standard error for �̂� = 𝑅

′
𝛽 based on the covariance

matrix estimator �̂� is �̂� =
√
𝑅′�̂� 𝑅. Let �̂�1, �̂�2, �̂�boot, and �̂�jack

denote the standard errors constructed using (4), (6), (7), and (8),
respectively.

Calculation of (8) is somewhat more computationally demanding
than computation of (4) due to the need to calculate the𝐺 estima-
tors (9). In Appendix A.1.2, we present numerical evidence that
this computational cost is minor in a variety of sample sizes and
regressor dimensions.

4 | Adjusted 𝒑 Values and Confidence Intervals

Current empirical practice, as exemplified by the output dis-
played in Table 1, is to construct 𝑝 values and confidence inter-
vals for individual coefficients based on the student 𝑡

𝐺−1 distribu-
tion or the 𝑡

𝑛−𝑘 distribution in the absence of clustering. These
approximations can be very poor in practice as cluster-robust
𝑡 ratios do not in general have these distributions. An alterna-
tive simple student 𝑡 approximation was introduced by Bell and
McCaffrey (2002) for the HC2 and CRVE2 𝑡 ratios, extended to
CRVE1 standard errors by Young (2016) and to jackknife 𝑡 ratios
by Hansen (2024). This approximation can be used to produce
adjusted 𝑝 values and confidence intervals which are simple
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to calculate and, in general, have excellent finite-sample cover-
age. We now describe this approximation and adjusted inference
methods.

Consider the 𝑡 ratio for 𝜃 constructed with the jackknife standard
error,

𝑇 = �̂� − 𝜃
�̂�jack

.

Under the assumption that the regression error vector 𝒆 ∼
𝑁(0,𝚺) is jointly normally distributed (allowing for het-
eroskedasticity and arbitrary correlation), the coefficient estima-
tor satisfies �̂� − 𝜃 ∼ 𝑁(0, 𝜈2) where 𝜈2 is the finite-sample vari-
ance of �̂�. Furthermore, with a little algebra, the variance estima-
tor can be written as a quadratic function in the regression errors,
�̂�

2
jack = 𝒆

′
𝑩𝒆, where 𝑩 is a known (function of the regressors 𝑿)

positive-semidefinite matrix of rank at most 𝐺. It follows that
�̂�

2
jack has the exact finite-sample distribution �̂�2

jack∕𝜈
2 ∼

∑𝐺

𝑗=1𝜆𝑗𝜒
2
𝑗

where 𝜒2
𝑗

are independent chi-square random variables with one
degree of freedom and 𝜆

𝑗
≥ 0 are the eigenvalues of 𝑩Σ∕𝜈2. The

widely studied Satterthwaite (1946) approximation states that this
weighted sum of chi-squares can be reasonably approximated by
a single scaled chi-square, where the scale and degree of freedom
are selected to match the first two moments. This approxima-
tion is

𝐺∑
𝑗=1
𝜆
𝑗
𝜒

2
𝑗
≈ 𝑎

2 𝜒
2
𝐾

𝐾
,

where

𝑎 =

√√√√ 𝐺∑
𝑗=1
𝜆
𝑗

(10)

𝐾 =

(∑𝐺

𝑗=1𝜆𝑗

)2

∑𝐺

𝑗=1𝜆
2
𝑗

. (11)

Substituting this approximation into the expression for the 𝑡 ratio,
we obtain the distributional approximation

𝑇 ≈ 𝑁(0,1)

𝑎

√
𝜒

2
𝐾

𝐾

≈
𝑡
𝐾

𝑎
, (12)

where 𝑡
𝐾

is distributed student 𝑡 with 𝐾 degrees of freedom.
The second approximation in (12) holds with equality when the
numerator and denominator are independent, which holds when
𝚺 = 𝑰

𝑛
𝜎

2. The approximation (12) leads to the suggestion to use
the scaled student 𝑡 distribution 𝑡

𝐾
∕𝑎 in place of the conventional

𝑡
𝐺−1 distribution for 𝑝 value calculation and confidence inter-

val construction. The approximation is not exact, but it is much
improved relative to the conventional 𝑡

𝐺−1 distribution.

This suggestion requires the calculation of the adjustment coef-
ficients 𝑎 and 𝐾 , which are functions of the eigenvalues of the
matrix 𝑩Σ∕𝜈2. While 𝑩 is known, the covariance matrix 𝚺 is
unknown, so the true values of 𝑎 and 𝐾 cannot be calculated.
Bell and McCaffrey (2002) suggested to use a reference model
(akin to a rule of thumb), in particular 𝚺 = 𝑰

𝑛
𝜎

2. Using this ref-
erence model, the coefficients 𝑎 and 𝐾 are straightforward func-
tions of the regressor matrix𝑿. Explicit expressions are provided

in Equations (A6) and (A7) of Appendix A.1.1, and computation
is discussed in Appendix A.1.2. The expressions depend on the
specific coefficient (or, more generally, the specific linear combi-
nation 𝑅) and therefore need to be calculated separately for each
coefficient. However, as documented in Appendix A.1.2, these
calculations are not computationally demanding.

Based on the distributional approximation (12) using (A6)
and (A7), we propose adjusted confidence intervals and 𝑝 values
for 𝜃. The adjusted 1 − 𝛼 confidence interval for 𝜃 is

Jack∗ = �̂� ±
𝑡
1−𝛼∕2
𝐾

𝑎
�̂�jack, (13)

where 𝑡1−𝛼∕2
𝐾

is the 1 − 𝛼∕2 quantile of the student 𝑡 distribution
with𝐾 degrees of freedom. The difference with the standard con-
fidence interval is that (13) calculates the critical value using 𝐾
degrees of freedom instead of 𝐺 − 1 and scales down the critical
value by 𝑎.

Similarly, our proposed adjusted 𝑝 value for a test of 𝜃 = 𝜃0 is

𝑝
∗ = 1 − 𝐹

⎛⎜⎜⎝𝑎
2

(
�̂� − 𝜃0

�̂�jack

)2

; 1, 𝐾
⎞⎟⎟⎠ (14)

where 𝐹 (𝑥; 1, 𝐾) is the 𝐹 distribution with degrees of freedom
(1, 𝐾). The difference with the standard 𝑝 value is that (14) scales
the 𝑡 statistic by 𝑎 and calculates significance using 𝐾 degrees of
freedom instead of 𝐺 − 1.

The adjusted degree of freedom 𝐾 satisfies 1 ≤ 𝐾 ≤ 𝐺. Its value
will reflect the degree of leverage and nonhomogeneity among
the regressors and cluster sizes, with 𝐾 equaling 1 in the most
unbalanced cases. Small values of𝐾 are most likely to occur when
the regressor of interest has high leverage, meaning that there
are a small number of observations or clusters that dominate
the variance of �̂�. Common contexts where this occurs include
models with cluster-level fixed effects, treatment indicators when
there are a small number of treated clusters, and/or dummy vari-
ables that are nonzero for only a small number of observations or
clusters. Small values of the degree of freedom 𝐾 can also occur
when regressors are leptokurtotic or when cluster sizes are highly
unbalanced. These are the contexts (as discussed by MacKin-
non, Nielsen, and Webb (2023a), Section 4.1) where conventional
cluster-robust inference is known to be highly unreliable. Thus,
if we see a small value of 𝐾 for an estimated coefficient of inter-
est, this is not only a signal to adjust the degree of freedom for
jackknife standard errors, but it is a signal to avoid CRVE1-based
inference.

The scale 𝑎 satisfies 𝑎 ≥ 1 and reflects the proportional bias of the
jackknife standard error, calculated under the assumption of the
reference model. Because the jackknife estimator is never down-
ward biased, this constant satisfies 𝑎 ≥ 1.

The adjusted confidence interval (13) and 𝑝 value (14) will typ-
ically be more conservative than the intervals and 𝑝 values cal-
culated with the conventional 𝑡

𝐺−1 distribution, but they are not
necessarily so, as the adjustments𝐾 and 𝑎work in opposite direc-
tions. If desired, more conservative inference can be achieved
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by two possible modifications. First, the adjustment 𝑎 could be
omitted from (13) and (14), meaning that inference would be
based on the jackknife 𝑡 ratio with the adjusted degree of free-
dom 𝐾 . I do not recommend this modification as it appears to
lead to excessively conservative inference under high leverage.
Second, the confidence interval and 𝑝 value can be calculated in
two ways, by (13) and (14) and by using the 𝑡

𝐺−1 distribution (or
𝑡
𝑛−𝑘 distribution for nonclustered observations) conventionally,

and reporting the more conservative of the two. This latter modifi-
cation is ad hoc but ensures that the adjusted intervals are always
more conservative than conventional intervals. The impact of this
modification, however, appears to be minor in practice. For our
reported simulations, empirical applications, and programs, we
use (13) and (14) without modification.

5 | Simulation

5.1 | Potential Outcome Framework

We investigate the proposed methods in a simple simulation
experiment.

The observations are {𝑌
𝑖𝑔𝑡
, 𝐷

𝑔𝑡
, 𝑍

𝑗𝑖𝑔𝑡
} for 𝑔 = 1, … , 𝐺, 𝑡 = 1,2,

𝑗 = 1, … , 𝐽 , and 𝑖 = 1, … , 𝑛
𝑔
, where 𝑛

𝑔
is cluster size. The

observations are generated from potential outcomes 𝑌
𝑖𝑔𝑡
(𝐷

𝑔𝑡
)

where 𝐷
𝑔𝑡
∈ {0,1} is treatment status. The clusters are divided

into 𝐺0 untreated clusters and 𝐺1 treated clusters, with 𝐺0 +
𝐺1 = 𝐺. Treatment (𝐷

𝑔𝑡
= 1) is applied only in period 𝑡 = 2 to

the treated clusters. We vary the number of clusters among 𝐺 ∈
{10,20, 50,200} and the number of treated clusters among 𝐺1 ∈
{4,3, 2}. In our baseline model, the cluster sizes are homoge-
neous, 𝑛

𝑔
= 10 for all 𝑔.

We generate the potential outcomes using a cluster-dependent
framework. In our baseline model, they are generated as

𝑌
𝑖𝑔𝑡
(0) = 𝑒

𝑖𝑔𝑡
+ 𝑢

𝑔
+ ℎ

𝑖𝑔
𝑣
𝑔

𝑒
𝑖𝑔𝑡
∼ 𝑁(0,1)

𝑢
𝑔
∼ 𝑁(0,1)

𝑣
𝑔
∼ 𝑁(0,1)

𝑌
𝑖𝑔𝑡
(1) = 𝑌

𝑖𝑔𝑡
(0) + 𝜃

𝑖𝑔

𝜃
𝑖𝑔
∼ 𝑁(𝜃, 𝜎2

𝜃
).

The coefficientℎ
𝑖𝑔

is set to equal+1 for one-half of the individuals
𝑖 in each cluster and to equal −1 for the others. This specifica-
tion creates cluster-level dependence in 𝑌

𝑖𝑔𝑡
(0), which is not fully

eliminated by the within transformation.

Notice that the model specifies that the treatment effect 𝜃
𝑖𝑔

is het-
erogeneous with ATT 𝜃. We vary treatment effect heterogeneity
by varying 𝜎

𝜃
∈ {1,10}.

The variables 𝑍
𝑗𝑖𝑔𝑡

are auxiliary regressors, generated as i.i.d.
𝑍
𝑗𝑖𝑔𝑡

∼ 𝑁(𝐷
𝑔𝑡
, 1) with 𝐽 = 2 in the baseline model.

For each simulation replication, we estimate the coefficients of
the regression model (1) by least squares. This is a least squares

regression4 of the observed outcome 𝑌
𝑖𝑔𝑡

on treatment 𝐷
𝑔𝑡

, the
regressors 𝑍

𝑗𝑖𝑔𝑡
, a time dummy, and group fixed effect dummies.

The coefficient �̂� on 𝐷
𝑔𝑡

is the estimated ATT. We calculate the
four standard errors �̂�1, �̂�2, �̂�boot, and �̂�jack discussed in Section 3,
the bootstrap using 𝐵 = 999 replications.

We evaluate eight confidence intervals for the ATT 𝜃. The first
four intervals combine the four standard errors with conventional
student 𝑡 critical values. Thus, given a standard error �̂�, we form
the interval �̂� ± 𝑡0.975

𝐺−1 �̂� where 𝑡0.975
𝐺−1 is the 0.975 quantile of the 𝑡

𝐺−1
distribution. We use the 𝑡0.975

𝐺−1 critical value as this is the current
implementation in Stata for cluster-robust inference.

The fifth and sixth intervals are the Wild cluster bootstrap sym-
metric percentile-𝑡 interval calculated with the CRVE1 and jack-
knife standard errors and 999 bootstrap replications. This (using
CRVE1) is the method proposed by Cameron, Gelbach, and
Miller (2008) for hypothesis testing,5 and in principle could be
used to construct confidence intervals by test inversion. First,6 the
coefficients are re-estimated imposing the hypothesized value of
𝜃 to obtain restricted estimates 𝛽 and residuals �̃�

𝑔
= 𝒀

𝑔
−𝑿

𝑔
𝛽.

Next, the clusters, regressors 𝑿
𝑔
, and restricted residuals �̃�

𝑔
are

held fixed. The bootstrap samples are generated as 𝒀 ∗
𝑔
= 𝜉

𝑔
�̃�
𝑔

where 𝜉
𝑔

is an independent Rademacher variable (equals +1 and
−1 each with probability 1/2). The bootstrap sample then con-
sists of the observations (𝒀 ∗

𝑔
,𝑿

𝑔
). On each bootstrap sample we

calculate the least squares estimate �̂�∗ and its CRVE1 and jack-
knife standard errors �̂�∗1 and �̂�

∗
jack. From the 999 bootstrap sam-

ples, we calculate the 95% quantiles 𝑐
∗
1(𝜃) and 𝑐

∗
jack(𝜃) of the

statistics |||�̂�∗|||∕�̂�∗1 and |||�̂�∗|||∕�̂�∗jack. The Wild bootstrap confidence
intervals7 equal Wild1 =

{
𝜃 ∶ |�̂� − 𝜃|∕�̂�1 ≤ 𝑐

∗
1(𝜃)

}
and WildJ ={

𝜃 ∶ |�̂� − 𝜃|∕�̂�jack ≤ 𝑐
∗
jack(𝜃)

}
.

Our seventh confidence interval is the adjusted CRVE2 interval
proposed by Bell and McCaffrey (2002). This is BM = �̂� ± 𝑡0.975

𝐾
�̂�2

where �̂�2 is the CRVE2 standard error and 𝐾 is a nonstandard
degree of freedom8 calculated similar to (11).

Our final confidence interval Jack∗ is our proposed adjusted jack-
knife interval (13).

By simulation with 20,000 replications, we compute the empirical
coverage probability of these nominal 95% intervals.

5.2 | Baseline Model

We report the results for the baseline model in Table 2. Ideally,
all entries should equal 0.95. However, many of the actual entries
are far from this ideal. The CRVE1 interval undercovers in all
designs, and in many settings quite severely, with a worst-case
coverage of 61%. Undercoverage is increasing as the asymmetry
in the number of treated clusters and/or treatment effect het-
erogeneity is increased. Undercoverage is also increasing as the
number of clusters increases, because this increases the asymme-
try between treated and untreated clusters.

The CRVE2 interval has improved coverage relative to CRVE1
and undercovers in all designs. As for CRVE1, undercoverage is

Journal of Applied Econometrics, 2025296
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TABLE 2 | Baseline model: Coverage of nominal 95% confidence intervals.

𝑮 𝝈
𝜽

𝑮1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack∗

10 1 4 0.93 0.94 0.93 0.96 0.93 0.93 0.95 0.95
10 1 3 0.91 0.92 0.91 0.95 0.93 0.93 0.96 0.96
10 1 2 0.85 0.88 0.84 0.92 0.96 0.96 0.99 0.99
10 10 4 0.89 0.90 0.89 0.93 0.89 0.90 0.91 0.91
10 10 3 0.83 0.86 0.84 0.90 0.83 0.84 0.90 0.91
10 10 2 0.70 0.76 0.69 0.83 0.69 0.69 0.91 0.94
20 1 4 0.91 0.92 0.91 0.94 0.94 0.94 0.96 0.96
20 1 3 0.87 0.89 0.88 0.92 0.95 0.94 0.96 0.97
20 1 2 0.79 0.82 0.78 0.87 0.99 0.99 1.00 1.00
20 10 4 0.85 0.88 0.87 0.91 0.90 0.90 0.92 0.93
20 10 3 0.79 0.83 0.81 0.88 0.81 0.81 0.92 0.93
20 10 2 0.65 0.73 0.66 0.80 0.69 0.70 0.93 0.95
50 1 4 0.87 0.89 0.89 0.92 0.94 0.93 0.96 0.96
50 1 3 0.82 0.85 0.84 0.89 0.98 0.98 0.97 0.97
50 1 2 0.70 0.77 0.71 0.83 1.00 1.00 1.00 0.99
50 10 4 0.84 0.87 0.86 0.90 0.89 0.89 0.94 0.94
50 10 3 0.78 0.82 0.80 0.87 0.80 0.81 0.94 0.94
50 10 2 0.63 0.71 0.64 0.79 0.76 0.77 0.95 0.95
200 1 4 0.83 0.87 0.86 0.90 0.94 0.94 0.95 0.95
200 1 3 0.78 0.82 0.80 0.87 1.00 1.00 0.96 0.96
200 1 2 0.64 0.72 0.65 0.79 1.00 1.00 0.99 0.98
200 10 4 0.83 0.86 0.86 0.89 0.89 0.89 0.95 0.95
200 10 3 0.76 0.81 0.79 0.86 0.84 0.84 0.95 0.95
200 10 2 0.61 0.70 0.63 0.78 0.93 0.93 0.95 0.95

increasing in treatment asymmetry, treatment effect heterogene-
ity, and as the number of clusters increases. Its worst-case cover-
age is 70%.

The bootstrap interval has similar coverage to CRVE1 and thus
severely undercovers. Its worst-case coverage is 63%.

The jackknife interval with conventional critical values has bet-
ter coverage relative to CRVE1, CRVE2, and the bootstrap but
undercovers under asymmetry in the number of treated clusters
and under treatment effect heterogeneity. Its worst-case coverage
is 78%.

The Wild bootstrap confidence intervals have mixed results. First,
we observe that in this baseline specification, the Wild1 and
WildJ intervals have essentially identical results. Their coverage
rates are not strictly ranked relative to CRVE1, CRVE2, the boot-
strap, or the jackknife. Their coverage rates generally improve
as 𝐺 increases. They have excellent coverage when treatment
effect heterogeneity is mild but have poor coverage when treat-
ment effect heterogeneity is large. Their worst-case coverage
is 69%.

The Bell–McCaffrey and adjusted jackknife confidence intervals
both have generally good coverage, and both dominate the other
six intervals. In most cases, the two have similar coverage rates,

but in some designs, the adjusted jackknife interval has better
coverage. In some cases, they are conservative with coverage
rates as high as 100%. Their worst-case coverage rates are 90%
(Bell–McCaffrey) and 91% (adjusted jackknife).

5.3 | Nonhomogeneous Cluster Sizes

We next investigate the impact of nonhomogeneous cluster sizes.
We modify the treated clusters only, by setting one treated clus-
ter to have size 𝑛1 = 1 + 9𝐺1 with the remaining treated clus-
ters with size 𝑛

𝑔
= 1. All untreated cluster sizes are set at 𝑛

𝑔
=

10. This design maximizes nonhomogeneity among treated clus-
ter sizes while maintaining the same number (10𝐺1) of treated
observations. The simulation estimates of the coverage rates are
presented in Table 3. We find that the coverage rates of CRVE1
and CRVE2 are uniformly worse than in the baseline model,
with worst-case coverage of 36% (CRVE1) and 70% (CRVE2). The
bootstrap performs better than in the baseline model and per-
forms better than CRVE1 and CRVE2 but undercovers in some
designs, with a worst-case coverage of 84%. The jackknife inter-
val with conventional critical values also performs better than in
the baseline model, with very good coverage rates, and worst-case
coverage of 93%. In this specification the two Wild bootstrap
methods have significantly different performance under treat-
ment effect heterogeneity, with WildJ generally performing much
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TABLE 3 | Asymmetric cluster sizes: Coverage of nominal 95% confidence intervals.

𝑮 𝝈
𝜽

𝑮1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack∗

10 1 4 0.87 0.93 1.00 0.98 0.93 0.94 0.98 1.00
10 1 3 0.85 0.93 0.99 0.98 0.95 0.94 0.99 1.00
10 1 2 0.79 0.90 0.95 0.98 0.97 0.97 0.99 0.99
10 10 4 0.63 0.81 0.99 0.94 0.68 0.85 0.89 0.97
10 10 3 0.59 0.79 0.97 0.94 0.68 0.81 0.90 0.97
10 10 2 0.50 0.76 0.87 0.94 0.65 0.72 0.90 0.96
20 1 4 0.81 0.91 1.00 0.97 0.97 0.95 0.99 1.00
20 1 3 0.78 0.90 0.99 0.97 0.98 0.97 1.00 1.00
20 1 2 0.69 0.87 0.94 0.97 0.99 0.99 1.00 0.99
20 10 4 0.56 0.78 0.99 0.93 0.68 0.87 0.94 0.97
20 10 3 0.52 0.76 0.97 0.93 0.68 0.82 0.94 0.97
20 10 2 0.42 0.73 0.85 0.93 0.69 0.74 0.93 0.95
50 1 4 0.72 0.88 1.00 0.97 0.99 0.96 1.00 0.99
50 1 3 0.69 0.87 0.99 0.97 1.00 0.99 1.00 0.99
50 1 2 0.58 0.83 0.91 0.96 1.00 1.00 1.00 0.98
50 10 4 0.51 0.77 0.99 0.93 0.75 0.90 0.97 0.97
50 10 3 0.47 0.75 0.97 0.93 0.77 0.85 0.97 0.97
50 10 2 0.39 0.72 0.85 0.93 0.78 0.81 0.95 0.95
200 1 4 0.65 0.85 1.00 0.96 1.00 0.97 1.00 0.99
200 1 3 0.62 0.84 0.98 0.96 1.00 1.00 1.00 0.98
200 1 2 0.50 0.80 0.89 0.95 1.00 1.00 0.99 0.97
200 10 4 0.49 0.76 0.99 0.93 0.88 0.91 0.98 0.97
200 10 3 0.45 0.74 0.96 0.93 0.88 0.92 0.98 0.96
200 10 2 0.36 0.70 0.84 0.93 0.94 0.95 0.95 0.95

better than Wild1. However, both methods still undercover, with
worst-case coverage rates of 65% (Wild1) and 72% (WildJ). The
Bell–McCaffrey interval has mixed performance, with worst-case
coverage of 89%. The adjusted jackknife interval has excellent
coverage, uniformly 95% or higher.

5.4 | Random Cluster Sizes

To explore the impact of varied cluster sizes, for our next experi-
ment we use a random cluster size design. We generate the clus-
ter sizes as 1 plus an i.i.d. draw from the geometric distribution
with parameter 0.1. This process implies that the average cluster
size is 10 with a standard deviation of about 9.5. This sampling
framework technically lies outside the “fixed cluster size” distri-
butional framework, though the latter obtains by conditioning on
the cluster sizes, similar to a regression model with exogenous
regressors. The simulation estimates of the coverage rates are pre-
sented in Table 4. The results are similar to those obtained in the
baseline model, with worst-case coverage rates of 55% (CRVE1),
71% (CRVE2), 69% (bootstrap), 83% (jackknife with conventional
critical values), 73% (Wild bootstrap), 91% (Bell–McCaffrey), and
93% (adjusted jackknife). Again, the adjusted jackknife has the
best performance.

5.5 | Nonnormal Errors

We next investigate the robustness of the results to the
assumption of normal errors. For this investigation, we draw the
errors for 𝑌

𝑖𝑔𝑡
(0) and 𝜃

𝑖𝑔
from a skewed heavy-tailed distribution.9

The simulation estimates of the coverage rates are presented in
Table 5. The results are almost identical to those under normal
errors.

5.6 | Binary Dependent Variable

Many DiD applications concern binary dependent variables in
a linear probability model. Our third model for potential out-
comes treats this case directly with a probit generating process.
The potential outcomes are generated as follows. For some 𝛼 ≥ 0,

𝑌
𝑖𝑔𝑡
(0) = 𝟏{𝑒

𝑖𝑔𝑡
+ 𝑢

𝑔
+ ℎ

𝑖𝑔
𝑣
𝑔
> 𝛼}

𝑌
𝑖𝑔𝑡
(1) = 𝟏{𝑒

𝑖𝑔𝑡
+ 𝑢

𝑔
+ ℎ

𝑖𝑔
𝑣
𝑔
> 0},

where 𝑒
𝑖𝑔𝑡
, 𝑢

𝑔
, 𝑣

𝑔
, and ℎ

𝑖𝑔
are generated as in the baseline model.

In this model, the treatment effect is 𝜃
𝑖𝑔
= 1{0 < 𝑒

𝑖𝑔𝑡
+ 𝑢

𝑔
+

ℎ
𝑖𝑔
𝑣
𝑔
≤ 𝛼} with ATT 𝜃 = Φ(𝛼∕

√
3) − Φ(0). Treatment effect het-

erogeneity is increasing in 𝛼. We vary 𝛼 ∈ {0.1,3}.
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TABLE 4 | Geometrically distributed cluster sizes: Coverage of nominal 95% confidence intervals.

𝑮 𝝈
𝜽

𝑮1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack∗

10 1 4 0.91 0.93 0.97 0.96 0.94 0.94 0.96 0.97
10 1 3 0.89 0.92 0.95 0.95 0.94 0.94 0.97 0.98
10 1 2 0.82 0.87 0.88 0.94 0.96 0.96 0.99 0.99
10 10 4 0.85 0.88 0.93 0.92 0.87 0.86 0.92 0.93
10 10 3 0.79 0.84 0.90 0.91 0.82 0.83 0.92 0.94
10 10 2 0.65 0.76 0.76 0.87 0.73 0.75 0.91 0.95
20 1 4 0.88 0.90 0.95 0.93 0.94 0.94 0.97 0.98
20 1 3 0.84 0.88 0.92 0.92 0.96 0.96 0.98 0.99
20 1 2 0.74 0.82 0.81 0.90 0.99 0.99 0.99 0.99
20 10 4 0.80 0.85 0.91 0.90 0.86 0.85 0.93 0.95
20 10 3 0.74 0.81 0.87 0.88 0.79 0.80 0.93 0.96
20 10 2 0.60 0.73 0.72 0.85 0.74 0.75 0.94 0.95
50 1 4 0.83 0.87 0.93 0.91 0.95 0.96 0.98 0.98
50 1 3 0.78 0.84 0.89 0.90 0.99 0.99 0.98 0.99
50 1 2 0.66 0.78 0.76 0.87 1.00 1.00 0.99 0.99
50 10 4 0.78 0.83 0.91 0.89 0.87 0.86 0.95 0.96
50 10 3 0.71 0.79 0.86 0.87 0.81 0.82 0.95 0.97
50 10 2 0.56 0.71 0.70 0.84 0.81 0.82 0.95 0.95
200 1 4 0.80 0.85 0.92 0.90 0.96 0.97 0.97 0.98
200 1 3 0.74 0.82 0.88 0.88 1.00 1.00 0.98 0.98
200 1 2 0.61 0.74 0.73 0.85 1.00 1.00 0.99 0.97
200 10 4 0.78 0.83 0.91 0.88 0.88 0.88 0.96 0.97
200 10 3 0.70 0.79 0.86 0.86 0.87 0.88 0.96 0.97
200 10 2 0.55 0.71 0.69 0.83 0.94 0.94 0.95 0.95

The simulation estimates of the coverage rates are presented in
Table 6. For most of the designs and methods, the results are quite
similar to those obtained under normal errors. The adjusted jack-
knife has worst-case coverage of 92%.

5.7 | Fixed Effects

While the classic DiD framework includes group fixed effects
at the same level as clustering, in many applications (including
those presented in the following section) there is a divergence
between the fixed effect and clustering level. The typical devia-
tion is that there are fewer included fixed effects than the level
of clustering; or, equivalently, clustering is done at a finer level
than the fixed effects. This is done, typically, to conserve estima-
tion degrees of freedom. As an example, the Card and Krueger
estimates of Table 1 include state-level fixed effects but cluster at
the restaurant level.

To explore the impact of differential fixed effect inclusion, we
group our clusters into 𝑁 = 𝐺∕5 large groups and replace the
cluster-level fixed effects with these 𝑁 large-group fixed effects.
Specifically, as we vary cluster sizes as 𝐺 = {10,20, 50,200}, we
include 𝑁 = {2,4, 10,40} large-group fixed effects.

We present the results in Table 7. The methods perform qualita-
tively similarly as in the baseline model.

5.8 | Many Auxiliary Regressors

Our baseline regression included two auxiliary regressors (𝐽 =
2). To explore the impact of varying this specification, we repeat
the exercise including 10 auxiliary regressors (𝐽 = 10).

The results are reported in Table 8. The coverage rates are qualita-
tively similar to those in the baseline model. The difference is that
many of the methods have somewhat improved coverage rates for
small 𝐺. Overall, the impact of varying the number of auxiliary
regressors is minor.

5.9 | One Treated Cluster

For our final simulation, we investigate performance in a model
with one treated cluster (𝐺1 = 1). It should be emphasized that
this is a treacherous context where it is well known that stan-
dard methods fail. Regardless, we believe that investigating per-
formance in this context sheds insight concerning robustness to
extreme situations. We repeat our analysis using the baseline
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TABLE 5 | Skewed heavy-tailed errors: Coverage of nominal 95% confidence intervals.

𝑮 𝝈
𝜽

𝑮1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack∗

10 1 4 0.94 0.94 0.94 0.96 0.94 0.94 0.95 0.95
10 1 3 0.92 0.93 0.92 0.95 0.93 0.93 0.96 0.96
10 1 2 0.86 0.88 0.85 0.92 0.96 0.96 0.99 0.99
10 10 4 0.88 0.90 0.89 0.92 0.89 0.89 0.91 0.91
10 10 3 0.83 0.86 0.84 0.90 0.83 0.83 0.90 0.91
10 10 2 0.70 0.76 0.70 0.82 0.69 0.70 0.90 0.93
20 1 4 0.91 0.92 0.92 0.94 0.94 0.94 0.96 0.96
20 1 3 0.87 0.89 0.88 0.92 0.95 0.95 0.97 0.97
20 1 2 0.78 0.82 0.78 0.87 0.99 0.99 1.00 1.00
20 10 4 0.85 0.87 0.87 0.91 0.89 0.89 0.92 0.93
20 10 3 0.79 0.83 0.81 0.88 0.81 0.81 0.91 0.93
20 10 2 0.65 0.72 0.65 0.80 0.69 0.70 0.93 0.95
50 1 4 0.87 0.89 0.89 0.92 0.93 0.93 0.96 0.96
50 1 3 0.82 0.85 0.84 0.89 0.98 0.98 0.97 0.96
50 1 2 0.70 0.77 0.71 0.83 1.00 1.00 1.00 0.99
50 10 4 0.83 0.86 0.86 0.89 0.88 0.88 0.93 0.94
50 10 3 0.77 0.82 0.80 0.86 0.80 0.80 0.93 0.94
50 10 2 0.62 0.71 0.63 0.79 0.75 0.76 0.95 0.95
200 1 4 0.84 0.87 0.86 0.90 0.94 0.94 0.95 0.95
200 1 3 0.78 0.83 0.81 0.88 1.00 1.00 0.96 0.96
200 1 2 0.65 0.73 0.66 0.80 1.00 1.00 0.99 0.98
200 10 4 0.82 0.85 0.85 0.89 0.88 0.88 0.94 0.94
200 10 3 0.75 0.81 0.79 0.86 0.84 0.84 0.94 0.95
200 10 2 0.61 0.70 0.62 0.78 0.93 0.93 0.95 0.95

model with normal innovations as in Table 2, but now, set𝐺1 = 1.
We report the results in Table 9.

As might be expected, the confidence interval methods have poor
performance. The CRVE1, CRVE2, bootstrap, and BM methods
have similar dramatic undercoverage. All have worst-case cover-
age of 2%–3%. The Wild bootstrap displays undercoverage when
there is high treatment effect heterogeneity, with worst-case cov-
erage of 58%. Essentially, all of these methods produce confidence
intervals which are much too small.

In contrast, the jackknife and adjusted jackknife intervals are
conservative, with 100% coverage. What happens is that when
there is one treated cluster, we find that �̂�jack ≃ |�̂�|, the jackknife
standard error approximately equals the coefficient estimate �̂�,
and thus, its 𝑡 ratio is always close to 1 and never “significant.”
Essentially, robust inference on the treatment effect when there is
one treated cluster is similar to inference on the mean when there
is a single observation with an unknown variance. The jackknife
interval is not informative about the treatment effect but is also
not misleading regarding significance.

5.10 | Summary of Simulation Evidence

Comparing the eight feasible confidence interval methods across
Tables 2–9, the only method with reasonable coverage control
in all contexts is the adjusted jackknife. The simulation evidence
strongly supports our recommended procedure: use jackknife
standard errors and base inference on the adjusted student 𝑡
distribution.

These results are largely consistent with previous simula-
tion studies, including that of MacKinnon, Nielsen, and
Webb (2023b). One difference between our simulation and
theirs is our investigation of the impact of treatment effect
heterogeneity (which induces conditional heteroskedastic-
ity), as MacKinnon, Nielsen, and Webb (2023b) only investigate
homoskedastic designs. This explains the divergence between our
findings and theirs concerning the Wild bootstrap. Our results
show that the Wild bootstrap performs well under low treatment
effect heterogeneity (e.g., homoskedasticity) but not under high
treatment effect heterogeneity (e.g., heteroskedasticity).

It is worthwhile to discuss in greater detail the contrast between
the performance of the Bell–McCaffrey and adjusted jackknife
intervals. Why should we prefer one over the other? The Jack∗
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TABLE 6 | Binary dependent variable: Coverage of nominal 95% confidence intervals.

𝑮 𝜶 𝑮1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack∗

10 0.1 4 0.94 0.95 0.94 0.97 0.94 0.94 0.95 0.95
10 0.1 3 0.93 0.94 0.93 0.96 0.94 0.94 0.97 0.97
10 0.1 2 0.88 0.90 0.88 0.94 0.97 0.97 0.99 1.00
10 3 4 0.89 0.90 0.89 0.93 0.90 0.91 0.91 0.92
10 3 3 0.84 0.86 0.85 0.90 0.85 0.85 0.90 0.92
10 3 2 0.72 0.77 0.72 0.84 0.73 0.74 0.92 0.94
20 0.1 4 0.92 0.93 0.92 0.95 0.95 0.94 0.96 0.97
20 0.1 3 0.89 0.91 0.89 0.94 0.96 0.96 0.98 0.98
20 0.1 2 0.82 0.86 0.81 0.90 1.00 1.00 1.00 1.00
20 3 4 0.85 0.88 0.87 0.91 0.90 0.90 0.92 0.93
20 3 3 0.80 0.83 0.82 0.88 0.82 0.82 0.93 0.94
20 3 2 0.67 0.74 0.67 0.81 0.78 0.79 0.94 0.95
50 0.1 4 0.88 0.90 0.90 0.92 0.95 0.94 0.97 0.97
50 0.1 3 0.84 0.87 0.85 0.91 0.99 0.99 0.98 0.98
50 0.1 2 0.74 0.80 0.74 0.85 1.00 1.00 1.00 1.00
50 3 4 0.84 0.87 0.86 0.90 0.89 0.89 0.94 0.94
50 3 3 0.78 0.81 0.80 0.87 0.83 0.83 0.94 0.94
50 3 2 0.63 0.71 0.64 0.79 0.90 0.91 0.95 0.94
200 0.1 4 0.84 0.87 0.87 0.91 0.95 0.95 0.96 0.96
200 0.1 3 0.79 0.84 0.82 0.89 1.00 1.00 0.97 0.97
200 0.1 2 0.68 0.76 0.69 0.82 1.00 1.00 0.98 0.97
200 3 4 0.83 0.85 0.85 0.89 0.88 0.88 0.94 0.94
200 3 3 0.77 0.80 0.79 0.85 0.93 0.93 0.94 0.94
200 3 2 0.60 0.69 0.61 0.78 1.00 1.00 0.94 0.93

interval has three distinct advantages. First, it is robust to the con-
text of a single treated cluster, while BM is not. In this context, the
matrix𝑴

𝑔
is not invertible for the treated cluster, and the CRVE2

estimator uses its generalized inverse as an ad hoc workaround.
A consequence is that the CRVE2 variance estimator is down-
ward biased. This problem extends to inference on any regression
coefficient which suffers from “delete-one-cluster” invertibility
failure, which arises frequently in applications. In these contexts,
the CRVE2 standard errors and BM intervals will be misleadingly
small. The second advantage of the Jack∗ interval is that it is built
from the 𝑡 ratio with the jackknife standard error, which by itself
produces confidence intervals with better coverage than 𝑡 ratios
with CRVE2 standard errors. Therefore, the joint display of �̂�jack
with the adjusted 𝑝 values and confidence intervals is more inter-
nally consistent than the joint display of �̂�2 with the BM 𝑝 values
and confidence intervals. Third, the simulation results explored
show that Jack∗ has uniformly better coverage control than BM.

6 | Illustrations

We illustrate the application of the jackknife standard errors and
adjusted inference methods by application to multiple datasets.
Our purpose is to demonstrate how inferences can meaningfully
change in some contexts, while being unaltered in others.

6.1 | Card and Krueger (1994)

For our first application, we return to the Card and
Krueger (1994) investigation of the impact of the minimum
wage on employment hours. In the first line of Table 10, we
repeat the estimated treatment effect coefficient from Table 1,
and in the second line of Table 10, we present the analogous
result computed with jackknife standard errors, together with
𝑝 values and confidence intervals calculated using the student
𝑡 adjustment. What we can see in this case is that there are
only very minor changes in the standard errors, 𝑝 values, and
confidence intervals.

We also display the data-based degree of freedom (𝐾 = 112) and
scale adjustment (𝑎 = 1.01) for the jackknife inference adjust-
ment. We can see that their values are consistent with essentially
no meaningful adjustment being made. The reason, in this case,
is because of the large number of clusters (𝐺 = 384) with a high
degree of homogeneity.

To illustrate the fragility of inference, we change the clustering
level. In most current applications, clustering is done at a broad
level of aggregation; indeed, most applications cluster at the level
of treatment. In this example this would implying clustering by
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TABLE 7 | Large-group fixed effects: Coverage of nominal 95% confidence intervals.

𝑮 𝝈
𝜽

𝑮1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack∗

10 1 4 0.93 0.96 0.96 0.99 0.94 0.94 0.97 0.98
10 1 3 0.90 0.93 0.93 0.97 0.92 0.92 0.96 0.97
10 1 2 0.85 0.90 0.87 0.94 0.91 0.91 0.98 0.99
10 10 4 0.88 0.91 0.90 0.94 0.91 0.91 0.92 0.93
10 10 3 0.85 0.88 0.86 0.92 0.87 0.88 0.90 0.92
10 10 2 0.73 0.79 0.74 0.86 0.77 0.77 0.90 0.93
20 1 4 0.92 0.96 0.95 0.98 0.94 0.94 0.98 0.98
20 1 3 0.88 0.93 0.92 0.97 0.92 0.92 0.98 0.98
20 1 2 0.82 0.88 0.84 0.93 0.92 0.91 0.99 1.00
20 10 4 0.85 0.89 0.88 0.92 0.92 0.92 0.92 0.93
20 10 3 0.80 0.85 0.83 0.90 0.86 0.87 0.91 0.92
20 10 2 0.69 0.76 0.70 0.84 0.78 0.78 0.93 0.95
50 1 4 0.91 0.95 0.94 0.97 0.94 0.94 0.98 0.99
50 1 3 0.86 0.92 0.91 0.96 0.92 0.92 0.99 0.99
50 1 2 0.80 0.87 0.82 0.92 0.92 0.92 1.00 1.00
50 10 4 0.84 0.88 0.87 0.91 0.91 0.92 0.93 0.94
50 10 3 0.79 0.84 0.82 0.89 0.87 0.87 0.92 0.93
50 10 2 0.66 0.75 0.68 0.82 0.81 0.80 0.95 0.96
200 1 4 0.90 0.94 0.94 0.97 0.94 0.94 0.98 0.99
200 1 3 0.86 0.92 0.91 0.96 0.92 0.92 0.99 0.99
200 1 2 0.78 0.86 0.81 0.92 0.92 0.92 1.00 1.00
200 10 4 0.83 0.87 0.87 0.91 0.91 0.92 0.94 0.94
200 10 3 0.77 0.83 0.81 0.88 0.86 0.87 0.93 0.93
200 10 2 0.65 0.74 0.67 0.81 0.84 0.83 0.95 0.96

state, but this is infeasible as there are only two states in the sam-
ple. However, there is an intermediate case. The dataset includes
an indicator for region, separating the New Jersey and eastern
Pennsylvanian stores into three and two regions, respectively, for
a total of five regions. We repeat the analysis, clustering by region.
While this is a small number of clusters, it is not unusual in
reported applications.

We report the results in Table 11. The first line reports the esti-
mated treatment effect using CRVE1 standard errors; the sec-
ond line reports jackknife standard errors with adjusted 𝑝 values
and confidence intervals. Examining the first line and compar-
ing with Table 10, the changes are minimal, with the standard
error decreasing somewhat. A researcher may be lulled into the
false sense that “the results are robust to clustering by region.”
However, this interpretation vanishes when we examine the sec-
ond line of Table 11. The jackknife standard error is nearly twice
the magnitude of the CRVE1 standard error, its 𝑝 value far from
significant, and its 95% confidence interval extremely wide. The
results are qualitatively different.

We also report (for the jackknife estimates) the degree of freedom
𝐾 and scale 𝑎 adjustment parameters for the distribution of the
treatment effect 𝑡 ratio. In this setting, we see that the degree of
freedom equals 𝐾 = 1.4, which is considerably smaller than the
conventional degree of freedom 𝐺 − 1 = 4. This is a signal that

the conventional student 𝑡 distribution approximation is poor,
as the sample exhibits regressor leverage and heterogeneity. We
also see that the scale adjustment 𝑎 = 1.41 is considerably above
1, indicating that the jackknife standard error is likely biased
upwards. Examining these two adjustment coefficients can be
used to signal that conventional inference is unreliable.

It is not my purpose to take a stand on the level of clustering.
Rather, my goal is for regression packages to report valid mea-
sures of precision for any regression a researcher might estimate.
In the present application, it is my contention that the CRVE1
standard error, 𝑝 value, and confidence interval presented in the
first line of Table 11 are misleading, while the jackknife analogs
in the second line are more reliable.

6.2 | Bailey (2010)

Our second illustration is taken from Bailey (2010), who esti-
mates the effect of sales bans on birth control use from surveys10

of married women in 1965 and 1970, exploiting the 1965 US
Supreme Court Griswold decision that legalized contraceptives
in the United States. I focus on her baseline regression, reported
in her Table 2, Column (1). A replication11 of her regression
(with CRVE1 standard errors, clustered by state) is reported in
the top panel of Table 12. We follow Bailey (2010) and report
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TABLE 8 | Ten auxiliary regressors: Coverage of nominal 95% confidence intervals.

𝑮 𝝈
𝜽

𝑮1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack∗

10 1 4 0.95 0.95 0.95 0.97 0.94 0.94 0.95 0.95
10 1 3 0.94 0.94 0.94 0.96 0.94 0.94 0.96 0.96
10 1 2 0.91 0.92 0.91 0.95 0.95 0.95 0.98 0.99
10 10 4 0.91 0.91 0.92 0.94 0.90 0.91 0.92 0.92
10 10 3 0.86 0.88 0.88 0.92 0.86 0.87 0.90 0.91
10 10 2 0.76 0.80 0.77 0.86 0.77 0.78 0.89 0.93
20 1 4 0.93 0.94 0.94 0.95 0.94 0.94 0.96 0.96
20 1 3 0.91 0.92 0.92 0.94 0.95 0.94 0.97 0.97
20 1 2 0.86 0.89 0.86 0.92 0.98 0.98 0.99 1.00
20 10 4 0.86 0.88 0.88 0.91 0.90 0.90 0.91 0.92
20 10 3 0.81 0.84 0.83 0.89 0.84 0.84 0.90 0.92
20 10 2 0.68 0.75 0.69 0.82 0.72 0.74 0.91 0.94
50 1 4 0.90 0.91 0.91 0.93 0.95 0.94 0.96 0.96
50 1 3 0.86 0.89 0.88 0.92 0.96 0.96 0.98 0.97
50 1 2 0.78 0.82 0.78 0.87 1.00 1.00 1.00 1.00
50 10 4 0.84 0.87 0.86 0.90 0.90 0.90 0.92 0.93
50 10 3 0.78 0.82 0.80 0.87 0.82 0.82 0.92 0.93
50 10 2 0.63 0.72 0.64 0.79 0.74 0.75 0.94 0.95
200 1 4 0.86 0.88 0.88 0.91 0.94 0.94 0.96 0.96
200 1 3 0.80 0.84 0.83 0.89 1.00 1.00 0.97 0.97
200 1 2 0.68 0.75 0.69 0.82 1.00 1.00 1.00 0.99
200 10 4 0.82 0.85 0.85 0.89 0.88 0.88 0.94 0.94
200 10 3 0.76 0.81 0.79 0.86 0.82 0.83 0.94 0.94
200 10 2 0.62 0.70 0.63 0.78 0.89 0.89 0.95 0.95

TABLE 9 | One treated cluster: Coverage of nominal 95% confidence intervals.

𝑮 𝝈
𝜽

CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack∗

10 1 0.59 0.58 0.55 1.00 1.00 0.99 0.58 1.00
20 1 0.43 0.42 0.41 1.00 1.00 1.00 0.42 1.00
50 1 0.28 0.27 0.27 1.00 1.00 1.00 0.27 1.00
200 1 0.14 0.13 0.13 1.00 1.00 1.00 0.13 1.00
10 10 0.17 0.17 0.15 1.00 0.60 0.59 0.17 1.00
20 10 0.10 0.10 0.09 1.00 0.69 0.68 0.10 1.00
50 10 0.05 0.05 0.05 1.00 0.85 0.85 0.05 1.00
200 10 0.03 0.02 0.02 1.00 0.99 0.99 0.02 1.00

only two coefficients, that for the indicator for the sales ban,
and that for its interaction with an indicator for 1970. In addi-
tion, the regression includes indicators for states with physi-
cian exceptions and its interaction with 1970, as well as cen-
sus region-by-year fixed effects. Of these estimates, Bailey (2010)
paid particular attention to the coefficient on the sales ban,
which is negative and significant at the 1% level, arguing that
this means that “women in states with sales bans were signifi-
cantly less likely to have used oral contraception before the 1965
Griswold decision.”

We repeat the estimation in the bottom panel of Table 12 using
our jackknife methods. Both standard errors increase signifi-
cantly, that for the key sales ban variable by 40%. Its 𝑝 value
increases from 1% to 4.6%. This change arises despite the fact
that there are a reasonably large (𝐺 = 47) number of clusters and
a very large (𝑛 = 6929) number of observations. While the jack-
knife methods do not reverse Bailey’s conclusions, they moderate
their significance.

It is also useful to examine the reported degree of freedom 𝐾 and
scale adjustment 𝑎 coefficients. In this application, the value of
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TABLE 10 | Card and Krueger (1994): Effect of minimum wage on employment.

Coefficient Std Err 𝒕 𝒑𝒗 95% interval 𝑲 𝒂

CRVE1 2.75 1.34 2.05 0.041 [0.12, 5.38]
Jackknife 2.75 1.35 2.04 0.043 [0.89, 5.41] 112 1.01
Fixed effects: State (2), Time (2)
Clusters Store (384)
Observations 768

TABLE 11 | Card and Krueger (1994): Effect of minimum wage on employment.

Coefficient Std Err 𝒕 𝒑𝒗 95% interval 𝑲 𝒂

CRVE1 2.75 1.17 2.35 0.079 [−0.51, 6.01]
Jackknife 2.75 2.09 1.31 0.255 [−6.98, 12.48] 1.42 1.41
Fixed effects: State (2), Time (2)
Clusters Region (5)
Observations 768

TABLE 12 | Bailey (2010), Table 2, Column 1: Effect of sales ban on birth control use.

Coefficient Std Err 𝒕 𝒑𝒗 95% interval 𝑲 𝒂

CRVE1

Sales ban −0.055 0.020 −2.71 0.010 [−0.095,−0.014]
Sales ban× 1970 0.039 0.029 1.37 0.177 [−0.018, 0.097]
Jackknife
Sales ban −0.055 0.028 −1.98 0.046 [−0.108,−0.001] 7.95 1.19
Sales ban× 1970 0.039 0.035 1.13 0.214 [−0.027, 0.105] 10.1 1.17
Fixed effects: Region×Year (8)
Clusters State (47)
Observations 6929

𝐾 for the two reported coefficients (𝐾 = 8 and 𝐾 = 10) are mod-
erately small, and lower than the conventional 𝐺 − 1 = 46. The
scale adjustments 𝑎 = 1.2 are also moderate. These values indi-
cate that we should expect only minor distributional deviation
from conventional.

6.3 | MacKinnon and Webb (2020)

Our investigation next follows in the footsteps of MacKinnon and
Webb (2020).12 We augment the regression of Table 12 with a
dummy variable indicating if a state repealed their sales ban in
1961, 4 years before the Griswold decision. There are two such
states (Illinois and Colorado). We repeat an analog13 of their
regression in the top panel of Table 13 and then repeat the analy-
sis using our jackknife methods in the bottom panel.

The results in the top panel indicate that the coefficient on “Re-
peal in 1961” is negative and statistically significant, with a 𝑝

value of 0.000. This appears to suggest the counterintuitive find-
ing that the early repeal resulted in a lower probability of birth
control use. However, if we examine the bottom panel, we find

that the standard error for “Repeal in 1961” increases fivefold
when the jackknife is used, and the reported 𝑝 value increases
to 0.178. The “significance” of the result disappears.

It is instructive to examine the degree of freedom 𝐾 and scale
adjustment 𝑎. We see that for the “Repeal in 1961” coefficient,
𝐾 = 1 and 𝑎 = 4.4, which are extreme values. Seeing this, we
should investigate the cause and uncover that this regression
coefficient is poorly identified. The value of𝐾 indicates that con-
ventional inference will be invalid and the conventional CRVE1 𝑡

ratio unreliable. This helps explain why the conventional 𝑡 ratio
spuriously indicates a “significant” effect.

Our message is that a researcher who uses conventional CRVE1
methods could easily be misled by regressions such as that in the
top panel of Table 13, but will not be as easily misled if they use
jackknife methods as presented in the bottom panel. As shown by
MacKinnon and Webb (2020), similar inferences can be obtained
by randomization methods. An important difference is that the
jackknife can be a computationally simple default method for cal-
culation of standard errors, 𝑝 values, and confidence intervals, not
just as a specialized robustness check.

Journal of Applied Econometrics, 2025304
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TABLE 13 | MacKinnon and Webb (2020), Table 1: Effect of early repeal on birth control use.

Coefficient Std Err 𝒕 𝒑𝒗 95% interval 𝑲 𝒂

CRVE1

Sales ban −0.046 0.016 −2.81 0.007 [−0.079,−0.013]
Sales ban× 1970 0.036 0.028 1.30 0.200 [−0.020, 0.092]
Repeal in 1961 −0.082 0.019 −4.23 0.000 [−0.121,−0.043]
Jackknife
Sales ban −0.046 0.023 −2.06 0.039 [−0.090,−0.003] 8.29 1.19
Sales ban× 1970 0.036 0.033 1.09 0.230 [−0.027, 0.099] 10.1 1.17
Repeal in 1961 −0.082 0.106 −0.77 0.178 [−0.373,0.209] 1.02 4.38
Fixed effects: Region×Year (8)
Clusters State (47)
Observations 6929

TABLE 14 | Rao (2019), Table 2, Column 1: Effect of integration on volunteering for charity.

Coefficient Std Err 𝒕 𝒑𝒗 95% interval 𝑲 𝒂

CRVE1

Treated classroom 0.130 0.026 5.05 0.000 [0.079, 0.182]
Age 0.029 0.035 0.84 0.407 [−0.041, 0.010]
Male 0.010 0.018 0.56 0.576 [−0.026, 0.046]
Family owns car 0.038 0.026 1.47 0.146 [−0.014, 0.100]
Private driver 0.015 0.025 0.61 0.541 [−0.034, 0.065]
Jackknife
Treated classroom 0.130 0.038 3.43 0.000 [0.066, 0.195] 20.1 1.23
Age 0.029 0.036 0.82 0.407 [−0.041, 0.010] 58.8 1.01
Male 0.010 0.018 0.55 0.577 [−0.026, 0.046] 61.1 1.02
Family owns car 0.038 0.026 1.45 0.146 [−0.014,0.091] 48.9 1.02
Private driver 0.015 0.025 0.61 0.539 [−0.034, 0.065] 56.6 1.01
Fixed effects: School (17), Grade (4)
Clusters School×Grade (68)
Observations 2364

6.4 | Rao (2019)

Our third and fourth illustrations are from Rao (2019). He inves-
tigates the impact of the integration of poor children into elite
private schools on the social behaviors of rich students, using a
combination of administrative data and field experiments. His
paper reports many regressions; I report two. I start with the
first reported in his paper, from Column 1 of his Table 2, which
measures the effect of integration on whether a rich student vol-
unteers for charity. I repeat his regression in the top panel of
Table 14, which reports a linear regression of an indicator for
volunteering on treatment (the presence of poor children in a
student’s classroom), four demographic controls, and school and
grade fixed effects. Clustering is done at the school-by-grade level,
so there are𝐺 = 68 clusters and 𝑛 = 2304 observations. The coef-
ficient of interest is that for treatment.

We repeat the analysis using our jackknife methods in the bottom
panel. The standard error on treatment increases by 46%, while
the standard errors on the other estimates do not change. The
𝑝 value for treatment in both regressions is highly significant, so
the conclusion that integration affects behavior is not altered, but
the fact that the standard error increases by nearly 50% illustrates
how conventional inference is potentially fragile.

As a second example, I take Rao’s regression reported in Col-
umn 2 of his Table 6, which measures the effect of integration
on a discriminatory behavior (choosing a lower ability wealthy
student over a higher ability poor student as a teammate in an
athletic contest). In this regression, in addition to the primary
treatment indicator, there are four other coefficients of interest
(two indicators of higher prize money and interactions of these
indicators with the treatment indicator) as well as school and
grade fixed effects. In this example, there are 𝐺 = 8 clusters and
𝑛 = 342 observations.
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TABLE 15 | Rao (2019), Table 6, Column 2: Effect of integration on discriminatory behavior.

Coefficient Std Err 𝒕 𝒑𝒗 95% interval 𝑲 𝒂

CRVE1

Treated classroom −0.256 0.065 −3.91 0.006 [−0.411,−0.101]
Prize=Rs 200 −0.137 0.054 −2.54 0.039 [−0.265,−0.009]
Prize=Rs 500 −0.314 0.050 −6.32 0.000 [−0.432,−0.197]
Treated×Prize= 200 0.085 0.067 1.28 0.242 [−0.072, 0.243]
Treated×Prize= 500 0.186 0.094 1.99 0.087 [−0.035, 0.408]
Jackknife
Treated classroom −0.256 0.194 −1.32 0.121 [−0.655, 0.143] 2.42 1.78
Prize=Rs 200 −0.137 0.061 −2.26 0.056 [−0.279, 0.005] 4.98 1.10
Prize=Rs 500 −0.314 0.055 −5.69 0.002 [−0.445,−0.184] 4.81 1.10
Treated×Prize= 200 0.085 0.094 0.90 0.377 [−0.299, 0.470] 1.63 1.32
Treated×Prize= 500 0.186 0.157 1.19 0.280 [−0.427, 0.800] 1.69 1.32
Fixed Effects: School (2), Grade (4)
Clusters School×Grade (8)
Observations 342

We repeat Rao’s results in the top panel of Table 15 and present
the jackknife results in the bottom panel. Rao’s results appear to
show that treatment has a significant negative effect on discrimi-
natory behavior, and so does the offer of higher prize money. The
jackknife results, however, moderate these inferences. The stan-
dard error on treatment triples, and its 𝑝 value increases from
0.006 to 0.121. The impact of integration no longer appears to
have a statistically significant impact on behavior. The standard
errors and 𝑝 values for the prize levels, in contrast, increase more
moderately.

Again it is useful to examine the degree-of-freedom coefficients
𝐾 . In Table 14, they are all very large (𝐾 ≥ 20 for all coefficients),
raising no concerns. However, in Table 15, the values of𝐾 for the
treatment coefficients (especially the interaction effects) are very
low. This should be taken as a signal that conventional inference
methods are misleading.

My view is that if results such as the bottom panel of Table 13 were
routinely displayed, rather than the results from the top panel,
researchers would make more informed decisions.

7 | Conclusion

DiD regression is a standard tool in contemporary economics.
The vast majority of applications report cluster-robust standard
errors, but the conventional formula produces estimates that
can be highly biased towards zero, resulting in spurious levels
of statistical significance. Two simple changes can alleviate this
problem: the use of jackknife variance estimation and adjusted
student 𝑡 critical values. These alternatives are computationally
efficient and could be set for default use.

A Stata and R program jregress that calculates the recom-
mended methods is available on the author’s website users.ssc.
wisc.edu/~bhansen/.
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Endnotes
1 This paper is not concerned with identification; there is a large lit-

erature focusing on the conditions under which 𝜃 equals the ATT,
conditions under which this equality fails, and alternative estimation
strategies which can be employed in such contexts.

2 The theoretical properties of the jackknife variance estimator (8)
described in this paper hold if (9) is constructed with any general-
ized inverse. We recommend the Moore–Penrose inverse as it is the
unique minimum-length minimizer of the least squares criterion and
thus tends to produce variance estimators (8) which are less excessively
conservative, relative to estimates constructed with other generalized
inverse formulae.

3 In contrast, a common degree-of-freedom correction is to multiply (4)
by (𝐺 − 1)∕𝐺.

4 Computationally, we use the within estimator to eliminate the
group-level fixed effects, as this is algebraically equivalent to the full
least squares regression yet computationally more efficient.

5 MacKinnon, Nielsen, and Webb (2023b) review several variants of
the Wild cluster bootstrap. Our implementation correspond to their
WCR-C and WCR-V methods.

6 We describe here a conceptual implementation of the Wild bootstrap
algorithm. For our actual calculation, we use the fast computation
algorithm described in MacKinnon (2023).

7 To assess the coverage rate, it is sufficient to do the calculation for the
true value of 𝜃.

8 See Kolesár (2023) for efficient computation.
9 We use the “strongly skewed” distribution displayed in Figure 3.7b of

Hansen (2022), which is a nine-component normal mixture distribu-
tion with a skew of 1.34 and kurtosis of 6.7.
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10 This is an example where different individuals are sampled in the two
time periods.

11 Our results are slightly different from those reported in Bailey (2010)
for two reasons. First, her replication dataset has 21 fewer observations
than the one used in her published paper. Second, Bailey reports aver-
age marginal effects from probit regression, while Table 12, following
MacKinnon and Webb (2020), reports linear probability estimates.

12 Their purpose was to illustrate inference based on randomization
methods.

13 In Table 1 of MacKinnon and Webb (2020), they add two dummy vari-
ables rather than just one, interacting the “Repeal in 1961” indicator
with year dummies. We do not do so as this regression suffers from
poor identification (the coefficients are not identified if Illinois is omit-
ted, as there are no observations for Colorado in 1970). This is a “one
treated cluster” context. While our inference methods are valid in this
case, we did not want this to be the focus of this illustration.
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Appendix A

A.1 | Heteroskedasticity-Robust Covariance Estimators

For reference, we list the common heteroskedasticity-robust covariance
matrix estimators for the linear model 𝑌

𝑖
= 𝛽

′
𝑋
𝑖
+ 𝑒

𝑖
under assumed

cross-sectional independence, 𝑛 observations, and 𝑘 regressors.

The HC0 estimator of Eicker (1963), Huber (1967), and White (1980) is

�̂� 0 =
(
𝑿
′
𝑿
)−1

(
𝑛∑
𝑖=1
𝑋
𝑖
𝑋
′
𝑖
𝑒

2
𝑖

)(
𝑿
′
𝑿
)−1

. (A1)

The HC1 estimator of Hinkley (1977) is

�̂� 1 =
𝑛

𝑛 − 𝑘
(
𝑿
′
𝑿
)−1

(
𝑛∑
𝑖=1
𝑋
𝑖
𝑋
′
𝑖
𝑒

2
𝑖

)(
𝑿
′
𝑿
)−1

. (A2)

The HC2 estimator of MacKinnon and White (1985) is

�̂� 2 =
(
𝑿
′
𝑿
)−1

(
𝑛∑
𝑖=1
𝑋
𝑖
𝑋
′
𝑖

𝑒
2
𝑖

1 − ℎ
𝑖

)(
𝑿
′
𝑿
)−1

, (A3)

where ℎ
𝑖
= 𝑋

′
𝑖

(
𝑿
′
𝑿
)−1

𝑋
𝑖
. The HC3/jackknife estimator of MacKinnon

and White (1985) is

�̂� 3 =
(
𝑿
′
𝑿
)−1

(
𝑛∑
𝑖=1
𝑋
𝑖
𝑋
′
𝑖

𝑒
2
𝑖(

1 − ℎ
𝑖

)2

)(
𝑿
′
𝑿
)−1 (A4)

=
𝑛∑
𝑖=1

(
𝛽−𝑖 − 𝛽

)(
𝛽−𝑖 − 𝛽

)′
, (A5)

where 𝛽−𝑖 =
(
𝑿
′
𝑿 −𝑋

𝑖
𝑋
′
𝑖

)−1(
𝑿
′
𝒀 −𝑋

𝑖
𝑌
𝑖

)
is the leave-one-out estima-

tor of 𝛽.

A.1.1 | Adjusted Jackknife Inference Formula

The following formula for the constants𝐾 and 𝑎 for the confidence inter-
val (13) and 𝑝 value (14) are taken from Hansen (2024):

𝑎 =
√

tr[𝑳]
𝑅′

(
𝑿
′
𝑿
)−1

𝑅

, (A6)

and
𝐾 = (tr[𝑳])2
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, (A7)

with
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A.1.2 | Computational Considerations

Calculation of both the variance estimator (8) and the correction coef-
ficients (A6) and (A7) requires looping over clusters, and the latter also
require looping over individual coefficients (in order to calculate standard
errors for each coefficient estimate). The major computational burden
in each loop is the generalized inverse

(
𝑿
′
𝑿 −𝑿′

𝑔
𝑿

𝑔

)+
. It is efficient

if each of these is calculated just once and the inverse matrices stored.

In our R program, we use the following method to compute the
Moore–Penrose inverse. First, calculate the eigenvalues 𝜆1 ≥ 𝜆2 ≥

… ≥ 𝜆
𝑛
≥ 0 and associated eigenvalues ℎ1, … , ℎ

𝑛
of 𝑿′

𝑿 −𝑿′
𝑔
𝑿

𝑔
,

which satisfy the spectral decomposition 𝑿′
𝑿 −𝑿′

𝑔
𝑿

𝑔
= 𝑯𝜦𝑯 ′ where

𝜦 = 𝑑𝑖𝑎𝑔{𝜆1, … , 𝜆
𝑛
} and 𝑯 = [ℎ1, … , ℎ

𝑛
]. For some threshold 𝜀 >

0 (close to machine zero) calculate the trimmed eigenvalue inverses
𝜆
+
𝑗
= 𝜆

−1
𝑗

1{𝜆
𝑗
≥ 𝜀} and set 𝜦

+ = 𝑑𝑖𝑎𝑔{𝜆+1 , … , 𝜆
+
𝑛
}. The numerical

Moore–Penrose inverse is then found as
(
𝑿
′
𝑿 −𝑿′

𝑔
𝑿

𝑔

)+
= 𝑯𝜦+𝑯 ′.
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TABLE A1 | Computation time (s).

R 4.4.1 Stata SE 18

𝑮 𝒏
𝒈

𝒌 CRVE1 Jackknife CRVE1 Jackknife

20 100 10 0.006 0.096 0.005 0.024
20 100 50 0.028 0.029 0.011 0.111
20 100 100 0.014 0.173 0.020 0.361
20 100 200 0.036 1.394 0.067 1.954
20 1000 10 0.023 0.013 0.018 0.036
20 1000 50 0.047 0.1000 0.038 0.222
20 1000 100 0.120 0.316 0.087 0.650
20 1000 200 0.375 1.782 0.273 2.912
200 100 10 0.019 0.031 0.011 0.043
200 100 50 0.040 0.216 0.046 0.392
200 100 100 0.135 1.053 0.090 1.700
200 100 200 0.320 6.591 0.268 10.59
200 1000 10 0.280 0.225 0.116 0.246
200 1000 50 0.646 0.823 0.330 1.361
200 1000 100 1.527 2.543 0.702 4.690
200 1000 200 4.574 11.23 2.101 20.15

Note: Computation performed under Windows 11 on an i7-12700 processor with 32 GB of RAM.

For small to moderate 𝑘 this is computationally reasonable. However,
as the dimension 𝑘 increases the eigenvalue calculation becomes com-
putationally burdensome. Consequently, for computation with for very
large 𝑘, a faster implementation of the Moore–Penrose inverse would be
desirable.

In the standard DiD regression (1), it is common that the regression
includes a large number of group-level fixed effects dummies. When these
fixed effects correspond to the level of clustering, these regressors can be
eliminated by application of the within transformation to all regressors.
Whether the full regression is estimated or the regression after the within
transformation is applied, the remaining regression coefficient estimates,
jackknife covariance matrix estimator, and correction coefficients 𝐾 and
𝑎 are all identical. This can dramatically reduce the number of effective
regressors 𝑘, and this reduces the computation time. Therefore, if the
fixed effect coefficients themselves are not of interest, it is computation-
ally advised to first eliminate the fixed effect dummy variables by applying
the within transformation. However, if the fixed effects are different than
the level of clustering (which is true, e.g., in the empirical examples of
this paper), then this equivalence is not valid, and estimation and infer-
ence should be done by explicit inclusion of all fixed effects using dummy
variables as regressors.

To investigate computation cost of our proposed jackknife methods and
our specific jregress programs, we report computation times on ran-
domly generated data sets. All variables (the dependent variable and 𝑘

regressors) were generated as i.i.d.𝑁(0,1), and the observations organized
into 𝐺 clusters each with 𝑛

𝑔
observations. We vary 𝑛

𝑔
∈ {100,1000}, 𝐺 =

{20,200}, and 𝑘 = {10,50, 100,200}. Notice that the total number of obser-
vations range among 𝑛 = {2000, 20000, 200000}, so these computations
are for large to very large samples. We do calculations in both R (Version
4.4.1) and Stata SE 18, on a standard office PC. In R, the computation of
CRVE1 is done by thelm_robust application from theestimatr pack-
age. The computation of the jackknife is done with our jregress pro-
gram. In Stata, the computation of CRVE1 is done by regress with the
cluster option, and the jackknife is done with ourjregressprogram.
The Stata calculations are donequietly to emphasize calculation rather
than screen display. All calculate the least squares estimates, standard
errors, 𝑝 values, and confidence intervals (with adjustments for the jack-
knife method). We perform each calculation once for each configuration.

In Table A1, we report the elapsed computation time in seconds. We make
the following general observations:

1. In all contexts, the jackknife calculation times are reasonable for
default implementation. In most cases, computation time is a frac-
tion of a second. In models with a large number of observations and
regressors, jackknife computation time can take multiple seconds,
but this is also the case for CRVE1 estimation.

2. While the jackknife is generally more computationally costly than
CRVE1, it is not uniformly more costly, and in most cases, the dif-
ferences are minor.

3. Computation speeds are generally similar between the R and Stata
packages. Stata, however, has a faster default implementation of
CRVE1 than the R lm_robust package; and our R jregress
package is somewhat faster than our Stata jregress package.

4. Computation cost is increasing in 𝑘 (the number of regressors), 𝐺
(the number of clusters), and 𝑛

𝑔
(the number of observations per

cluster). To get a rough understanding of these impacts, we fit-
ted regressions of log computation time on log inputs and found
that, roughly, the computational cost of the jackknife methods is
𝑂

(
𝐺

0.7
𝑛

0.3
𝑔
𝑘

1.3
)

. Thus, computation time is most strongly affected
by the number of regressors 𝑘 and secondly by the number of clus-
ters 𝐺.

Overall, the calculations demonstrate that the proposed jackknife meth-
ods are computationally reasonable to implement on standard office com-
puters, at least for data sets up to 200,000 observations and 200 regressors.
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