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Abstract

An Edgeworth expansion is derived for the GMM distance statistic for a real-valued
nonlinear restriction on a normal linear regression. The Edgeworth expansion takes the
form F (x− n−1α1x)+ o(n−1), where F is the χ21 distribution. We also provide a reÞnement
of the Edgeworth expansion for the Wald statistic derived by Park and Phillips (1988),
which takes the form F (x− n−1 (α1x+ α2x2 + α3x3)) + o(n−1). Our calculations show that
the leading coefficient α1 is the same in these two expansions. This establishes that, to
the order of approximation of the Edgeworth expansion, the GMM distance statistic has a
superior approximation to the chi-square distribution than does the Wald statistic.
We also update the Monte Carlo simulation of Gregory and Veall (1985) to include both

heteroskedasticity-robust covariance matrix estimation and the GMM distance statistic. We
Þnd that if the robust covariance matrix is calculated under the null, the GMM statistic has
near perfect Þnite sample Type I error in our experiments, even in sample sizes as small as
n = 20.
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1 Introduction

The Wald test is a popular test of statistical hypotheses largely because it is simple to

compute. There are many reasons, however, to believe that generically the Wald test is

a poor choice as a test of nonlinear hypothesis. One reason frequently mentioned is that

the Wald statistic is not invariant to the algebraic formulation of the hypothesis. Gregory

and Veall (1985) and Lafontaine and White (1986) show in Monte Carlo simulations the

potentially large consequences of alternative algebraic formulations. Park and Phillips (1988)

formalized this Þnding by showing that the coefficients of the Edgeworth expansion of the

Wald statistic depend on the formulation.

Separately, Newey and West (1987) proposed a distance GMM statistic for nonlinear

hypotheses. In the context of linear regression, their statistic is simply the GMM criterion

function evaluated at the restricted estimates. When the hypothesis is a linear restriction

on the parameters, their test corresponds to the Wald statistic. When the hypothesis is

nonlinear the two statistics differ. A striking feature of the GMM distance statistic is that it

is invariant to the algebraic formulation of the hypothesis. (The invariance follows directly

from its deÞnition in terms of the criterion function.) The GMM distance statistic also

has the advantage that it is robust to heteroskedasticity (if a heteroskedasticity-consistent

covariance matrix is used to deÞne the GMM criterion). This is in contrast to the likelihood

ratio statistic, which is invariant to formulation of the hypothesis, but is not robust to

heteroskedasticity. For a pedagogical description of this statistic, see section 9.2 of Newey

and McFadden (1994).

Little is known, however, about the Þnite sample behavior of the GMM statistic. This

paper attempts to Þll this gap by providing an Edgeworth expansion for the GMM statistic in

the leading case considered by Park and Phillips (1988). We use the explicit matrix approach

to Edgeworth expansions initiated by Park and Phillips (1988), and push their approach one

step further, by using explicit matrix formulae for all our expressions. The advantage of this

approach is that we are able to calculate greatly simpliÞed expressions for our Edgeworth

expansions, which enable us to make direct comparisons between statistics.

We rederive the Park-Phillips Edgeworth expansion for the Wald statistic, along with

that for the GMM statistic. We Þnd the striking result that the Edgeworth expansion for

the GMM statistic is a strict simpliÞcation of that for the Wald statistic. Thus the chi-square

approximation for the GMM statistic is as good as that for any algebraic formulation of the

Wald statistic, at least up to the level of approximation of the Edgeworth expansion.

Gregory and Veall (1985) provided dramatic simulation evidence that two alternative
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formulations of the same hypothesis lead to very different Þnite sample behavior of the

Wald statistic. We update their experiment, and contrast the performance of the Wald

statistics with the GMM statistic. We also compare the performance of the tests when

heteroskedasticity-robust covariance matrices and GMM weight matrices are used. The

simulations show that the if GMM statistic is computed with a weight matrix calculated

under the alternative hypothesis, its performance is nearly identical to the Gregory-Veall

�good� form of the Wald statistic, while if the GMM statistic is computed with the weight

matrix calculated under the null hypothesis, the size distortion virtually disappears. The

results show that even in samples as small as n = 20, test statistics can be made robust to

unknown heteroskedasticity without any loss of control over Type I error.

The paper is organized as follows. Section 2 states the model and test statistics. Section

3 describes alternative methods to calculate the covariance matrix of the estimates and the

weight matrix for GMM estimation. Section 4 contains our main results. Section 5 is a Monte

Carlo simulation. A brief conclusion follows in Section 6. Appendix A is a restatement of the

Park-Phillips (1988) Edgeworth expansion (for reference). Appendix B contains the proof

of Theorem 1 (the Edgeworth expansion for the Wald statistic). Appendix C contains the

proof of Theorem 2 (the Edgeworth expansion for the GMM statistic).

A Gauss program which calculates the GMM statistics described in this paper can be

downloaded from my webpage, www.ssc.wisc.edu/�bhansen.

2 Linear Regression with NonLinear Hypotheses

The model is a linear regression

yi = x0iβ + ei

E (xiei) = 0,

i = 1, ..., n, where xi and β are each k × 1. Let β0 denote the true value of β.
The goal is to test the nonlinear hypothesis

H0 : g(β) = 0 (1)

H1 : g(β) 6= 0

where g : Rk → R. We are interested in testing H0 against H1.

Let

�β = (X 0X)−1(X 0Y )
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be the OLS estimator of β, and let

Vn = (X
0X)−1Ωn(X 0X)−1 (2)

be an estimator of the covariance matrix of �β, where Ωn is an estimate of nE (xix
0
ie
2
i ) . We

discuss speciÞc choices below.

A common test statistic for H0 is the Wald statistic

W = n g( �β)0
³
�G0Vn �G

´−1
g( �β)

�G =
∂

∂β
g( �β).

The strengths of the Wald statistic are that it is easy to compute, yet is asymptotically χ21

under H0 under very general conditions. A major weakness, however, is that the statistic is

not invariant to the formulation of the hypothesis g.

A less commonly applied test of H0 is the GMM distance statistic introduced by Newey

and West (1987) and discussed in Newey and McFadden (1994, section 9.2). This statistic

is deÞned as the difference in the GMM criterion evaluated at estimates calculated under

the null and alternative, and constructed with the same efficient weight matrix. For the

regression model, the GMM criterion function is

J(β) = (Y −Xβ)0X Ω−1n X 0 (Y −Xβ) ,

where Ωn again is an estimate of nE (xix
0
ie
2
i ) .

The unrestricted GMM estimator minimizes J(β) over β ∈ Rk :

�β = argmin
β∈Rk

J(β)

= (X 0X)−1(X 0Y )

and is identical to the OLS estimator. Note that J( �β) = 0.

The restricted GMM estimator minimizes J(β) subject to the constraint (1):

�β = argmin
g(β)=0

J(β). (3)

When g(β) is nonlinear a closed-form expression for �β does not exist. However, in general �β

is quite simple to calculate, as the criterion J(β) is quadratic in β. Minimizing a quadratic

function subject to a nonlinear constraint is a straightforward numerical optimization prob-

lem.
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The Newey-West GMM distance test statistic is the difference in the criterion function

evaluated at the two estimates:

DM = J( �β)− J( �β)
= min

g(β)=0
(Y −Xβ)0XΩ−1n X 0 (Y −Xβ) . (4)

The statistic (4) has a number of wonderful advantages over the Wald statistic. Primarily,

it is invariant to the formulation of the hypothesis (1). This is because the parameter space

{β : g(β) = 0} is invariant to its algebraic formulation. The lack of invariance is a major
problem with implementation of the Wald statistic when g is nonlinear. However, in the

special case when g is linear, then the two statistics are numerically identical (if the same

Ωn is used).

A by-product of the computation of the test statistic (4) is the restricted estimate �β. For

reference, an estimate of the covariance matrix for �β can be calculated as

�Vn = Vn − Vn �G
³
�G0Vn �G

´−1
�G0Vn,

where Vn is deÞned in (2). (For a derivation, see section 9.1 of Newey and McFadden, 1994).

3 Choice of Variance and Weight Matrix

The statistics depend on the choice of Ωn. The Wald statistic is typically calculated from

the unrestricted estimates �β. One choice for Ωn is the Eicker-White estimator:

�Ωn =
nX
i=1

xix
0
i�e
2
i (5)

�ei = yi − x0i �β,

as this is asymptotically valid for the speciÞed model without additional auxiliary assump-

tions. An alternative choice is the OLS estimator

�Ω0n = X 0X�σ2 (6)

�σ2 =
1

n− k
nX
i=1

�e2i ,

which is valid under the conditional homoskedasticity assumption E (e2i | xi) = σ2.
The GMM statistic (4) also may be computed setting Ωn to equal either �Ωn or �Ω

0
n,

the latter valid only under the assumption of homoskedasticity. These choices correspond to
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computing the weight matrix under the alternative hypothesis, since they are computed from

the unrestricted estimates. Another choice is to compute the weight matrix from estimates

obtained under the null hypothesis. This requires iterated GMM. The Þrst step sets Ωn to

equal (5) or (6) and calculates the Þrst-step estimator �β as in (3). In the second step we

calculate

�Ωn =
nX
i=1

xix
0
i�e
2
i

�ei = yi − x0i �β,

for the general case, or

�Ω0n = X 0X�σ2,

�σ2 =
1

n− k + 1
nX
i=1

�e2i

under the homoskedasticity assumption. Then setting Ωn = �Ωn or Ωn = �Ω0n, (3) and (4) are

re-computed as a second-step minimization.

Newey and West (1987) and Newey and McFadden (1994) do not provide any guidance

to whether the weight matrix should be computed under the null (�Ωn) or alternative (�Ωn).

Since �Ωn is computed from the restricted estimates, we would expect it to be a more efficient

estimator under the null hypothesis, and thus provide better Þnite sample Type I error

approximations, at the cost of a somewhat greater computational burden and an uncertain

effect upon the power of the test.

4 Edgeworth Expansions

Park and Phillips (1988) used an Edgeworth expansion to show that the non-invariance of the

Wald statistic to the formulation of (1) is responsible for the poor size properties of the Wald

statistic. Our goal in this section is use the same Edgeworth expansion argument to show that

the GMM statistic has a superior Edgeworth approximation to the chi-square distribution

than the Wald statistic, and thus should be expected to have better size properties.

Following Park and Phillips (1988), we derive our expansions under the assumptions that

e | X ∼ N (0, In) and X
0X = nIk, and that this knowledge has been used to simplify the

statistics, so that Ωn = nIn.While this assumption is not relevant for applications, it places

the focus on the nonlinearity. Under these conditions, if g were linear then both W and
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DM would have exact χ21 distributions, so the divergence from the χ21 is due only to the

nonlinearity of g.

Assuming that g(β) is three-times continuously differentiable, deÞne

G(β)

k × 1
=
∂

∂β
g(β),

D(β)

k × k
=

∂2

∂β∂β 0
g(β),

C(β)

k × k2
=
∂

∂β

¡
(vecD(β))0

¢
,

where vec (A) stacks the columns of the matrix A. Let G = G(β0), D = D(β0), C = C(β0).

DeÞne the projection matrices

P = G(G0G)−1G0

P = I − P.

Note that these are deÞned if G0G > 0, which holds when rank(G) = 1, which is a standard

condition for hypothesis testing.

Let FW denote the cumulative distribution function (CDF) of W, let FDM denote that of

DM, and let F denote the CDF of the χ21 distribution.

Theorem 1 The asymptotic expansion of W as n→∞ is given by

FW (x) = F
³
x− n−1 (G0G)−1 ¡α1x+ α2x2 + α3x3¢´+ o(n−1) (7)

where

α1 = −1
2
tr
¡
PDPD

¢
+
1

4

¡
tr
¡
PD

¢¢2
,

α2 =
3

2
(tr (PD))2 − tr (PDD)− 1

2
tr (D) tr (PD)− 2

3
tr (PC ⊗G) ,

and

α3 =
1

4
(tr (PD))2 .
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Theorem 2 The asymptotic expansion of DM as n→∞ is given by

FDM(x) = F
³
x− n−1 (G0G)−1 α1x

´
+ o(n−1), (8)

where α1 is deÞned in Theorem 1.

The Edgeworth expansion (7) for W was derived by Park and Phillips (1988). The main

difference is that our expression (7) provides a much more compact set of expressions for the

coefficients α1, α2, α3, which allows a direct comparison with the expansion for the GMM

statistic. The Edgeworth expansion (8) for DM appears to be new.

There are several striking implications of Theorems 1 and 2.

First, the expansion for the GMM statistic is a strict simpliÞcation of that for the Wald

statistic. The Wald statistic is approximately chi-square after a cubic transformation. The

GMM statistic is approximately chi-square after a linear transformation, and the linear term

is identical to that for the Wald statistic. Thus, up to order o(n−1), the expansion for the

GMM statistic is less distorted from the chi-square than is that for the Wald statistic.

Second, the expansion (8) shows that the CDF of
¡
1− n−1 (G0G)−1 α1

¢−1
DM is F (x)+

o(n−1), so only a scale adjustment is necessary to achieve an o(n−1) approximation to the

chi-square distribution. This is a necessary condition for a statistic to be Bartlett correctable.

Third, since DM is invariant to the formulation of (1), so is its distribution FDM , and

hence so is its Edgeworth expansion. It follows that the coefficient α1 is invariant to the

formulation of (1). This is also the leading term in the Edgeworth expansion forW. It follows

that the Wald statistic�s non-invariance to the formulation (1) appears in the Edgeworth

expansion (7) only through the higher-order coefficients α2 and α3. This generalizes the

Þnding of Park and Phillips (1988) who found that α1 was invariant to the formulation (1)

in their examples. Indeed, the invariance of α1 to the formulation of (1) is generally true.

5 Gregory-Veall Example

We illustrate the size performance of the GMM distance test in a replication of the Gregory-

Veall (1985) experiment. The model is

yi = β0 + β1x1i + β2x2i + ei

with β1β2 = 1 and E (ei | xi) = 0. In our experiments, we generate x1i, x2i and ei as mutually
independent, iid, N(0, 1) variables. We consider two formulations of the Wald statistic, based
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on the hypotheses

HA
0 : β1 −

1

β2
= 0

and

HB
0 : β1β2 − 1 = 0.

Let WA and WB denote the Wald statistics corresponding to these two formulations of

the null hypothesis. While Gregory-Veall only examined the behavior of the Wald statistic

constructed with a conventional covariance matrix estimate, we also consider the performance

of the Wald and GMM statistics constructed with Eicker-White covariance matrix estimates.

As shown by Park and Phillips (1988), the expansion of the WA statistic has coefficients

α2 and α3 which are very large, especially when β2 is small, yet the expansion of the W
B

statistic has coefficients α2 and α3 which are quite small, predicting that the W
A statistic

will have larger size distortions than the WB statistic.

We also consider the GMM statistic, which is invariant to the formulation HA
0 and H

B
0 .

Let DMalt denote this statistic if the weight matrix is calculated using the unrestricted

estimates (the alternative hypothesis), and let DMnull denote the statistic if the weight

matrix is calculated using the restricted estimates (the null hypothesis).

Table 1
Percentage Rejections at the 5% Asymptotic Level

Tests Constructed Using Homoskedastic Covariance Matrix
Case Test n = 20 n = 30 n = 50 n = 100 n = 500
β1 = 10, β2 = 0.1 WA .372 .317 .257 .189 .105

WB .066 .059 .055 .052 .051
DMalt .066 .059 .056 .052 .051
DMnull .039 .042 .046 .048 .050

β1 = 5, β2 = 0.2 WA .222 .183 .145 .115 .069
WB .065 .061 .055 .053 .049
DMalt .065 .061 .055 .053 .050
DMnull .038 .044 .046 .049 .049

β1 = 2, β2 = 0.5 WA .091 .082 .071 .059 .049
WB .065 .058 .055 .052 .052
DMalt .067 .059 .056 .053 .052
DMnull .040 .043 .046 .048 .051

β1 = 1, β2 = 1 WA .047 .043 .045 .046 .049
WB .078 .069 .062 .055 .051
DMalt .065 .060 .056 .052 .050
DMnull .039 .043 .046 .047 .049
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Table 2
Percentage Rejections at the 5% Asymptotic Level

Tests Constructed Using Eicker-White Covariance Matrix
Case Test n = 20 n = 30 n = 50 n = 100 n = 500
β1 = 10, β2 = 0.1 WA .410 .342 .270 .198 .107

WB .024 .097 .078 .064 .052
DMalt .125 .097 .078 .064 .052
DMnull .051 .050 .051 .051 .050

β1 = 5, β2 = 0.2 WA .258 .204 .158 .121 .073
WB .122 .095 .077 .064 .053
DMalt .123 .096 .078 .064 .053
DMnull .049 .050 .050 .051 .051

β1 = 2, β2 = 0.5 WA .124 .104 .084 .064 .051
WB .123 .096 .079 .062 .052
DMalt .124 .098 .079 .063 .052
DMnull .051 .050 .051 .049 .050

β1 = 1, β2 = 1 WA .094 .077 .065 .058 .051
WB .133 .104 .083 .067 .052
DMalt .123 .096 .077 .064 .052
DMnull .049 .049 .049 .050 .049

We calculate the Þnite sample size (Type I error) of asymptotic 5% tests, using a selection

of parameter values and sample sizes from n = 20 to n = 500, from 100,000 Monte Carlo

replications1. The results are presented in Tables 1 and 2. As predicted by our theory, the

WA statistic has substantial size distortion when β2 is small even if the sample size is quite

large, regardless of the method to compute the covariance matrix. The size distortions of

the WB and DMalt statistics are quite similar, and quite modest in comparison to the WA

statistic. In addition, the size distortions of WB and DMalt are insensitive to the true value

of the parameters. If the homoskedastic covariance matrix estimate is used, these tests have

minimal size distortion (as the true error is indeed homoskedastic) but have moderate size

distortion if the heteroskedasticity-robust covariance matrix estimate is used.

The performance of the DMnull statistic is stunning. Regardless of the parameterization,

sample size, or covariance matrix estimation method, the Type I error is excellent. If the

heteroskedasticity-robust covariance matrix estimator is used, the estimated Type I error

ranges from 4.9% to 5.1%, which is not statistically different from the nominal 5.0% level.

Thus the robust DMnull statistic has dramatically better size performance than the robust

WB statistic or the robust DMalt statistic.

1The standard error for the estimated rejection frequencies is about .0007.
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6 Conclusion

We have extended the explicit matrix approach to Edgeworth expansions developed by Park

and Phillips (1988), have extended their Edgeworth expansion for the Wald statistic, and

have developed a new Edgeworth expansion for the GMM statistic. The major limitation of

our results is that they are calculated for the restrictive setting of a normal regression with

known error variance. Variance estimation would dramatically complicate the expansions.

It would be quite desirable to relax this restriction in future work.

Our simulation reports near-perfect performance of the statistic DMnull. A theoretical

explanation of this Þnding would be an important avenue for future research.

7 Appendix A: The Park-Phillips Expansion

For coherence, we repeat below a summary of the Edgeworth expansion of Park and Phillips

(1988). Let K12 be the commutation matrix such that K12 vecA = vec (A
0) if A is k × k2,

K21 be the commutation matrix such that K21 vecA = vec (A0) if A is k2 × k, and H =

I +K12 +K21.

The following result is a restatement of Theorem 2.4 of Park and Phillips (1988) for the

case r = 1 (in their notation). We use the result (vecP ) (vecP )0 = P ⊗ P , and a few other
minor algebraic simpliÞcations.

Theorem 3 For a statistic S which has the asymptotic expansion

S =
(G0m)2 + n−1/2u(m) + n−1v(m)

G0G
+Op(n

−3/2),

where

u(m) = J 0 (m⊗m⊗m) ,
v(m) = tr [L (mm0 ⊗mm0)]

for some k3 × 1 vector J and k2 × k2 matrix L, then the asymptotic expansion of the distri-
bution function FS(x) of S is given by

FS(x) = F
¡
x− n−1(G0G)−1 ¡α0 + α1x+ α2x2 + α3x3¢¢+ o(n−1)
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where

α0 =
1

4
(4a0 − b1) , (9)

α1 =
1

4
(4a1 + b1 − b2) , (10)

α2 =
1

12
(4a2 + b2 − b3) , (11)

α3 =
1

60
b3, (12)

and

a0 = tr
©¡
P ⊗ P¢L (I +K)ª+ ¡vecP ¢0 L ¡vecP¢ , (13)

a1 = tr
©¡¡
P ⊗ P¢+ ¡P ⊗ P¢¢L (I +K)ª (14)

+ (vecP )0 L
¡
vecP

¢
+
¡
vecP

¢0
L (vecP )

a2 = 2 tr {(P ⊗ P )L}+ tr {(P ⊗ P )LK} , (15)

b1 = (G0G)−1 J 0
n
H
¡
P ⊗ P ⊗ P ¢H +H ³P ⊗ ¡vecP ¢ ¡vecP¢0´H (16)

+2H
³
P ⊗ (vecP ) ¡vecP¢0´H + ¡P ⊗K ¡P ⊗ P ¢¢

+2
¡
P ⊗K ¡P ⊗ P ¢¢+ 2 ¡K ¡P ⊗ P¢⊗ P¢

+
¡
K
¡
P ⊗ P ¢⊗ P ¢+K12

¡
P ⊗K ¡P ⊗ P ¢¢K21

+ 2K12

¡
P ⊗K ¡P ⊗ P¢¢K21

ª
J,

b2 = (G0G)−1 J 0
©
2H

¡
P ⊗ P ⊗ P ¢H (17)

+2H
¡
P ⊗ ¡vecP¢ (vecP )0¢H + ¡P ⊗K (P ⊗ P )¢

+2
¡
P ⊗K ¡P ⊗ P ¢¢+ 2 ¡K ¡P ⊗ P¢⊗ P ¢

+
¡
K (P ⊗ P )⊗ P¢+K12

¡
P ⊗K (P ⊗ P )¢K21

+ 2K12

¡
P ⊗K ¡P ⊗ P ¢¢K21

ª
J,

b3 = (G0G)−1 J 0 {H (P ⊗ P ⊗ P ) +H (P ⊗ P ⊗ P )H + (P ⊗K (P ⊗ P )) (18)

+ (K (P ⊗ P )⊗ P ) +K12 (P ⊗K (P ⊗ P ))K21} J.
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8 Appendix B: Proof of Theorem 1

8.1 A Vector-Valued 3rd-Order Taylor Expansion

Our Edgeworth expansions will involve third-order Taylor series expansions. To facilitate

our explicit matrix formulation, the following algebraic development will be helpful.

Lemma 1 If g : Rk → R is three times continuously differentiable, then

g(β0 + δ) = g(β0) +G
0δ +

1

2
δ0Dδ +

1

6
δ0C (δ ⊗ δ) +O ¡|δ|4¢ .

where G, D and C are deÞned in section 3.

Proof: Note that for any δ,

δ0
∂

∂βj
D(β0)δ =

∂

∂βj
(vecD(β0))

0 (δ ⊗ δ) ,

so
kX
j=1

δj
∂

∂βj
(vecD(β0))

0 (δ ⊗ δ) = δ0C (δ ⊗ δ) .

Thus a third-order Taylor expansion of g(β0 + δ) about δ = 0 yields

g(β0 + δ) = g(β0) +G
0δ +

1

2
δ0Dδ +

1

6
δ0

kX
j=1

∂

∂βj
D(β0)δδj +O

¡|δ|4¢
= g(β0) +G

0δ +
1

2
δ0Dδ +

1

6
δ0C (δ ⊗ δ) +O ¡|δ|4¢ ,

as stated. ¥

Let K be the commutation matrix such that for any k× k matrix A, K vecA = vec (A0).
Note that K 0 = K. The matrix D is symmetric, so that vecD = vec (D0) and

K vecD = vecD. (19)

A similar set of properties hold for C. The following facts are useful.

Lemma 2

1. CK = C;
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2. vecC = vec (C 0) .

3. For any k × k matrix B and k × 1 vector a,

tr [K (BC ⊗ a)] = tr [a⊗BC] = tr [BC ⊗ a] = tr [BC (Ik ⊗ a)] .

Proof: Let

Cj =
∂

∂βj
D(β0)

and

cj = vecCj

=
∂

∂βj
vecD(β0).

Note that cj is the j
0th column of C 0. Since K vecD(β) = vecD(β), it follows that

Kcj =
∂

∂βj
K vecD(β0) =

∂

∂βj
vecD(β0) = cj.

Hence KC 0 = C 0 and CK = C, establishing part 1.

Also, we see that

Cj =
∂

∂β

∂2

∂βj∂β 0
g(β0)

=
∂

∂β
dj(β0)

0,

where dj(β) is the j
0th column of D(β). Hence

C =
h
C1 C2 · · · Ck

i
.

Thus

vecC =


vecC1

vecC2
...

vecCk

 =


c1

c2
...

ck

 .
But since cj is the j

0th column of C 0,

vec (C 0) =


c1

c2
...

ck

 .
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so we conclude that vecC = vec (C 0) , establishing part 2.

For part (3), the equality tr [K (BC ⊗ a)] = tr [a⊗BC] is Magnus and Neudecker (1988,
Chapter 3, Theorem 9). Then since C = CK,

tr (a⊗BC) = tr (a⊗BCK) = tr ((a⊗BC)K) = tr (K (a⊗BC)) = tr (BC ⊗ a) , (20)

establishing part (3).

For part (4),

tr [BC (Ik ⊗ a)] = tr [(Ik ⊗ a)BC] = tr [(Ik ⊗ a) (BC ⊗ 1)] = tr [BC ⊗ a] .

¥

8.2 Expansion for Wald Statistic

Let

ψ(β) = (G(β)0G (β))−1

so that
³
�G0 �G

´−1
= ψ( �β).

First, note that
∂

∂β
ψ(β) = −2 (G(β)0G (β))−2D(β)G(β).

Second, as µ
∂

∂β0
D(β0)G

¶0
=

∂

∂β
G0D(β0)

=
∂

∂β
vec(G0D)0

=
∂

∂β
vec(D)0 (I ⊗G)

= C (I ⊗G) ,

thus

∂2

∂β∂β0
ψ(β0) = −2(G0G)−2DD + 8(G0G)−3DGG0D − 2(G0G)−2C (I ⊗G)

= 2(G0G)−2 [−DD + 4DPD − C (I ⊗G)] .

Hence

ψ( �β) =
1

G0G

¡
1− n−1/22(G0G)−1G0Dm (21)

+n−1(G0G)−1m0 [−DD + 4DPD − C (I ⊗G)]m¢+Op(n−3/2).
14



Under the assumptions, we have

W = n g( �β)0
³
�G0 �G

´−1
g( �β)

=
³√
ng( �β)

´2
ψ( �β).

Let

m =
√
n
³
�β − β

´
= n−1/2X 0e ∼ N (0, I) .

By Lemma 1,

√
ng(�β) = G0m+ n−1/2m0Dm+ n−1

1

6
m0C (m⊗m) +Op(n−3/2).

Hence ³√
ng( �β)

´2
= (G0m)2 + n−1/2m0Gm0Dm

+n− 1

·
1

4
(m0Dm)2 +

1

3
m0Gm0C (m⊗m)

¸
+Op(n

−3/2). (22)

Putting (22) and (21) together, we obtain the asymptotic expansion

W =
(G0m)2 + n−1/2u+ n−1v

G0G
+Op(n

−3/2),

where

u = m0Gm0Dm− 2m0PmG0Dm

and

v = (1
4
(m0Dm)2 + 1

3
m0Gm0C (m⊗m)− 2m0Dmm0PDm

+m0Pmm0 [−DD + 4DPD − C (I ⊗G)]m.
Since

m0am0Dm =
¡
a0 ⊗ (vecA)0¢ (m⊗m⊗m) ,

we can write u = J 0 (m⊗m⊗m) , where

J = (G⊗ vecD)− 2 (G⊗G⊗DG) (G0G)−1

= G⊗ (vecD − 2 vec (DP ))
= G⊗ vec ¡D ¡P − P ¢¢
=

¡
G⊗ ¡P − P¢⊗ I¢ vecD.

15



Similarly, since

m0Am m0Bm = (m⊗m)0 (vecA)0 (vecB)0 (m⊗m)
= tr

£¡
(vecA) (vecB)0

¢
(m⊗m) (m⊗m)0¤

= tr
£¡
(vecA) (vecB)0

¢
(mm0 ⊗mm0)

¤
,

and by Magnus and Neudecker (1988, Chapter 2), Theorem 3,

m0am0A (m⊗m) = (m⊗m)0 (A0 ⊗ a) vec (mm0)

= tr [(A0 ⊗ a) (mm0 ⊗mm0)]

then v = tr [L (mm0 ⊗mm0)] , where

L =
1

4
(vecD) (vecD)0 − 2 (vecPD) (vecD)0 − (vecP ) (vecDD)0

+4 (vecP ) (vecDPD)0 − (vecP ) (vec (C (I ⊗G)))0 + 1
3
(C ⊗G) .

This expansion is equivalent to equation (7) of Park and Phillips (1988), but is in a differ-

ent algebraic form. The above expression turns out to be more convenient for evaluation of

the coefficients of the Edgeworth expansion. Using Theorem 3 in Appendix A, the coefficients

of the expansion (7) are found by explicit calculation of the coefficients a0, a1, a2, b1, b2, b3

from the expressions for J and L.

8.3 Calculation of a0

First, since
¡
P ⊗ P¢ vecP = vecPPP = 0 and ¡P ⊗ P ¢ vecPD = vecPPDP = 0, then

¡
P ⊗ P¢L = 1

4

¡
vec

¡
PDP

¢¢
(vecD)0 .

Using (19) and the fact that vecA0 vecB = tr (A0B) ,

tr
©¡
P ⊗ P ¢L (I +K)ª =

1

4
tr
©¡
vec

¡
PDP

¢¢
(vecD)0 (I +K)

ª
=

1

2
tr
©¡
vec

¡
PDP

¢¢
(vecD)0

ª
=

1

2
tr
¡
DPDP

¢
.

Second, as
¡
vecP

¢0
(vecP )0 = tr

¡
PP

¢
= 0, and

¡
vecP

¢0
(vecPD) = tr

¡
PPD

¢
= 0, and

0 = vec
¡
G0PC

¢
= (C 0 ⊗G0) vec ¡P ¢ ,
16



then¡
vecP

¢0
L
¡
vecP

¢
=

1

4

¡
vecP

¢0
(vecD) (vecD)0

¡
vecP

¢0
+
1

3

¡
vecP

¢0
C (I ⊗G) ¡vecP ¢

=
1

4

¡
tr
¡
DP

¢¢2
.

Summing these terms, we see that (13) equals

a0 =
1

2
tr
¡
DPDP

¢
+
1

4

¡
tr
¡
DP

¢¢2
. (23)

8.4 Calculation of a1

First,

tr
£¡
P ⊗ P ¢L (I +K)¤ = 1

4
tr
£¡
vecPDP

¢
(vecD)0 (I +K)

¤
=
1

2
tr
¡
DPDP

¢
.

Second, using Lemma 2 part 3,

tr
£¡
P ⊗ P¢L (I +K)¤ = tr

½·
−7
4

¡
vecPDP

¢
(vecD)0 +

1

3

¡
PC ⊗G¢¸ (I +K)¾

= −7
2
tr
¡
DPDP

¢
+
2

3
tr
¡
PC ⊗G¢ .

Third, using the fact that tr (P ) = 1, and Lemma 2 part 4,

(vecP )0 L
¡
vecP

¢
=

1

4
tr (DP ) tr

¡
DP

¢− 2 tr (DP ) tr ¡DP ¢− tr (P ) tr ¡DDP¢
+4 tr (P ) tr

¡
DPDP

¢− tr (P ) tr ¡PC (I ⊗G)¢
+
1

3
(vecP )0 (C ⊗G) ¡vecP ¢

= −7
4
tr (DP ) tr

¡
DP

¢− tr ¡DDP¢+ 4 tr ¡DPDP ¢− 2
3
tr
¡
PC ⊗G¢ .

The Þnal equality uses Lemma 2 part 3 and the fact that K vecP = vecP, vec (C 0) = vecC,

Magnus and Neudecker (1988, Theorem 3, Chapter 2), and Lemma 2 part 3 imply that

(vecP )0 (C ⊗G) ¡vecP¢ = (vecP )0K (C ⊗G) ¡vecP ¢
= (vecP )0 (G⊗ C) ¡vecP¢
= (vec (C 0PG))0

¡
vecP

¢
= (vec (C 0))0 (G⊗ I ⊗ I) ¡vecP¢
= (vecC)0 ((G⊗ I)⊗ I) ¡vecP¢
17



= tr
£
PC (G⊗ I)¤

= tr
£¡
1⊗ PC¢ (G⊗ I)¤

= tr
¡
G⊗ PC¢

= tr
¡
PC ⊗G¢ .

Fourth,¡
vecP

¢0
L (vecP ) =

1

4
tr
¡
DP

¢
tr (DP ) +

1

3

¡
vecP

¢0
(C ⊗G) (vecP )

=
1

4
tr
¡
DP

¢
tr (DP ) .

Summing these three terms, we Þnd that (14) equals

a1 = −3
2
tr (DP ) tr

¡
DP

¢
+ tr

¡
DPDP

¢− tr ¡DDP¢
= −3

2
tr (DP ) tr

¡
DP

¢− tr ¡DPDP¢ . (24)

8.5 Calculation of a2

Observe that

(P ⊗ P )L =
1

4
(vecPDP ) (vecD)0 − 2 (vecPDP ) (vecD)0 − (vecP ) (vecDD)0

+4 (vecP ) (vecDPD)0 − (vecP ) (vec (C (I ⊗G)))0 + 1
3
(PC ⊗G) .

Hence using Lemma 2 part 3, (15) equals

a2 = 3

½
−7
4
tr (DPDP )− tr (DDP ) + 4 tr (DPDP )− tr (PC ⊗G)

¾
+
2

3
tr (PC ⊗G) + 1

3
tr (G⊗ PC)

=
27

4
(tr (DP ))2 − 3 tr (DDP )− 2 tr (PC ⊗G) , (25)

where the Þnal equality uses the fact that tr (DPDP ) = (tr (DP ))2 since P has rank one.

8.6 Calculation of b1

First observe that

K12J =
¡
I ⊗G⊗ ¡P − P¢¢ vecD,

K21J =
¡¡
P − P¢⊗ I ⊗G¢ vecD.

18



Second, observe that ¡¡
P − P ¢⊗ I¢ vecP = vecP

and ¡¡
P − P ¢⊗ I¢ vecP = − vecP

Using the facts that J lies in the span of (G⊗ I ⊗ I) , K12J lies in the span of (I ⊗G⊗ I) ,
and K21J lies in the span of (I ⊗ I ⊗G) , we see that (16) equals

b1 = (G0G)−1
n
J 0
¡
P ⊗ P ⊗ P ¢J + J 0 ³P ⊗ ¡vecP¢ ¡vecP¢0´ J

+J 0
¡
P ⊗K ¡P ⊗ P¢¢Jª

= 2vecD0 ¡P ⊗ P¢ vecD0 + vecD0 ¡vecP¢ ¡vecP ¢0 vecD
= 2 tr

¡
PDPD

¢
+
¡
tr
¡
PD

¢¢2
. (26)

8.7 Calculation of b2

Using similar reasoning, we Þnd that (17) equals

b2 = (G0G)−1
©
2 (K12J +K21J)

0 ¡P ⊗ P ⊗ P ¢ (K12J +K21J)

+2J 0
¡
P ⊗ ¡vecP¢ (vecP )0¢HJ + 2J 0 ¡P ⊗K ¡P ⊗ P ¢¢ J

+J 0
¡
K (P ⊗ P )⊗ P¢J + J 0K12

¡
P ⊗K (P ⊗ P )¢K21J

ª
.

We take the terms on the RHS in turn. First, since

P ⊗G = (G0G)−1 (GG0 ⊗G) = (G0G)−1 (G⊗GG0) = G⊗ P,

then

¡
P ⊗ P ⊗ P ¢ (K12J +K21J) =

£− ¡P ⊗G⊗ P¢+ ¡P ⊗ P ⊗G¢¤ vecD = 0.
Second,

J 0
¡
P ⊗ ¡vecP¢ (vecP )0¢HJ = vecD0 ¡G0 ⊗ ¡vecP ¢ (vecP )0¢HJ

= −3(G0G) (vecD)0 vecP (vecP )0 vecD
= −3(G0G) tr ¡PD¢ tr (PD) .

19



Third

J 0
¡
P ⊗K ¡P ⊗ P ¢¢ J = −G0G vecD0 ¡P ⊗ P¢ vecD

= −G0G tr ¡PDPD¢ .
Fourth,

J 0
¡
K (P ⊗ P )⊗ P¢ J = G0G vecD0 ¡P ⊗ P ¢ vecD = G0G tr ¡PDPD¢ .

Fifth,

J 0K12

¡
P ⊗K (P ⊗ P )¢K21J = G

0G tr
¡
PDPD

¢
.

Hence

b2 = −6 tr
¡
PD

¢
tr (PD) . (27)

8.8 Calculation of b3

First, (18) equals

b3 = (G0G)−1 {J 0H (P ⊗ P ⊗ P ) J + J 0H (P ⊗ P ⊗ P )HJ
+J 0 (P ⊗K (P ⊗ P )) J + J 0 (K (P ⊗ P )⊗ P ) J
+J 0K12 (P ⊗K (P ⊗ P ))K21J} . (28)

Next, note that

(P ⊗ P ⊗ P ) J = − (G⊗ P ⊗ P ) vecD

and

(P ⊗ P ⊗ P )HJ = − [(G⊗ P ⊗ P ) + (P ⊗G⊗ P ) + (P ⊗ P ⊗G)] vecD
= −3 (G⊗ P ⊗ P ) vecD,

since G⊗ P = P ⊗G. Thus the Þrst term in (28) is

J 0H (P ⊗ P ⊗ P )J = 3(G0G) vecD0 (P ⊗ P ) vecD
= 3(G0G) tr (PDPD)

= 3(G0G) (tr (PD))2 ,

20



the last equality since the rank of PD is one. Similarly, the second term is

J 0H (P ⊗ P ⊗ P )HJ = 9(G0G) (tr (PD))2 .

The third fourth, and Þfth terms are similar:

J 0 (P ⊗K (P ⊗ P )) J+J 0 (K (P ⊗ P )⊗ P ) J+J 0K12 (P ⊗K (P ⊗ P ))K21J = 3(G
0G) (tr (PD))2 .

Hence

b3 = 15 (tr (PD))
2 . (29)

8.9 Calculation of Final Coefficients

We now can calculate the coefficients α0 through α3 for the expansion of the distribution of

the Wald statistic. From (9), (23) and (26), we have

α0 =
1

4
(4a0 − b1) = 1

2
tr
¡
DPDP

¢
+
1

4

¡
tr
¡
DP

¢¢2 − 1
2
tr
¡
PDPD

¢− 1
4

¡
tr
¡
PD

¢¢2
= 0.

From (10), (24), (26) and (27), we have

α1 =
1

4
(4a1 + b1 − b2)

= −3
2
tr (DP ) tr

¡
DP

¢− tr ¡DPDP ¢+ 1
2
tr
¡
PDPD

¢
+
1

4

¡
tr
¡
PD

¢¢2
+
3

2
tr
¡
PD

¢
tr (PD)

= −1
2
tr
¡
PDPD

¢
+
1

4

¡
tr
¡
PD

¢¢2
.

From (11), (25), (27) and (29)

α2 =
1

12
(4a2 + b2 − b3)

=
9

4
(tr (DP ))2 − tr (DDP )− 2

3
tr (PC ⊗G)− 1

2
tr
¡
PD

¢
tr (PD)− 5

4
(tr (PD))2

= (tr (DP ))2 − tr (PDD)− 2
3
tr (PC ⊗G)− 1

2
tr ((I − P )D) tr (PD)

=
3

2
(tr (DP ))2 − tr (PDD)− 2

3
tr (PC ⊗G)− 1

2
tr (D) tr (PD) .

From (12) and (29)

α3 =
1

60
b3 =

1

4
(tr (PD))2 ,

completing the proof of Theorem 1.
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9 Appendix C: Proof of Theorem 2

9.1 Expansion for GMM Statistic

In the simpliÞed setting for the theorem, �β = argming(β)=0 J(β), where

J(β) = n−1 (Y −Xβ)0XX 0 (Y −Xβ) .

Newey and McFadden (1994) established that �β →p β0 (Theorem 9.1) and that �q =
√
n
³
�β − β0

´
= Op(1) (p. 2219). Thus with probability that tends to one as n→∞, �β lies

in the interior of the parameter space and there exists a Lagrange multiplier �λ such that

0 = − �m+ �G�λ. (30)

where �m = n−1/2X 0
³
Y −X �β

´
and �G = G( �β). Hence we can write �λ =

³
G0 �G

´−1
G0 �m and

�m = �G
³
G0 �G

´−1
G0 �m. (31)

Expanding �G = G( �β) about β0, and using the fact that �q = Op(1), we see

�G = G+ n−1/2D�q = G+Op(n−1/2). (32)

(31) and (32) combine to yield �m = P �m+Op(n
−1/2), or

P �m = Op(n
−1/2). (33)

From Lemma 1 evaluated at �β and noting that g( �β) = g(β0) = 0, we have

0 = G0�q + n−1/2
1

2
�q0D�q + n−1

1

6
�q0C (�q ⊗ �q) +Op

¡
n−3/2

¢
. (34)

One implication of (34) is that G0�q = Op(n
−1/2) and hence P �q = Op(n

−1/2). Thus since

�q = m− �m,

�q = P �q +Op(n
−1/2)

= Pm− P �m+Op(n−1/2)
= Pm+Op(n

−1/2),

where the last equality is (33). We have established that

�q = Pm+Op(n
−1/2). (35)
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Our next task is to obtain an expansion of the form �q = Pm+n−1/2q1+Op(n−1). Applying

(35) to (32), we Þnd

�G = G+ n−1/2DPm+Op(n−1).

Thus

�G
³
G0 �G

´−1
= G (G0G)−1 + n−1/2

h
(G0G)−1DPm−G (G0G)−2G0DPm

i
+Op(n

−1)

= G (G0G)−1 + n−1/2 (G0G)−1 PDPm+Op(n−1). (36)

Applying �m = m− �q to (34), we Þnd that

G0 �m = G0m+ n−1/2
1

2
�q0D�q + n−1

1

6
�q0C (�q ⊗ �q) +Op

¡
n−3/2

¢
. (37)

Combined with (35), this implies

G0 �m = G0m+ n−1/2
1

2
m0PDPm+Op(n−1). (38)

Thus (31), (36), and (38) combine as

�m = G (G0G)−1G0 �m+ n−1/2 (G0G)−1
·
G0mPDPm+

1

2
Gm0PDPm

¸
+Op(n

−1).

This implies

�q = Pm− n−1/2 (G0G)−1
·
G0mPDPm+

1

2
Gm0PDPm

¸
+Op(n

−1), (39)

as desired.

From (31), we have the representation for the test statistic

DM = �m0 �m

= �m0G
³
�G0G

´−1
�G0 �G

³
G0 �G

´−1
G0 �m

= ( �m0G)2 Ψ( �β) (40)

where

Ψ(β) =
G(β)0G(β)

(G0G(β))2
.

We proceed by developing expansions for (G0 �m)2 and Ψ( �β), each to the order Op(n−3/2).

We Þrst take (G0 �m)2 . (37) combined with (39) yields

G0 �m = G0m+ n−1/2
1

2
m0PDPm+ n−1Υ+Op

¡
n−3/2

¢
,
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where

Υ = − (G0G)−1m0PD
·
G0mPDPm+

1

2
Gm0PDPm

¸
+
1

6
m0PC

¡
Pm⊗ Pm¢ .

Thus

(G0 �m)2 = (G0m)2 + n−1/2G0mm0PDPm+ n−1
·
1

4

¡
m0PDPm

¢2
+ 2G0mΥ

¸
+Op

¡
n−3/2

¢
.

(41)

Second, consider Ψ( �β). Note that

∂

∂β
Ψ(β) =

2

(G0G(β))2
D(β)G(β)− 2G(β)

0G(β)

(G0G(β))3
D(β)G(β),

so

∂

∂β
Ψ(β0) =

2

(G0G)2
DG− 2G0G

(G0G)3
DG

= 0.

We also calculate that

∂2

∂β∂β 0
Ψ(β0) =

2

(G0G)2
DD − 2

(G0G)3
DGG0H

=
2

(G0G)
DPD.

Thus a second-order Taylor expansion yields

Ψ( �β) = Ψ(β0) + n
−1/2 ∂

∂β
Ψ(β0)�q + n

−11
2
�q0

∂2

∂β∂β 0
Ψ(β0)�q +Op(n

−3/2)

= (G0G)−1
©
1 + n−1(G0G)−1m0PDPDPm

ª
+Op(n

−3/2). (42)

Combining (40), (41), and (42),

DM =
(G0m)2 + n−1/2u+ n−1v

G0G
+Op(n

−3/2),

where

u = G0mm0PDPm

and

v =
1

4

¡
m0PDPm

¢2
+ 2G0mΥ+ (G0m)2(G0G)−1m0PDPDPm

=
1

4

¡
m0PDPm

¢2 −m0Pmm0PDPDPm

−m0PDPmm0PDPm+G0m
1

3
m0PC

¡
Pm⊗ Pm¢
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We can write u = J 0 (m⊗m⊗m) , where

J =
¡
G⊗ P ⊗ P¢ vecD,

and v = tr [L (mm0 ⊗mm0)] , where

L =
1

4

¡
P ⊗ P ¢ (vecD) (vecD)0 ¡P ⊗ P¢− (vecP ) ¡vecDPD¢0 ¡P ⊗ P ¢

− ¡P ⊗ P¢ (vecD) (vecD)0 ¡P ⊗ P ¢+ 1
3

¡
PC

¡
P ⊗ P ¢¢⊗G.

Using Theorem 3 in Appendix A, the coefficients of the expansion (8) are found by calculation

of the coefficients a0, a1, a2, b1, b2, b3 from the above expressions for J and L. We calculate

each explicitly.

9.2 Calculation of a0

First,

¡
P ⊗ P ¢L = 1

4

¡
P ⊗ P¢ (vecD) (vecD)0 ¡P ⊗ P¢ ,

so

tr
©¡
P ⊗ P¢L (I +K)ª = 1

2
(vecD)0

¡
P ⊗ P ¢ (vecD) = 1

2
tr
¡
PDPD

¢
.

Second,

¡
vecP

¢0
L
¡
vecP

¢
=
1

4

¡
vecP

¢0
(vecD) (vecD)0

¡
vecP

¢
=
1

4

¡
tr
¡
PD

¢¢2
.

Summing these terms, we see that (13) equals

a0 =
1

2
tr
¡
PDPD

¢
+
1

4

¡
tr
¡
PD

¢¢2
. (43)

9.3 Calculation of a1

First

¡
P ⊗ P¢L+ ¡P ⊗ P¢L = − ¡P ⊗ P ¢ (vecD) (vecD)0 ¡P ⊗ P ¢+ 1

3

¡
PC

¡
P ⊗ P¢¢⊗G,
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so

tr
©¡¡
P ⊗ P ¢+ ¡P ⊗ P ¢¢L (I +K)ª

= −2 ¡vecPDP¢0 ¡vecPDP¢+ 1
3
tr
©¡
PC

¡
P ⊗ P ¢¢⊗Gª+ 1

3
tr
©
G⊗ ¡PC ¡P ⊗ P ¢¢ª

=
1

3
tr
©¡
PC ⊗G¢ ¡P ⊗ P¢ª+ 1

3
tr
©¡
G⊗ PC¢ ¡P ⊗ P¢ª

=
1

3
tr
©¡
P ⊗ P¢ ¡PC ⊗G¢ª+ 1

3
tr
©¡
P ⊗ P¢ ¡G⊗ PC¢ª

= 0

Second,

(vecP )0 L
¡
vecP

¢
= − ¡vecDPD¢0 ¡vecP¢+ 1

3
(vecP )0

¡¡
PC

¡
P ⊗ P¢¢⊗G¢ ¡vecP ¢

= − tr ¡PDPD¢+ 1
3
(vecP )0

¡
PC ⊗G¢ ¡vecP¢

= − tr ¡PDPD¢+ 1
3

¡
vecG0PPC

¢0 ¡
vecP

¢
= − tr ¡PDPD¢

Third,

¡
vecP

¢0
L (vecP ) =

1

3

¡
vecP

¢0 ¡¡
PC

¡
P ⊗ P¢¢⊗G¢ (vecP )

=
1

3

¡
vecP

¢0 ¡
PC ⊗G¢ ¡P ⊗ P ¢ (vecP )

= 0.

Summing these terms, we see that (14) equals

a1 = − tr
¡
PDPD

¢
. (44)

9.4 Calculation of a2

Note that

(P ⊗ P )L = − (vecP ) ¡vecDPD¢0 ¡P ⊗ P ¢ ,
so

a2 = 2 tr {(P ⊗ P )L}+ tr {(P ⊗ P )LK} = −3 tr
©
PPDPDP

ª
= 0. (45)
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9.5 Calculation of b1, b2, b3.

First, observe that ¡
P ⊗ P ⊗ P ¢HJ =

¡
G⊗ P ⊗ P ¢ vecD,¡

P ⊗K ¡P ⊗ P ¢¢ J =
¡
G⊗ P ⊗ P ¢ vecD,

K21J =
¡
P ⊗ P ⊗G¢ vecD

Thus (16) equals

b1 = (G0G)−1 (vecD)0
n
2G0G

¡
P ⊗ P ¢+G0G ¡vecP ¢ ¡vecP¢0o vecD

= 2 tr
¡
PDPD

¢
+
¡
tr
¡
PD

¢¢2
. (46)

By simple projection calculations, it is simple to calculate that b2 = 0 and b3 = 0.

9.6 Calculation of Final Coefficients

We now can calculate the coefficients α0 through α3 for the expansion of the distribution of

the GMM statistic. From (9), (43) and (46), we have

α0 =
1

4
(4a0 − b1)

=
1

2
tr
¡
PDPD

¢
+
1

4

¡
tr
¡
PD

¢¢2 − µ1
2
tr
¡
PDPD

¢
+
1

4

¡
tr
¡
PD

¢¢2¶
= 0.

From (10), (44), (46) and b2 = 0, we have

α1 =
1

4
(4a1 + b1 − b2)

= − tr ¡PDPD¢+ 1
2
tr
¡
PDPD

¢
+
1

4

¡
tr
¡
PD

¢¢2
= −1

2
tr
¡
PDPD

¢
+
1

4

¡
tr
¡
PD

¢¢2
.

From (11), a2 = 0, b2 = 0, and b3 = 0

α2 =
1

12
(4a2 + b2 − b3) = 0

From (12) and b3 = 0

α3 =
1

60
b3 = 0,

completing the proof of Theorem 2.
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