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Abstract

This paper examines model selection and combination in the context of multi-step linear fore-

casting. We start by investigating multi-step mean squared forecast error (MSFE). We derive

the bias of the in-sample sum of squared residuals as an estimator of the MSFE. We find that

the bias is not generically a scale of the number of parameters, in contrast to the one-step-ahead

forecasting case. Instead, the bias depends on the long-run variance of the forecast model in anal-

ogy to the covariance matrix of multi-step forecast regressions, as found by Hansen and Hodrick

(1980). In consequence, standard information criterion (Akaike, FPE, Mallows and leave-one-out

cross-validation) are biased estimators of the MSFE in multi-step forecast models. These criteria

are generally under-penalizing for over-parameterization and this discrepancy is increasing in the

forecast horizon. In contrast, we show that the leave-h-out cross validation criterion is an ap-

proximately unbiased estimator of the MSFE and is thus a suitable criterion for model selection.

Leave-h-out is also suitable for selection of model weights for forecast combination.

JEL Classification: C52, C53

Keywords: Mallows, AIC, information criterion, cross-validation, forecast combination, model se-

lection



1 Introduction

Model selection has a long history in statistics and econometrics, and the methods are routinely

applied for forecast selection. The most important theoretical contributions are those of Shibata

(1980) and Ing and Wei (2005). Shibata (1980) studied an infinite-order autoregression with ho-

moskedastic errors, and showed that models selected by the final prediction criterion (FPE) or

the Akaike information criterion (AIC) are asymptotically effi cient in the sense of asymptoticaly

minimizing the mean-squared forecast error, when independent samples are used for estimation and

for forecasting. Ing and Wei (2005) extended Shibata’s analysis to the case where the same data

is used for estimation and forecasting. These papers provide the foundation for the recommenda-

tion of the use of FPE, AIC or their asymptotic equivalents (including Mallows and leave-one-out

cross-valdation) for forecast model selection.

In this paper we investigate the appropriateness of these information criterion in multi-step

forecasting. We adopt multi-step mean squared forecast error (MSFE) as our measure of risk, and

set our goal to develop an approximately unbiased estimator of the MSFE. Using conventional

methods, we show that the MSFE is approximately the expected sample sum of squared residuals

plus a penalty which is a function of the long-run covariance matrix.

In the case of one-step forecasting with homoskedastic errors, this penalty simplifies to twice

the number of parameters multiplied by the error variance. This is the classic justification for why

classic information criteria (AIC and its asymptotic equivalents) are approximately unbiased for

the MSFE.

In the case of multi-step forecasting, however, the fact that the errors have overlapping depen-

dence means that the correct penalty does not simplify to a scale of the number of parameters.

This implies that the penalties used by classic information criteria are incorrect. The situation is

identical to that faced in inference in forecasting regressions with overlapping error dependence,

as pointed out by Hansen and Hodrick (1980). The overlapping dependence of multi-step fore-

cast errors invalidates the information matrix equality. This affects information criteria as well as

covariance matrices.

Our finding and proposed adjustment are reminiscent to the work of Takeuchi (1976), who

investigated model selection in the context of likelihood estimation with possibly misspecified mod-

els. Takeuchi showed that the violation of the information matrix equality due to misspecification

renders the Akaike information criterion inappropriate, and that the correct parameterization pe-

nality depends on the matrices appearing in the robust covariance matrix estimator. Unfortunately,

Takeuchi’s precient work has had little impact on empirical model selection practice.

We investigate the magnitude of this discrepancy in a simple model and show that the distortion

depends on the degree of serial dependence, and in the extreme case of high dependence the correct

penalty is h times the classic penalty, where h is the forecast horizon.

Once the correct penalty is understood, it possible to construct information criteria which are

approximately unbiased for the MSFE. Our preferred criterion is the leave-h-out cross-validation

criterion. We show that it is an approximately unbiased estimator of the MSFE. It works well in
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practice, and is conceptually convenient as it does not require penalization or HAC estimation.

Interestingly, our results may not be in conflict with the classic optimality theory of Shibata

(1980) and Ing and Wei (2005). As these authors investigated asymptotic optimality in an infinite-

order autogression, in large samples the information criterion are comparing estimated AR(k) and

AR(k+1) models where k is tending to infinity. As the coeffi cient on the k+1’st autoregressive lag

is small (and tends to zero as k tends to infinity), this is a context where the correct information

penalty is classical and proportionate to the number of parameters. As the asymptotic optimality

theory focuses on the selection of models with a large and increasing number of parameters, the

distortion in the penalty discussed above may be irrelevant.

While many information criteria for model selection have been introduced, the most important

are those of Akaike (1969, 1973), Mallows (1973), Takeuchi (1976), Schwarz (1978) and Rissanen

(1986). The asymptotic optimality of the Mallows criterion in infinite-order homoskedastic linear

regression models was demonstrated by Li (1987). The optimality of the Akaike criterion for optimal

forecasting in infinite-order homoskedastic autoregressive models was shown by Shibata (1980), and

extended by Banasali (1996), Lee and Karagrigoriou (2001), Ing (2003, 2004, 2007), and Ing and

Wei (2003, 2005).

In addition to forecast selection we consider weight selection for forecast combination. The

idea of forecast combination was introduced by Bates and Granger (1969), extended by Granger

and Ramanathan (1984), and spawned a large literature. Some excellent reviews include Granger

(1989), Clemen (1989), Diebold and Lopez (1996), Hendry and Clements (2002), Timmermann

(2006) and Stock and Watson (2006). Stock and Watson (1999, 2004, 2005) have provided detailed

empirical evidence demonstrating the gains in forecast accuracy through forecast combination.

Hansen (2007) developed the Mallows criterion for weight selection in linear regression, and was

shown to apply to one-step-ahead forecast combination by Hansen (2008). Hansen and Racine

(2009) developed weight selection for model averaging using a leave-one-out criterion. In this paper

we recommend the leave-h-out criterion for selection of weights for multi-step forecasting.

2 Model

Consider the h-step-ahead forecasting model

yt = x
′
t−hβ + et (1)

E (xt−het) = 0

σ2 = Ee2t

where xt−h is k × 1 and contains variables dated h periods before yt. The variables (yt, xt−h) are
observed for t = 1, ..., n, and the goal is to forecast yn+h given xn.

In general, the error et is a MA(h-1) process. For example, if yt is an AR(1)

yt = αyt−1 + ut (2)
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Figure 1: Optimal Weight by Forecast Horizon

with ut iid and Eut = 0, then the optimal h-step-ahead forecast takes the form (1) with xt−h = yt−h,

β = αh and

et = ut + αut−1 + · · ·+ αh−1ut−h+1

which is an MA(h-1) process

The forecast horizon affects the optimal choice of forecasting model. For example, suppose

again that yt is generated by (2). Let β̂LS be the least-squares estimate1 of β in (1) and consider

the class of model average forecasts

ŷn+h|n(w) = wxnβ̂LS (3)

where w ∈ [0, 1]. This is a weighted average of the unconstrained least-squares forecast ŷn+h|n =
xnβ̂LS and the constrained forecast ỹn+h|n = 0. The mean-square forecast error of (3) is

MSFE(w) = E
(
yn+h − ŷn+h|n(w)

)2
.

The optimal weight w minimizes this expression, and varies with h, α and n. Using 100,000 simu-

lation replications, the MSFE was calculated for n = 50. The optimal weight is displayed in Figure

1 as a function of of h for several values of α. We can see that the optimal weight w declines with

forecast horizon, and for any horizon h the optimal weight w is increasing in the autoregressive

parameter α. For the one-step-ahead forecast (h = 1), the optimal weight on the least-squares

estimate is close to 1.0 for all values of α shown, but for the 12-step-ahead forecast, the optimal

weight is close to zero for all but the largest values of α.

1Qualitatively similar results are obtained if we replace β̂LS with α̂h where α̂ is the least-squares estimate of α
from the AR(1) (2).
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3 Forecast Selection

Using observations t = 1, ..., n, the forecasting equation (1) is estimated by least-squares, which

we can write

yt = x
′
t−hβ̂ + êt

σ̂2 =
1

n

n∑
t=1

ê2t (4)

and is used to construct the out-of-sample forecast

ŷn+h|n = x
′
nβ̂. (5)

The MSFE of the forecast is

MSFE = E
(
yn+h − ŷn+h|n

)2
. (6)

The goal is to select a forecasting model with low MSFE.

A common information criterion for model selection is the Akaike information criterion (AIC)

AIC = ln σ̂2 +
2k

n
.

A similar criterion (but robust to heteroskedasticity) is leave—one-out cross-validation

CV1 =
1

n

n∑
t=1

ẽ2t,1

where ẽt,1(m) is the residual obtained by least-squares estimation with the observation t omitted.

It turns out that these criteria are generally inappropriate for multi-step forecasting due to the

moving average structure of the forecast error et. Instead, we recommend forecast selection based

on the leave-h-out cross-validation criterion

CVh =
1

n

n∑
t=1

ẽ2t,h (7)

where ẽt,h is the residual obtained by least-squares estimation with the 2h + 1 observations {t −
h+ 1, ..., t+ h− 1} omitted.

4 Forecast Combination

Suppose that there are M forecasting models indexed by m, where the m’th model has k(m)

regressors, residuals êt(m), variance estimate σ̂2(m) and forecast ŷn+h|n(m). We want to select a
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set of weights w(m) to make a forecast combination

ŷn+h|n =
M∑
m=1

w(m)ŷn+h|n(m).

To minimize the MSFE of one-step-ahead forecasts, Hansen (2008) proposed forecast model aver-

aging (FMA). This selects the weights w(m) to minimize the Mallows criterion

FMA(w) =
1

n

n∑
t=1

(
M∑
m=1

w(m)êt(m)

)2
+ 2σ̂2

M∑
m=1

w(m)k(m)

where σ̂2 is a preliminary estimate of σ2. Hansen and Racine (2009) proposed Jackknife model

averaging (JMA) which selects weights w(m) to minimize the leave-one-out cross-validation criterion

CV1MA(w) =
1

n

n∑
t=1

(
M∑
m=1

w(m)ẽt,1(m)

)2

where ẽt,1(m) is the residual obtained by least-squares estimation with observations t omitted.

This is similar to FMA but is robust to heteroskedasticity. These criteria are appropriate for

one-step-ahead forecast combination as they are approximately unbiased estimates of the MSFE.

In the case of multiple-step forecasting these criterion are not appropriate. Instead, we recom-

mend selecting the weights w(m) to minimize the leave-h-out cross-validation criterion

CVhMA(w) =
1

n

n∑
t=1

(
M∑
m=1

w(m)ẽt,h(m)

)2
.

5 Illustrations

To illustrate the difference, Figure 2 displays the MSFE of five estimators in the context of

model (1) for n = 50 and h = 4: The unconstrained least-squares estimator, the selection estimators

based on CV1 and CVh, and the combination estimates based on CV1MA and CVhMA. The data

are generated by the equation (1) with k = 8, the first regressor an intercept and the remaining

regressors normal AR(1)’s with coeffi cients 0.9, and setting β = (µ, 0, ..., 0). The regression error et
is a normal MA(h-1) with equal coeffi cients and normalized to have unit variance. The selection

and combination estimators are constructed from two base model estimators: (i) unconstrained

least-squares estimation, and (ii) β = (0, 0, ..., 0). The MSFE of the five estimators are displayed

as a function of µ, and are normalized by the MSFE of the unconstrained least-squares estimator.

We can see a large difference in performance of the estimators. The estimator with the uniformly

lowest MSFE (across µ) is the leave-h-out combination estimator CVhMA, and the difference in

MSFE is substantial.

Figures 3, 4, and 5 display the MSFE of the same estimators when the data are generated
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Figure 2: MSFE of 4-step-ahead forecast as a function of the coeffi cient µ

by an AR(1) (2) with coeffi cient α, for different forecast horizons h. The forecasting equation is a

regression of yt on an intercept and three lags of yt : yt−h, yt−h−1, ..., yt−h−3 (k = 4 regressors). The

two base model estimators are: (i) unconstrained least-squares estimation, and (ii) β = (0, 0, 0, 0).

The sample size again is n = 50. Figure 3 displays the MSFE for h = 4, Figure 4 for h = 8 and

Figure 5 for h = 12, and the MSFE is displayed as a function of the autoregressive coeffi cient α and

is normalized by the MSFE of the unconstrained least-squares estimator. In nearly all cases the

leave-h-out combination estimator CVhMA has the lowest MSFE, with the only exception h = 4

for large α. For h = 4 the difference between the estimators is less pronounced, but for large h

and α the difference between the MSFE of the h-step criteria estimators CVhMA and CVh and the

1-step estimators CV1MA and CV1 is quite large.
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Figure 3: 4-step-ahead MSFE for AR(1) process

Figure 4: 8-step-ahead MSFE for AR(1) process
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Figure 5: 12-step-ahead MSFE for AR(1) process

6 MSFE

We now develop a theory to justify the recommendations of the previous sections.

A common measure of forecast accuracy is the mean-square forecast error (MSFE) defined in

(6). The basis for our theory is the following representation of the MSFE.

Theorem 1

MSFE = E
(
σ̂2
)
+
2σ2B

n
+O

(
n−3/2

)
(8)

where σ̂2 is from (4) and

B = σ−2 tr
(
Q−1Ω

)
(9)

Q = E
(
xt−hx

′
t−h
)

Ω =
h−1∑

j=−(h−1)
E
(
xt−h−jet−jx

′
t−het

)
.

Therorem 1 shows that the sum of square errors is a biased estimate of the MSFE with the

bias determined by the constant B. The constant B is a function of the matrix Ω which appears in

the covariance matrix for the parameter estimates β̂ as is standard for estimation with overlapping

error dependence, as shown by Hansen and Hodrick (1980).
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7 Conditionally Homoskedastic One-Step-Ahead Forecasting

Suppose that h = 1 and the forecast error is a conditionally homoskedastic martingale difference:

E (et | =t−1) = 0

E
(
e2t | =t−1

)
= σ2.

In this case

Ω = Qσ2 (10)

so that the bias term (9) takes the simple form

B = k. (11)

In this case Theorem 1 implies

MSFE = E
(
σ̂2
)
+
2kσ2

n
.

This shows that in a homoskedastic MDS forecasting equation, the Mallows criterion

C = σ̂2 +
2kσ̃2

n

(where σ̃2 is a preliminary consistent estimate of σ2), Akaike’s final prediction error (FPE) criterion

FPE = σ̂2
(
1 +

2k

n

)
and the exponential of the Akaike information criterion (AIC)

exp (AIC) = σ̂2 exp

(
2k

n

)
' FPE

are all approximately unbiased estimators of MSFE.

These three information criteria essentially use the approximation B ' k to construct the

parameterization penalty, which is appropriate for one-step homoskedastic forecasting due to the

information-matrix equality (10). However, (10) generally fails for multi-step forecasting as pointed

out by Hansen and Hodrick (1980). When (10) fails, then AIC, FPE, and Mallows are biased

information criteria.

7.1 Criterion Distortion in h-step Forecasting

We have shown that classic information criteria estimate the bias of the sum of squared errors us-

ing the approximation B ' k which is valid for one-step homoskedastic forecasting but generally in-
valid for multi-step forecasting. Instead, the correct penalty is proportional to B = σ−2 tr

(
Q−1Ω

)
.
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What is the degree of distortion due to the use of the traditional penality k rather than the correct

penalty B? In this section we explore this question with a simple example.

Suppose that (1) holds with xt−h and et mutually independent. In this case

B = k + 2
h−1∑
j=1

tr
((
E(xt,x

′
t)
)−1

E(xt,xt−j)
)
corr(et, et−j).

Notice that if both xt and et are positively serially correlated, then B > k. In this sense, we see

that generally the conventional approximation B ' k is an underestimate of the correct penalty.
To be more specific, suppose that the elements of xt are independent AR(1) processes with

coeffi cient ρ, in which case

tr
((
E(xt,x

′
t)
)−1

E(xt,xt−j)
)
= kρj

and

B = k

1 + 2 h−1∑
j=1

ρj corr(et, et−j)

 .

Furthermore, suppose that et is a MA(h-1) with equal coeffi cients. Then

corr(et, et−j) = 1−
j

h

and

B = k + 2k
h−1∑
j=1

ρj
(
1− j

h

)
.

This is increasing with ρ. The limit as ρ→ 1 is

lim
ρ→1

B = kh.

We have found that in this simple setting the correct penalty kh is proportional to both the

number of parameters k and the forecast horizon h. The classic penalty k is off by a factor of h, and

puts too small a penalty on the number of parameters. Consequently, classic information criteria

will over-select for multi-step forecasting.

8 Leave-h-out Cross Validation

Our second major contribution is a demonstration that the leave-h-out CV criterion is an

approximately unbiased estimate of the MSFE.
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The leave-h-out estimator of β for observation t in regression (1) is

β̃t,h =

 ∑
|j−t|≥h

xj−hx
′
j−h

−1 ∑
|j−t|≥h

xj−hyj


where the summation is over all observations except the 2h+1 observations {t−h+1, ..., t+h−1}
omitted. In other words, leaving out observations within h − 1 periods of the time period t. The
leave-h-out residual is

ẽt,h = yt − β̃
′
t,hxt−h

and the leave-h-out cross-validation criterion is

CVh =
1

n

n∑
t=1

ẽ2t,h.

Theorem 2 E (CVh) =MSFE + o(1)

Theorem 2 shows that leave-h-out CV is an appropriate h-step forecast selection criterion. This

is in contrast to AIC, FPE, Mallows and leave-one-out CV, which are generally biased estimates of

the MSFE for h > 1.

9 Computation

Let X be the matrix of stacked regressors x′t−h.

When h = 1, a well-known simplification for the leave-one-out residual is

ẽt,1 = êt

(
1− x′t−h

(
X ′X

)−1
xt−h

)−1
.

For h > 1, a similar equation is not available. However, Racine (1997) showed that

β̃t,h =

[(
X ′X

)−1
+
(
X ′X

)−1
X ′t,h

(
I −Xt,h

(
X ′X

)−1
X ′t,h

)−1
Xt,h

(
X ′X

)−1] (
X ′y −X ′t,hyt,h

)
whereXt,h and yt,h are the blocks ofX and y for the removed observations {t−h+1, ..., t, ..., t+h−
1}. Now, let ẽt:h be the 1+2h×1 vector of residuals for the observations {t−h+1, ..., t, ..., t+h−1}
when the coeffi cient is estimated by β̃t,h, and let êt:h be the corresponding elements of ê. Note that

11



ẽt,h is the middle element of the vector ẽt:h. Let P t,h =Xt,h (X
′X)−1X ′t,h. We find

ẽt:h = yt,h −Xt,hβ̃t,h

= yt,h −Xt,hβ̂ + P t,h (I − P t,h)
−1P t,hyt,h

− P t,h (I − P t,h)
−1Xt,hβ̂ + P t,hyt,h

=
(
I + P t,h (I − P t,h)

−1P t,h + P t,h

)
êt:h

−
(
P t,h (I − P t,h)

−1 − P t,h − P t,h (I − P t,h)
−1P t,h

)
Xt,hβ̂

= (I − P t,h)
−1 êt:h

using the matrix equalities

I − P + P (I − P )−1 = (I − P )−1

P (I − P )−1 − P − P (I − P )−1P = 0.

This shows that a simple method to calculate ẽt,h is as the middle element of the vector

ẽt:h = (I − P t,h)
−1 êt:h. (12)

Alternatively, the matrix equality

(I − P t,h)
−1 =

(
I −Xt,h

(
X ′X

)−1
X ′t,h

)−1
= I +Xt,h

(
X ′X −X ′t,hXt,h

)−1
X ′t,h

shows that

ẽt:h = êt:h +Xt,h

(
X ′X −X ′t,hXt,h

)−1
X ′t,hêt:h

and thus an alternative formula to calculate ẽt,h is

ẽt,h = êt + x
′
t−h
(
X ′X −X ′t,hXt,h

)−1
X ′t,hêt:h. (13)

The relative numerical computation costs for (12) versus (13) roughly depends on the relative size

of the matrices P t,h and X ′X. Thus roughly (12) is less costly if 2h+1 < k, otherwise (13) is less

costly. This is an important consideration as the leave-h-out criterion requires calculation of ẽt,h
for all observations t

10 Proofs

The current proofs are sketches, and consequently I do not provide regularity conditions. Essen-

tially, the regularity conditions will be strictly stationarity, mixing, and suffi ciently finite moments.
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Proof of Theorem 1: The MSFE is

MSFE = E
(
yn+h − x′nβ̂

)2
= E

(
en+h − x′n

(
β̂ − β

))2
= σ2 + E

(
x′n

(
β̂ − β

))2
' σ2 + E

(
x′t−h

(
β̂ − β

))2
. (14)

[Note: The approximation (14) needs more careful justification.]

Now the least-squares residual is

êt = et − x′t−h
(
β̂ − β

)
so

σ̂2 =
1

n

n∑
t=1

ê2t

=
1

n

n∑
t=1

e2t −
2

n

n∑
t=1

etx
′
t−h

(
β̂ − β

)
+
1

n

n∑
t=1

(
x′t−h

(
β̂ − β

))2
.

Its expected value is

E
(
σ̂2
)
= σ2 − 2

n
E (ξn) + E

(
x′t−h

(
β̂ − β

))2
(15)

where

ξn =
n∑
t=1

etx
′
t−h

(
β̂ − β

)

=
1√
n

n∑
t=1

etx
′
t−h

(
1

n

n∑
t=1

xt−hx
′
t−h

)−1
1√
n

n∑
t=1

etx
′
t−h.

Combining (14) and (15) we see that

MSFE ' E
(
σ̂2
)
+
2

n
E (ξn) .

Now by the WLLN and CLT,

ξn →d Z
′Q−1Z

where Z ∼ N (0,Ω) . If ξn is uniformly integrable

E (ξn)→ E
(
Z ′Q−1Z

)
= tr

(
Q−1Ω

)
= σ2B
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and

E (ξn) = tr
(
Q−1Ω

)
+O

(
n−1/2

)
.

We have shown that

MSFE ' E
(
σ̂2
)
+
2σ2

n
B +O

(
n−3/2

)
as claimed.

Proof of Theorem 2. In (13) we showed that

ẽt,h = êt + x
′
t−h
(
X ′X −X ′t,hXt,h

)−1
X ′t,hêt:h.

Thus

CVh =
1

n

n∑
t=1

ẽ2t,h

' 1

n

n∑
t=1

ê2t +
2

n

n∑
t=1

êtx
′
t−h
(
X ′X −X ′t,hXt,h

)−1
X ′t,hêt:h

= σ̂2 +
2

n

n∑
t=1

êtx
′
t−h
(
X ′X −X ′t,hXt,h

)−1 h−1∑
j=−(h−1)

xt−h+j êt+j

= σ̂2 +
2

n
tr

(X ′X −X ′t,hXt,h

)−1 h−1∑
j=−(h−1)

êtxt−hx
′
t−h+j êt+j


= σ̂2 +

2

n
tr
(
Q̂
−1
h Ω̂

)
where

Q̂h =
1

n

(
X ′X −X ′t,hXt,h

)
=
1

n

n∑
t=1

xt−hx
′
t−h −

1

n

h−1∑
j=−(h−1)

xt−h−jx
′
t−h−j

and

Ω̂ =

h−1∑
j=−(h−1)

1

n

∑
t

xt−h+jx
′
t−hêt+j êt.

Applying the central limit theorem we find that

tr
(
Q̂
−1
h Ω̂

)
= tr

(
Q−1Ω

)
+Op(n

−1/2)
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and thus

CVh = σ̂2 +
2

n
tr
(
Q−1Ω

)
+Op(n

−3/2)

= σ̂2 +
2σ2B

n
+Op(n

−3/2).

Combined with Theorem 1 and assuming that tr
(
Q̂
−1
h Ω̂

)
is uniformly integrable, it follows that

E (CVh) = E
(
σ̂2
)
+
2σ2B

n
+O(n−3/2)

=MSFE +O(n−3/2)

as stated.
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