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AUTOREGRESSIVE CONDITIONAL DENSITY ESTIMATION#*

By Bruce E. HaNsgeN!

Engle’s ARCH model is extended to permit parametric specifications for
conditional dependence beyond the mean and variance. The suggestion is to
model the conditional density with a small number of ‘‘parameters,’’ and then
model these parameters as functions of the conditioning information. This
method is applied to two data sets. The first application is to the monthly
excess holding yield on U.S. Treasury securities, where the conditional
density used is a student’s ¢ distribution. The second application is to the U.S.
Dollar/Swiss Franc exchange rate, using a new ‘‘skewed student #’ condi-
tional distribution.

1. INTRODUCTION

A typical econometric problem is to obtain an approximation to the distribution
of a variable y,, conditional on another (vector-valued) variable x,. This includes
the dynamic context where x, contains lagged values of y,.

Most applications include estimates of the conditional mean,

1) Moy =E(ytlxt)'

The conditional mean may be thought of as the leading term in the conditional
distribution. Many econometric applications are concerned with nothing further
than the mean. The remaining error

€r =Yr = M

in these contexts is implicitly modeled as independent of x,.
Many applications include as well estimates of the conditional variance

2) U';Z = Uz(x:) =E((y, - Mt)2|xt)

which may be thought of as the second term in the conditional distribution.
The conditional variance can be used to define the normalized error
€r Yr— My
(3) 2= —=—".
o O
The normalized error z, is a random variable whose conditional distribution is
derived from the conditional distribution of y, by the transformations (1) and (2). In
most regression models, however, the conditional distribution of z, is simply
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assumed to be independent of the conditioning variable x,. This is typical, for
example, in the ‘“ARCH”’ literature which has sprung from the pioneering work of
Engle (1982). While a useful simplifying assumption, there is absolutely no reason
to expect the conditional distribution of the derived variable z, to be independent
of the conditioning information. Another way of saying this is that there is no
reason to assume, in general, that the only features of the conditional distribution
which depend upon the conditioning information are the mean and variance.
Indeed, it seems quite reasonable that other features of the distribution (such as
skewness and kurtosis) will depend on the conditioning information. Gallant,
Hsieh, and Tauchen (1991) have made a clever argument of this form. They show
that if the innovations e, are generated by the mixture model e, = 1,/%¢, where ¢,
is iid and independent of I,, then the variance of e,, conditional on the past history
of e, alone, will not (in general) equal I,, and thus the normalized error z, will
generally have a nonconstant conditional distribution. In fact, this is an implication
of most stochastic volatility models. For various approaches to the latter see
Andersen (1992), Shephard (1994), and Watanabe (1992).

The reason why most applications have ignored higher-order features of the
conditional distribution may be because only the conditional mean and variance
generate significant excitement. But this lack of excitement does not imply that
higher-order features should be completely ignored. First, efficient estimation of
the equations for the conditional mean and variance require a complete description
of the conditional distribution. Second, the aim of conditional models is often
prediction, and the accuracy of predictive distributions is critically dependent upon
knowledge of the correct conditional distribution for the normalized error. This
point has been recently made in Baillie and Bollerslev (1992). Third, empirical
models of asset pricing are incomplete unless the full conditional model is specified.
Full specification may be especially important in the context of options pricing,
where the price is determined by not just the conditional mean and variance, but
more complicated functions of the conditional distribution.

While it might be agreed that it is desirable to allow the conditional density of z,
to depend on x,, it is probably not clear at all how to achieve this goal. One
approach, offered by Gallant, Hsieh, and Tauchen (1991), is to model the joint
density of y, and x, using a series expansion about the Gaussian density. This is an
innovative approach, and has the potential to reveal a lot of information concerning
the underlying distribution without having to impose a great deal of a priori
information or structure. Their approach has several drawbacks, however. First,
their parameterization is not parsimonious, and therefore requires very large data
sets in order to achieve a reasonable degree of precision. Second, the methods are
computationally expensive, and may lay outside the reach of many routine
applications. Third, the techniques may be sensitive to choices of the number of
expansion terms. Theorists have not yet solved many questions concerning
implementation and the selection of the order of the expansion. As a result, these
techniques will probably remain primarily in the hands of specialists.

This paper suggests an alternative parametric approach to modeling the condi-
tional density of the normalized error. The approach may be regarded as a direct
extension of Engle’s idea to model the conditional variance as a function of lagged
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errors. My suggestion is to select a distribution which depends upon a low-
dimensional parameter vector, and then let this ‘‘parameter vector’’ vary as a
function of the conditional variables. In general, any distribution which has a
closed-form density function may be used. In the applications presented in this
paper, the student’s ¢ density and a generalization which allows for skewness are
used.

It is useful to briefly review the relationship of this paper with the previous
literature. Several density functions for the normalized error have been proposed
beyond the Gaussian distribution originally used by Engle (1982). Many authors,
including Engle and Bollerslev (1986) have used the conditional student’s ¢
distribution. Spanos (1991) suggested the multivariate ¢ distribution, which yields
conditional heteroskedasticity as a natural implication. Nelson (1989) used the
generalized exponential distribution. Liu and Brorsen (1992) used a stable distri-
bution. Engle and Gonzalez-Rivera (1991) used a nonparametric conditional
distribution. While these authors have used different conditional distributions, they
all have made the latter (equivalently, the shape parameters) constant over time.
None have allowed the shape of distribution to change over time. In addition, few
have allowed for skewness. The applications of this paper allow for both time-
varying shapes in the conditional density, and for skewness in the density function.

This method is applied to two financial data set. The first is the excess holding
yield on U.S. Treasury securities. The second is the Dollar/Franc exchange rate.
In both applications strong evidence is found for variation in the conditional
distribution beyond the mean and variance. A GAUSS386 program (requires the
OPTMUM module) which replicates the empirical results is available on request
from the author.

2. ARCD MODEL

2.1. Probability Model. The observed sample is (y,;, x,: t = 1, ... , n) which
is assumed to be a realization of some jointly stationary process. We do not need
to restrict the variables x, to lie in a finite-dimensional space, so we can allow, for
example, the variable x, to include all of the (observed) past values of y,.

We will restrict attention to distribution functions which have densities which
can be written in the form

d
4) fyla(x,, 0))=EP(yzS>'|xt)

where 0 is a finite-dimensional parameter vector and
ay =« ( xt ’ 0 )

is a low-dimensional ‘‘time varying parameter’’ which fully describes the influence
of x, upon the conditional distribution. When the dimension of x, is constant and
finite, there is of course no loss in generality in writing the density function in this
form, but when x, is infinite dimensional or has a dimension which depends on ¢,
then this class represents a meaningful restriction of the class of potential models.
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For reasons which will become apparent, we will denote this class of models by the
name ‘‘autoregressive conditional density models’’ (ARCD).

2.2. Normalized Parameterizations. 1t is particularly convenient for the re-
porting of applied research to rewrite the density function in terms of location and
scale parameters. I will restrict attention in this exposition to cases where the
location parameter is the conditional mean, and the scale parameter is the
conditional variance, but the generalizations to cases where the mean or variance
does not exist is straightforward and merely involves changes in notation. The idea
is to parameterize the function f(y|a) so that we have the partition

@, = (e, o, M)
where
(5) po= (6, x;)=E(y|x,)
is the conditional mean,
(6) ol =06, x)=E(y: — p)’lx)
is the conditional variance, and

n:.=1n(0, x;)

contain the remaining parameters of the conditional distribution, which we will
sometimes refer to as ‘‘shape’” parameters.
The conditional mean and variance allow us to define the normalized variable

ye — n(6, x;)

(7) z,(0) = (6, 1)

We will denote the conditional density function for z, by

d
(8) g(Zlm)=EP(z,<Z|m)

say. Densities (4) and (8) are related by

1
fime, o, m,) = —9(zm.),
t

Most ARCH-type applications use probability models of the form (5) through (8),
but with 1, assumed to be time invariant. The ARCD modeling strategy simply
builds on this foundation by allowing the shape parameters of the density function
to be time varying as well.

This formalization is convenient since there is a large literature which concerns
the specification of the mean equation (5) and the variance equation (6). Parametric
models include ARCH, GARCH, E-GARCH, N-ARCH, A-ARCH, plus ARCH-M
versions of each (see Hentshcel 1991 for a recent summary). Nonparametric models
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for the mean and variance equations have also been suggested, as in Pagan and
Hong (1991) and Gourerioux and Monfort (1992).

2.3. Flexible Density Functions. The goal is desirable to select a density
function g(z|n) which generalizes the standard normal, is sufficiently flexible to
generate the range of shapes which we think might be relevant in a particular
application (such as heavy tails, skewness, or bi-modality), and yet is sufficiently
parsimonious that n can be adequately modeled using time series techniques. To
facilitate quasi-likelihood estimation, it is also important that the density g(z|n) be
available in closed form. Otherwise, estimation may be infeasible.

The statistics literature contains many flexible low-dimensional parametric
distributions. But few have closed form density functions. For example, the
well-known Pearson family can only be expressed as the solution to a differential
equation. Other distributions, such as the Tukey-A family, are only represented
through their quantile function (the inverse of the distribution function). For a
recent flexible generalization of the Tukey family see Ramberg, Tadikamalla,
Dudewicz, and Mykytka (1979). Since the density function is unavailable, estima-
tion of these models typically uses the method of moments or a close relative,
rather than maximum likelihood.

In principle, a method of moments approach could be combined with the ARCD
strategy proposed here. ARCH-styled models could be fit to a set of moments of the
data, giving time-varying estimates of the conditional moments, and then could be
inverted to find the matching parameters of the distribution. This would be a very
different approach from that explored in this paper, but certainly is worth
considering. I believe, however, that estimation based on the method of moments
in potentially integrated GARCH models might involve severe inferential difficul-
ties. The recent asymptotic distribution theory for GARCH models (see Lee and
Hansen 1994) relies heavily on the fact that the likelihood scores are inversely
proportional to the conditional variance, so that the scores will have bounded
unconditional second moments, even though the data itself does not. Examining the
nature of the proofs, it seems difficult to believe that a normal asymptotic
distribution theory will hold for naive method of moments estimation in the
presence of integrated variances. Until this distributional question is solved, it
appears wise to avoid empirical strategies based on the method of moments.

2.4. A Skewed Student’s t Density. The approach taken in this paper will be
to rely on the popular student’s ¢ density and a simple skewed generalization.
Recall, the student’s ¢ density (normalized to have unit variance) is

) 9(z|n) =

n+1
F(T) ( Z2 )—(n+1)/2
1+
v (n = 2)1“(;-) =2

where 2 < 1 < «. This density function is the basis for the empirical work reported
in Section 3.
The student’s ¢ is a fairly restrictive parametric family, only allowing for variation
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in the location, scale, and tail thickness. To allow for a richer set of behaviors, we
may need a more flexible family of probability densities. A minimal desirable
extension is to allow for skewness. In order to keep in the ARCH tradition, it is also
important to have density functions which can be easily parameterized so that the
innovations are mean zero and unit variance. Otherwise, it will be difficult to
separate the fluctuations in the mean and variance from the fluctuations in the shape
of the conditional density.
Consider the following density function:

1 bz + a\ 2\ ~(1+ D2
bc(1+n_2(1_)‘)) z< —alb,

(10) 9(zlm, A) =

1 bz + a\?\ ~(n+ D2
bell+ z= —alb,
n—2\1+A
where 2 < n < o, and —1 < A < 1. The constants a, b, and ¢ are given by
n-—2
(11) a =4)\c( ),
n-—1
(12) b =1+3A2-4?,
and
+1
2
(13) c=

(m — 2)1“(3)

In the Appendix, we show that this is a proper density function with a mean of zero
and a unit variance. This ‘‘skewed student’s ¢ distribution specializes to the
student’s ¢ distribution (9) by setting A = 0.

Inspection of the density function reveals that the density is continuous, and has
a single mode at —a/b, which is of opposite sign with the parameter A. Thus if A >
0, the mode of the density is to the left of zero and the variable is skewed to the
right, and vice-versa when A < 0. Figure 1 displays plots of the density for a few
parameterizations.

It should be emphasized that the general approach advocated here does not
depend upon these particular choices for the density function. Other choices may
have better properties in particular applications. We use density (10) for the
empirical study reported in Section 4.

2.5. Specification of Laws of Motion for Shape Parameters. It is necessary to
specify laws of motion for the ‘‘parameters’’ «,. Many strategies are possible, but
the one suggested here is to follow the lead of Engle (1982). Engle’s ARCH model
and its generalizations have all made o> a function of the lagged errors
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Since this approach has been empirically successful for the conditional variance,
then it seems reasonable to believe that this strategy could also work well for other
time-varying parameters in n,. That is, the proposed modeling strategy will be to
specify laws of motion of the form

Ne=mn(e,—1, €-2, -, €1).

As in the ARCH literature, we have to pay attention to boundary constraints.
The conditional variance, for example, is constrained to be positive. Thus specifi-
cations of the form o? = a + be,_; are avoided since they cannot guarantee
positivity of the estimated variance sequence. One common solution (in this
context) is to use specifications of the form ¢? = a + be? ;. Another solution is
to use an appropriate transformation of the variance, such as In o = a + be,_; +
ce? ;. Both methods have been used in the ARCH literature.

This constraint problem will certainly arise in the general ARCD context. Shape
parameters arising from typical density functions often need to lie in restricted
regions of the real line. Without the guidance of a priori theory, there is no
uniformly correct approach, but a practical method which will “‘work’’ is to use a
logistic transformation. Suppose that 7, is real valued and is related to a variable A,

as
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(U-1L)

=L+—
M 1+exp (—A,)

Even if A, is allowed to vary over the entire real line, 1, will be constrained to lie
in the region [L, U]. L and U should be chosen to reflect the region of interest for
7,. Combined with a law of motion for 7, such as

A, =a+ be,_, +ce,2_1

we obtain a relationship n, = n(e,—;) which is flexible yet constrained to the region
[L, UJ.

2.6. Estimation and Inference. We can write the conditional log-likelihood
function as

(14) In L(8]x1, X9y ev s x,) = >, 1,(0)

=1
where
1,(6) =1n g(z,(6)[n,(6)) —In (6, x,).

The maximum likelihood estimate (MLE) of the model is the value & which
maximizes the conditional log-likelihood (14). The optimum may be found using an
appropriate optimization technique.

Under the assumption of correct specification, the likelihood scores

d d d
;9—0_ 1,(0) = 5 In g(z,(O)In,(O)) - % In o(6, x,)

are martingale differences and have variance

d d d
V=V(0), V(0)=E£l,(0)6—51,(0)’=—EW1,(0),
where 6, denotes the true parameter value. If El,(6) < « and E (8/90) [,(8) < «
uniformly in 6 then the MLE will be consistent. If V < » as well and the likelihood
is sufficiently well behaved in the neighborhood of 6, then the MLE will be
asymptotically normal as well. While these are not unreasonable expectations, it is
my expectation that a rigorous proof will be quite difficult to accomplish in this
general setting. Lumsdaine (1991) established consistency and asymptotic normal-
ity for the Gaussian GARCH(1,1) quasi-MLE under the assumption that z, is iid
with 32 finite moments. Lee and Hansen (1994) achieved a similar result under the
weaker condition that z, is a stationary martingale difference with a bounded
conditional fourth moment. Lee (1993) extended these results to incorporate the
Gaussian GARCH-M model. All of these papers have confined attention to the case
in which the conditional density used for estimation is the standard normal.
Extension of this theory to cover the general context considered here would be
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desirable, but beyond the scope of the present study. We will simply assume that
such theorems hold, and proceed conventionally.

Since any particular probability model is unlikely to be the ‘‘correct’’ model, but
should more accurately be viewed as an approximation to the underlying probabil-
ity structure, it is reasonable to report ‘‘robust’’ standard errors, as suggested by
White (1982), in addition to the more conventional standard errors. These give
asymptotically valid confidence intervals for the ‘‘pseudo-true’’ parameter values
which minimize the information distance between the true probability measure and
the quasi-likelihood. The robust standard errors are the square roots of the diagonal
elements of the matrix

Q= NN
where
. . 0 .
M= ~;§1 2000 (%)
and

n

. 9 .0 .
=> — — ] "
\4 ,=160 1,(8) Y (8)

2.7. Parameter Constancy. A parameter constancy test has been introduced
by Lee and Hansen (1992) which is particularly easy to implement. The test statistic
is a member of the family of tests introduced by Nyblom (1989) and modified by
Hansen (1990). The statistic is an approximate LM test of the null that the
parameters 6 are constant against the alternative that the parameters 6 follow a
martingale process. The statistic is based on the cumulative moments

t

d
S, = — 1;(8)
t =190

and takes the form

n
L ! > Sivols,.
no-a
Under the same regularity conditions which guarantee asymptotic normality of the
pseudo-MLE, the statistic L has an asymptotic distribution which depends only on
the number of parameters in 6. This distribution is tabulated in Nyblom (1989) and
Hansen (1990). The statistic L tests the null that the entire vector 6 is stable against
the alternative that the entire vector may be unstable. A statistic which tests the
stability of an individual parameter is given by
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where S, is the kth element of S, and V; is the kth diagonal element of V. The
asymptotic 1 percent critical value for the individual statistics is 0.75, and the
asymptotic 5 percent critical value is 0.47.

3. A CONDITIONAL STUDENT MODEL FOR THE TERM STRUCTURE

3.1. Basic Structure. This section describes a study concerning the short-run
term structure of interest rates. The data, monthly observations on returns to U.S.
Treasury securities for the period December 1946 to February 1987, come from
Table 13.A.1 of McCulloch (1990). His returns series were calculated from the
prices of whole securities, and were adjusted for changes in tax legislation. Figure
2 plots the one-month yield rate R, and the instantaneous yield rate r,.

From his tables, the excess holding yield, y, was calculated as

and the interest differential, i,, was calculated as
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i, =R, —r,.

These two series are displayed in Figure 3.

In our earlier notation, x; = (Y;—1, Yi—2, =+ 5 Izy if—1, +-- ), SINCE W€ are
interested in obtained the distribution of the excess holding yield, conditional on
the current interest differential and lagged values of these two series. As discussed
in Engle, Lilien and Robins (1987) and Pagan and Hong (1991), the interest
differential plays an important role in empirical models of the excess holding yield,
even though the expectations hypothesis implies otherwise.

3.2. Specification of the Conditional Mean. The main thrust of this exercise is
not on the conditional mean or variance, but is to demonstrate that allowing for
higher-order dependence yields significant gains. Yet the specification of the mean
and variance equations cannot be taken lightly, for it is clear that errors in their
specification may result in spurious higher-order findings. At the same time, it is
important (from both computational and precision viewpoints) not to heavily
overparameterize the model. The approach adapted in this application is to model
the equations sequentially, using the vehicle of the Gaussian likelihood to select the
equations for the mean and variance. This will enable us to feasibly estimate and
compare a large number of models. As discussed above, it is known that the
Gaussian quasi-MLE is consistent (and asymptotically normal) for the parameters
of the correctly specified conditional mean and variance functions.
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TABLE 1
EXCESS HOLDING YIELD: UNRESTRICTED GAUSSIAN MODEL

Variables Estimate St. Error Robust SE Nyblom L,
Mean Equation
Intercept 0.02 0.03 0.03 0.05
o, 0.09 0.11 0.11 0.07
i, 1.17 0.15 0.17 0.17
i -0.78 0.23 0.23 0.04
i 0.25 0.14 0.16 0.03
it 0.14 0.19 0.18 0.03
i_p 0.24 0.14 0.16 0.10
ir, ~0.12 0.15 0.12 0.36
i3 0.12 0.14 0.16 0.05
i2s 0.26 0.11 0.12 0.03
Vo1 0.03 0.09 0.10 0.12
yAi 0.10 0.05 0.04 0.08
i1 0.25 0.16 0.17 0.04
1Y ~0.35 0.18 0.16 0.04
i 2y 0.02 0.17 0.12 0.07
i 3y ~0.19 0.17 0.15 0.05
Variance Equation
Intercept ~0.00001 0.0008 0.0010 0.09
el — ok, 0.21 0.06 0.10 0.12
i 0.07 0.03 0.03 0.26
7 1.01 0.02 0.04 0.04
LogL 323.7
Nyblom L 4.12

Table 1 reports the Gaussian maximum likelihood estimates of a fairly general
specification of the conditional mean, with a fairly simple specification of the
conditional variance. In all of the tables, the maximum likelihood estimates, the
conventional standard errors, and the White robust standard errors are reported.
The Nyblom L, statistics for each parameter are reported. In the variance
equation, the variance is reported as a linear function of 02 ; and e2; — o2 . This
was done so that the coefficient on the former can be interpreted as a measure of
persistence in the variance. The point estimate is 1.01, which indicates an
integrated (persistent) conditional variance. This is consistent with a large volume
of GARCH studies, as documented in Engle and Bollerslev (1986).

In Table 1, a large number of the individual coefficients appear insignificantly
different from zero. A more parsimonious model was selected by successfully
eliminating the variable with the smallest t-statistic, until the model reported in
Table 2 was obtained. The only exceptions to the smallest t-statistic rule were that
the intercept was always maintained, and the conditional standard deviation was
retained until the final step. The latter was done since the possibility of a significant
“GARCH-M"’ effect has long been believed to be important for the excess holding
yield on Treasury securities. The model of Table 2 has eight fewer parameters than
the model of Table 1, with an increase in the log-likelihood of only 3.04, which is
far from a statistically significant difference.

It is interesting to compare these results with an alternative, simpler specification
reported in Table 3. The major difference is that only the current value of the
interest differential is included in the conditional mean equation. In this specifica-
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TABLE 2
EXCESS HOLDING YIELD: RESTRICTED GAUSSIAN MODEL

Variables Estimate St. Error Robust SE Nyblom L
Mean Equation
Intercept 0.04 0.23 0.25 0.04
i 1.24 0.12 0.13 0.13
i7 -0.51 0.14 0.13 0.10
i-1 0.35 0.12 0.12 0.08
i_n 0.19 0.09 0.10 0.11
it 0.30 0.09 0.09 0.03
vy, 0.12 0.09 0.03 0.12
1Y 1 -0.29 0.03 0.10 0.07
Variance Equation
Intercept —0.0001 0.0007 0.0009 0.10
el — ok 0.22 0.06 0.10 0.14
i 0.07 0.03 0.03 0.30
ey 1.01 0.03 0.04 0.04
Log L 326.7
Nybolm L 2.46

tion, the conditional standard deviation appears to be statistically significant in the
mean equation, as is commonly found in this literature. Note that the likelihood
ratio statistic for this restricted model is 38.4, which is statistically significant at the
1 percent level. This restricted model also fails the Nyblom-Hansen parameter
stability test. The L statistic of 3.6 exceeds the 1 percent null critical value of 2.6.
The individual stability tests suggest that the coefficient on i, is not stable. Note
that these problems do not arise for the general models of Tables 1 and 2, where
extra lags of the interest differential are included. An important lesson here is that
the stability tests are useful diagnostics. If the model of Table 3 were estimated first,
the large stability test statistics would alert a careful researcher that further study
of the dynamic specification is needed.

Another interesting contrast between the models of Table 3 and Tables 1 and 2
is the difference between the conventional standard errors and the robust standard
errors. In Tables 1 and 2 the two estimates are nearly the same, but in Table 3 the
estimates are quite different. This is also informal evidence against the specification

TABLE 3
EXCESS HOLDING YIELD: NAIVE GAUSSIAN MODEL

Variables Estimate St. Error Robust SE Nyblom L

Mean Equation

Intercept 0.02 0.04 0.06 0.10

ay 0.32 0.11 0.16 0.06

i, 0.99 0.13 0.17 0.70

Yi-1 0.10 0.06 0.07 0.42
Variance Equation

Intercept 0.0004 0.0013 0.0017 0.20

el - oi, 0.21 0.04 0.07 0.09

i? 0.16 0.07 0.10 0.34

oy 0.97 0.03 0.05 0.08
LogL 342.9

Nyblom L 3.57
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TABLE 4
EXCESS HOLDING YIELD: STUDENT ¢ MODEL

Variables Estimate St. Error Robust SE Nyblom L
Mean Equation
Intercept 0.04 0.02 0.02 0.05
I3 1.17 0.13 0.16 0.32
i —0.45 0.15 0.16 0.03
i1 0.35 0.10 0.10 0.05
iya 0.19 0.09 0.10 0.24
it 0.28 0.09 0.11 0.02
vy 0.11 0.04 0.03 0.05
[ -0.29 0.12 0.11 0.04
Variance Equation
Intercept —0.00008 0.00090 0.0010 0.13
el — a2, 0.20 0.07 0.10 0.10
it 0.11 0.05 0.07 0.31
o 0.99 0.03 0.04 0.06
Degrees of Freedom 5.7 1.56 1.60 .16
LogL 315.6
Nyblom L 3.16

(this informal comparison could be made rigorous using a White information matrix
test).

For the rest of the analysis, we will use the specification for the conditional mean
and variance as given in Table 2. The specification of the conditional variance was
also examined. Additional lags of the ¢ and i? were also included, but were not
statistically significant and so the model was not augmented. It appears that the
model reflected in Table 2 provides a good specification for the conditional mean
and variance. We now turn to modeling other features of the conditional distribu-
tion.

3.3. Studentt Likelihood. We start with a conventional student’s t model with
a constant degrees of freedom parameter. The MLE for this model are given in
Table 4. The parameter estimates and standard errors for the conditional mean and
variance are not dramatically different than those from the Gaussian MLE. The
degrees of freedom parameter is estimated to be 5.7, which implies a fairly fat tail.
The fit of the model is a dramatic improvement over the Gaussian, with the
log-likelihood changing by 11.1.

3.4. Conditional Student Likelihood. We next allowed the degrees of freedom
parameter to be time-varying. A logistic function was used to bound the time-
varying conditional degrees of freedom parameter to lie between a lower bound of
2.1 and an upper bound of 30. The upper bound was selected simply because the
student’s ¢ distribution is virtually indistinguishable from the standard normal for
any value of n above 30. The lower bound is perhaps more critical. The normalized
student’s t density is not defined for n = 2, so needs to be bounded away from 2.
Some visual experimentation suggested that setting L = 2.1 wasn’t too extreme a
choice, and the numerical operations didn’t appear to find this choice offensive.
The function was completed by making the logistically transformed 7, a quadratic
function of the information set. The complete specification is
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TABLE 5
EXCESS HOLDING YIELD: CONDITIONAL STUDENT ¢ MODEL

Variables Estimate St. Error Robust SE Nyblom L,
Mean Equation
Intercept 0.02 0.02 0.02 0.05
i 1.14 0.11 0.14 0.30
i —0.34 0.08 0.07 0.03
i 0.42 0.10 0.09 0.07
iy o 0.16 0.09 0.10 0.27
i 0.28 0.09 0.11 0.02
vy, 0.12 0.03 0.02 0.06
[1=1Y1-1 —-0.35 0.10 0.10 0.03
Variance Equation
Intercept 0.00003 0.00112 0.001142 0.14
el — o2y 0.23 0.08 0.12 0.13
i 0.09 0.05 0.05 0.25
ol 1.03 0.04 0.05 0.05
Degrees of Freedom
Intercept —2.44 0.55 0.60 0.08
e -0.23 0.66 0.48 0.23
el -0.05 0.37 0.23 0.07
i, 3.33 1.97 1.94 0.14
i 3.27 2.59 2.64 0.04
e 1iy —4.14 2.44 2.39 0.03
Log L 309.2
Nyblom L 3.81
n,—2.1 1

279 1+ exp (—A,)
(15) Ar=Ao+Aje,_q+ Arel [+ Asi, + Agil+ Ase, .

This function is quite flexible and will allow for a wide range of relationships.

To optimize the global likelihood, I found that it was easiest to first use the
normalized residuals from the previously estimated model, and fit equation (15)
alone. This provided a good set of starting values for the complete likelihood.

The estimates are reported in Table 5. Most of the coefficient estimates of the
mean and variance equations are quite similar to those of Table 4, and most of the
standard errors are smaller. In particular, note that the estimate of ‘‘persistence in
variance’’ (the coefficient on 0,2_1 in the variance equation) is 1.03, indicating that
the allowance for time-variation in the student’s ¢ parameter does not change the
finding of integration in the variance. The likelihood ratio statistic against the
conventional student’s ¢ model has an asymptotic p-value of 2.5 percent. Noting
some concern with relying on the validity of the asymptotic approximation, we
interpret this as evidence against the assumption that the conditional distribution of
the normalized errors is independent of the conditioning information. This partic-
ular model (the conditional student #) may not be the ‘‘truth,”’ but it does appear to
give a statistically significant increase in fit, and therefore a better description of the
time series process for excess holding yields.

Parameter estimates from tables often do not give a good feel between condi-
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tioning variables and the objects of interest, and this is certainly true concerning the
estimated relationship for the degrees of freedom, so I have displayed the nonlinear
relationship in a 3-D graph in Figure 4. The vertical axis gives the estimated degrees
of freedom, and the other axes the interest differential and lagged residual. It is easy
to see a strong quadratic effect in the interest differential (so the degrees of freedom
is small for i, near zero), and a more mild quadratic effect in e,_.

Figure 5 displays the estimated degrees of freedom parameter over the sample
period. Note that most of the estimates are close to 5, with some visits down to the
lower boundary of 2.1 (implying a very fat tailed distribution) and some up towards,
and even hitting, the upper boundary of 30 (implying a near-Gaussian distribution).
Unfortunately, the ‘‘degrees of freedom’” parameterization disguises some infor-
mation, since the shape of the density is much more sensitive to changes in 7 when
n is small than when it is large. The plot of Figure 5 emphasizes the large
movements between 10 and 30, which are probably less significant than the
movements between 2 and 3. To alleviate this deficiency, we plot in Figure 6 the
inverse of the degrees of freedom, 1/7,. In this picture, the lower boundary, 0,
represents a Gaussian density, and the upper boundary, 1/2, represents the limit of
the fattailed densities. Another method to assess the behavior of the estimated
process for the degrees of freedom parameter is to estimate its unconditional
density. This is shown in Figure 7. This shows clearly that 7, is typically close to
the modal value, S.
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4. A SKEWED STUDENT’S { MODEL FOR THE EXCHANGE RATE

One commonly analyzed series in the ARCH literature is the weekly Dollar/
Swiss Franc exchange rate for July 1973 through August 1985. Engle and Bollerslev
(1986) studied this series, and suggested a GARCH(1,1) specification with a
student’s ¢ density. Maximum likelihood estimates for this specification are given in
Table 6. While this model survives a number of standard specification tests (such as
tests for omitted variables) the degrees of freedom parameter decisively fails the
Nyblom constancy test. The test statistic 1.79 is over twice the 1 percent critical
value. This indicates that the model specification is not adequate.

As a first pass, we try a conditional student’s ¢+ model, making the logistically

TABLE 6
EXCHANGE RATE: STUDENT ! MODEL

Variables Estimate St. Error Robust SE Nyblom L
Mean Equation
Intercept 0.033 0.0025 0.030 0.34
el — oy 0.15 0.04 0.05 0.23
oty 1.01 0.02 0.02 0.40
Degrees of Freedom 8.2 2.8 2.5 1.79
Log L 1142.6

Nyblom L 23




722 BRUCE E. HANSEN

w0

O' T T T T T T

< -
£ of
o
LS
[¢]
[¢]
=~
(=

™| B
“5 o
2]
[¢5]
Q
S~
o @ i
a o
[¢]
g 4
[}
-
o L ]
- o

O_ | 1 1 L I L ! 1

e 1950 1955 1960 1965 1970 1975 1980 1985 1990

Observation
FIGURE 6

INTEREST RATES: INVERSE DEGREE OF FREEDOM

transformed student’s ¢ parameter (bounded between 2.1 and 30) a linear function
of ¢,_, and e ;. These results are given in Table 7. The p-value for the increase in the
likelihood is 10 percent, which cannot be taken as strong evidence for the augmented
model, and the Nyblom stability test statistic still rejects the specification.

As a next pass, Table 8 reports estimates of the skewed student’s ¢ model of equation
(10), constraining the shape parameters (n and A) to be constant over time. The
estimates for the variance equation and the degrees of freedom are essentially the same
as before. The skewness parameter is negative, implying a skew to the left.

TABLE 7
EXCHANGE RATE: CONDITIONAL STUDENT ¢/ MODEL

Variables Estimate St. Error Robust SE Nyblom L,

Variance Equation

Intercept 0.031 0.025 0.031 0.29

el — oy 0.17 0.05 0.06 0.20

ol 1.01 0.02 0.02 0.35
Degrees of Freedom

Intercept -1.07 0.73 0.79 1.59

€r—1 —-0.38 0.24 0.19 0.22

el -0.08 0.07 0.06 0.33
Log L 1140.36

Nyblom L 2.44
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Next, Table 9 reports estimates of the general model, allowing for time variation
in both A and 7. As before, 7, is bounded between 2.1 and 30. A, is bounded
between —.9 and .9, using the logistic function. Both logistically transformed
variables are specified as quadratic functions of e,_;. The results indicate that both
the degree of freedom and skewness parameters are negatively related to lagged
error e, and its square. Interestingly, the estimates for the variance equation are
slightly different than in the previous specifications, with the estimate for the
coefficient on e | — o2, rising from 0.15 to 0.20, and that for o>, rising from 1.01
to 1.03.

To assess the statistical significance of the general model, it is interesting to

TABLE 8
EXCHANGE RATE: SKEWED STUDENT ¢ MODEL

Variables Estimate St. Error Robust SE Nyblom L,

Variance Equation

Intercept 0.032 0.0024 0.029 0.40

el — ok, 0.15 0.04 0.05 0.25

ol 1.00 0.02 0.02 0.43
Degrees of Freedom 8.1 2.7 2.5 1.60
Skew Parameter -0.09 0.05 0.05 1.42
Log L 1141.2

Nyblom L 3.1
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compare the four likelihoods of Tables 6 through 9. Simply allowing for 7, to be
time-varying (Table 7) or the density to be skewed (Table 8) only produces a
marginally significant change in the likelihood. But allowing for both effects
simultaneously (Table 9) produces a LR test statistic (against the student’s ¢t model
of Table 6) of 13.5 which has an asymptotic p-value of 2 percent. This again
provides strong evidence that parametrically-specified time-varying conditional
densities are statistically important as descriptions of the time series properties of
financial data.

Figure 8 displays the time series #),, and Figure 9 displays #,”!. From the latter
it is clear that 7, is primarily hovering around 10, with occasional excursions into
the more fat-tailed region. Figure 10 displays an estimate of the density for n,.
Figure 11 displays the estimates A,. The sequence is typically near zero, with the
density becoming conditionally skewed after large squared innovations. Figure 12
displays a nonparametric estimate of the density of the process A;.

Unfortunately, the Nyblom stability test statistics for both the conditional
degrees of freedom and skewness equations indicate misspecification. Attempts to
rectify this problem by adding extra lags of e,_; to the equations had no effect (the
parameter estimates were very small and insignificant). It is also possible that these
test statistics are revealing a nonstationary feature of the conditional distribution,
which cannot be easily incorporated in an ARCH-type framework. This calls for
further research.

5. CONCLUSION

This paper has generalized Engle’s ARCH model to let shape parameters beyond
the variance depend upon conditioning information. This is achieved simply by
using a low-dimensional parametric family for the conditional density, and letting
each parameter be a parametric function of the data. Two particular examples of
this approach, using a conditional student ¢ distribution and a new conditional
skewed student ¢ distribution, are developed and used to model the one-month

TABLE 9
EXCHANGE RATE: CONDITIONAL SKEWED STUDENT ¢ MODEL

Variables Estimate St. Error Robust SE Nyblom L

Variance Equation

Intercept 0.037 0.029 0.037 0.33

el — oX 0.20 0.06 0.10 0.18

ol 1.03 0.03 0.04 0.41
Degrees of Freedom

Intercept —-1.10 0.73 0.91 1.06

€, —0.54 0.21 0.20 0.23

el -0.08 0.05 0.05 0.34
Skew Parameter

Intercept —0.06 0.14 0.14 0.95

€r—1 -0.13 0.09 0.09 0.21

el -0.10 0.05 0.07 0.07
Log L 1135.9

Nyblom L 3.22
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excess holding yield on U.S. Treasury securities, and monthly Dollar/Franc
exchange rate, respectively. The shape parameters of the conditional densities are
found to be statistically significant at the 5 percent level.

A GAUSS386 program (requires the OPTMUM module) which replicates the
empirical results is available on request from the author.

University of Rochester, U.S.A.

APPENDIX

In this appendix we show that density (10) is a proper density with a mean of zero
and unit variance. It will be convenient, however, to first analyze a random variable
Z with density

1 y \2\ -1+ D2
sef1+ = ()| y<o,

1 y \2\-(n+vn
bc(l + ( ) ) y=0,

3

|
&)
—

|
>

(16) h(yln, A) =

+
>



728 BRUCE E. HANSEN

where the constants b and ¢ are given in (12) and (13). Let g(x|n) denote the
student’s ¢ density normalized to have a unit variance, as in (9), which equals
h(x|n, 0). By the transformation x = y/(1 — \) we see

0 0 A
f h(yIn,/\)dy=(1—A)f y(XIn)dx=T,

and by the transformation x = y/(1 + A) we find

= w 1+ A
f h(ylm, A) dy = (1 + A)f g(x|n) dx=——.
0 0 2

Thus

1—A 14+
+ =
2 2

f h(ylm, A) dy = 1

—

and A(-|m, A) is a proper density.
Using the same set of transformations we find

0 0 x? n—2
f yh(yln, A) dy =(1 - A)zf c(l + ) dx = —c(1 - A)2< )
—c0 —» 1]—2 n —1

and
© ® x2 7’_2
yh(y|n, A) dy = (1 +)\)2J cl1+ dx = c(1 + 1)? .
0 0 n =2 n—1

Thus

@ n
EY=J yh(y|m, A) dy = C(n —

-2
)[(1+A)2—(1—,\)2]=4Ac<n )=a
n—1

—00

(a is defined in equation (11)).
We also find that

0 0 (1 — /\)3
f y2h(yln, A) dy = (1 - /\)3f x%g(x|n) dx =

—o0

where the final inequality uses the fact that the density g(x|n) is symmetric and has
a variance of unity. Similarly,

(1+2A)3

fyzh(yln,)t) dy = —

0

Thus
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(1-A)3 (1+2a)3
= + =

EY?
2 2

1+3A2=b%+a?

by definitions (11) and (12).
Now consider the random variable given by the transformation

Its density is given by (10), which shows that this is a proper density. We can easily
see that

EY—a a-—a

EZ
b b

=0

and

EY?2—2aEY + a* a2+ b%*-2a*+ a?

EZ?= 2 52 =1,

which establishes that the density (10) has a mean of zero and unit variance, as
desired.
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