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Abstract

An Edgeworth expansion is derived for the GMM distance statistic for a real-valued
nonlinear restriction on a normal linear regression. The Edgeworth expansion takes the
form F (z —n"'ayx) +o(n™t), where F is the x? distribution. We also provide a refinement
of the Edgeworth expansion for the Wald statistic derived by Park and Phillips (1988),
which takes the form F (z — n™! (aqz + aoz? + asz®)) + o(n™1). Our calculations show that
the leading coefficient «; is the same in these two expansions. This establishes that, to
the order of approximation of the Edgeworth expansion, the GMM distance statistic has a
superior approximation to the chi-square distribution than does the Wald statistic.

We also update the Monte Carlo simulation of Gregory and Veall (1985) to include both
heteroskedasticity-robust covariance matrix estimation and the GMM distance statistic. We
find that if the robust covariance matrix is calculated under the null, the GMM statistic has
near perfect finite sample Type I error in our experiments, even in sample sizes as small as
n = 20.
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1 Introduction

The Wald test is a popular test of statistical hypotheses largely because it is simple to
compute. There are many reasons, however, to believe that generically the Wald test is
a poor choice as a test of nonlinear hypothesis. One reason frequently mentioned is that
the Wald statistic is not invariant to the algebraic formulation of the hypothesis. Gregory
and Veall (1985) and Lafontaine and White (1986) show in Monte Carlo simulations the
potentially large consequences of alternative algebraic formulations. Park and Phillips (1988)
formalized this finding by showing that the coefficients of the Edgeworth expansion of the
Wald statistic depend on the formulation.

Separately, Newey and West (1987) proposed a distance GMM statistic for nonlinear
hypotheses. In the context of linear regression, their statistic is simply the GMM criterion
function evaluated at the restricted estimates. When the hypothesis is a linear restriction
on the parameters, their test corresponds to the Wald statistic. When the hypothesis is
nonlinear the two statistics differ. A striking feature of the GMM distance statistic is that it
is invariant to the algebraic formulation of the hypothesis. (The invariance follows directly
from its definition in terms of the criterion function.) The GMM distance statistic also
has the advantage that it is robust to heteroskedasticity (if a heteroskedasticity-consistent
covariance matrix is used to define the GMM criterion). This is in contrast to the likelihood
ratio statistic, which is invariant to formulation of the hypothesis, but is not robust to
heteroskedasticity. For a pedagogical description of this statistic, see section 9.2 of Newey
and McFadden (1994).

Little is known, however, about the finite sample behavior of the GMM statistic. This
paper attempts to fill this gap by providing an Edgeworth expansion for the GMM statistic in
the leading case considered by Park and Phillips (1988). We use the explicit matrix approach
to Edgeworth expansions initiated by Park and Phillips (1988), and push their approach one
step further, by using explicit matrix formulae for all our expressions. The advantage of this
approach is that we are able to calculate greatly simplified expressions for our Edgeworth
expansions, which enable us to make direct comparisons between statistics.

We rederive the Park-Phillips Edgeworth expansion for the Wald statistic, along with
that for the GMM statistic. We find the striking result that the Edgeworth expansion for
the GMM statistic is a strict simplification of that for the Wald statistic. Thus the chi-square
approximation for the GMM statistic is as good as that for any algebraic formulation of the
Wald statistic, at least up to the level of approximation of the Edgeworth expansion.

Gregory and Veall (1985) provided dramatic simulation evidence that two alternative



formulations of the same hypothesis lead to very different finite sample behavior of the
Wald statistic. We update their experiment, and contrast the performance of the Wald
statistics with the GMM statistic. We also compare the performance of the tests when
heteroskedasticity-robust covariance matrices and GMM weight matrices are used. The
simulations show that the if GMM statistic is computed with a weight matrix calculated
under the alternative hypothesis, its performance is nearly identical to the Gregory-Veall
“good” form of the Wald statistic, while if the GMM statistic is computed with the weight
matrix calculated under the null hypothesis, the size distortion virtually disappears. The
results show that even in samples as small as n = 20, test statistics can be made robust to
unknown heteroskedasticity without any loss of control over Type I error.

The paper is organized as follows. Section 2 states the model and test statistics. Section
3 describes alternative methods to calculate the covariance matrix of the estimates and the
weight matrix for GMM estimation. Section 4 contains our main results. Section 5 is a Monte
Carlo simulation. A brief conclusion follows in Section 6. Appendix A is a restatement of the
Park-Phillips (1988) Edgeworth expansion (for reference). Appendix B contains the proof
of Theorem 1 (the Edgeworth expansion for the Wald statistic). Appendix C contains the
proof of Theorem 2 (the Edgeworth expansion for the GMM statistic).

A Gauss program which calculates the GMM statistics described in this paper can be

downloaded from my webpage, www.ssc.wisc.edu/ bhansen.

2 Linear Regression with NonLinear Hypotheses
The model is a linear regression

yi = Tif+e
E(l‘l(il) = O,

1=1,...,n, where x; and (3 are each k x 1. Let (3, denote the true value of j3.

The goal is to test the nonlinear hypothesis

Hy : g(B)=0 (1)
Hy g(ﬂ)%o

where g : R¥ — R. We are interested in testing H, against H;.
Let
8= (X'X)"(XY)
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be the OLS estimator of 3, and let
V= (X'X)'Q, (X' X)? (2)

be an estimator of the covariance matrix of 3, where ,, is an estimate of nFE (z;zie?). We
discuss specific choices below.

A common test statistic for Hy is the Wald statistic

W= g3y (GV.G) ah)

. o -
G 6—59(5)-

The strengths of the Wald statistic are that it is easy to compute, yet is asymptotically 2
under H, under very general conditions. A major weakness, however, is that the statistic is
not invariant to the formulation of the hypothesis g.

A less commonly applied test of Hy is the GMM distance statistic introduced by Newey
and West (1987) and discussed in Newey and McFadden (1994, section 9.2). This statistic
is defined as the difference in the GMM criterion evaluated at estimates calculated under
the null and alternative, and constructed with the same efficient weight matrix. For the

regression model, the GMM criterion function is
J(B) = (Y = XB) X Q' X" (Y - Xp),

where (), again is an estimate of nE (x;z}e?).
The unrestricted GMM estimator minimizes J(3) over 3 € RF :

B = argmin J(0)
BERF

— (X'X)NX'Y)

A

and is identical to the OLS estimator. Note that J(5) = 0.
The restricted GMM estimator minimizes J(3) subject to the constraint (1):

B = argmin J(3). (3)

9(8)=0
When ¢(3) is nonlinear a closed-form expression for B does not exist. However, in general B
is quite simple to calculate, as the criterion J(3) is quadratic in 4. Minimizing a quadratic
function subject to a nonlinear constraint is a straightforward numerical optimization prob-

lem.



The Newey-West GMM distance test statistic is the difference in the criterion function

evaluated at the two estimates:

DM = J(B)—J(B)
— %)120 Y - XB)' X' X' (Y — X0). (4)

The statistic (4) has a number of wonderful advantages over the Wald statistic. Primarily,
it is invariant to the formulation of the hypothesis (1). This is because the parameter space
{6 : g(B) = 0} is invariant to its algebraic formulation. The lack of invariance is a major
problem with implementation of the Wald statistic when ¢ is nonlinear. However, in the
special case when ¢ is linear, then the two statistics are numerically identical (if the same
Q,, is used).

A by-product of the computation of the test statistic (4) is the restricted estimate B For

reference, an estimate of the covariance matrix for B can be calculated as
~ NN At A
Vo= Vo= VoG (GVG) GV,

where V,, is defined in (2). (For a derivation, see section 9.1 of Newey and McFadden, 1994).

3 Choice of Variance and Weight Matrix

The statistics depend on the choice of €2,. The Wald statistic is typically calculated from

the unrestricted estimates B One choice for €2, is the Eicker-White estimator:
n
Q, = Z e (5)
i=1
€ = Yi— x;ﬁu

as this is asymptotically valid for the specified model without additional auxiliary assump-

tions. An alternative choice is the OLS estimator

0 = X'X62 (6)

which is valid under the conditional homoskedasticity assumption E (€? | z;) = o
The GMM statistic (4) also may be computed setting €, to equal either Q, or Q?L,

the latter valid only under the assumption of homoskedasticity. These choices correspond to
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computing the weight matrix under the alternative hypothesis, since they are computed from
the unrestricted estimates. Another choice is to compute the weight matrix from estimates
obtained under the null hypothesis. This requires iterated GMM. The first step sets €2, to
equal (5) or (6) and calculates the first-step estimator 3 as in (3). In the second step we

calculate

n
Q, = E ;1,62
i=1
/
& = yi—zp,
for the general case, or
Q0 = X'Xé?

1 n
~2 ~2
c = 71—/{:4—11,2_;6Z

under the homoskedasticity assumption. Then setting ,, = €, or Q, = Q°, (3) and (4) are
re-computed as a second-step minimization.

Newey and West (1987) and Newey and McFadden (1994) do not provide any guidance
to whether the weight matrix should be computed under the null (€2,) or alternative (€2,).
Since 2, is computed from the restricted estimates, we would expect it to be a more efficient
estimator under the null hypothesis, and thus provide better finite sample Type I error
approximations, at the cost of a somewhat greater computational burden and an uncertain

effect upon the power of the test.

4 Edgeworth Expansions

Park and Phillips (1988) used an Edgeworth expansion to show that the non-invariance of the
Wald statistic to the formulation of (1) is responsible for the poor size properties of the Wald
statistic. Our goal in this section is use the same Edgeworth expansion argument to show that
the GMM statistic has a superior Edgeworth approximation to the chi-square distribution
than the Wald statistic, and thus should be expected to have better size properties.
Following Park and Phillips (1988), we derive our expansions under the assumptions that
el X ~N(0,1,) and X'X = nl, and that this knowledge has been used to simplify the
statistics, so that €2, = nl,. While this assumption is not relevant for applications, it places

the focus on the nonlinearity. Under these conditions, if g were linear then both W and



DM would have exact x? distributions, so the divergence from the x? is due only to the
nonlinearity of g.

Assuming that g(/3) is three-times continuously differentiable, define

o) = a%g(ﬁ),
kx1

82
D(B) = 5557909
kExk

o) = % ((vee D(B)),
kx k2

where vec (A) stacks the columns of the matrix A. Let G = G(8y), D = D(5p), C = C(S)-

Define the projection matrices
P = GGEGO &
P = I1-P

Note that these are defined if G'G > 0, which holds when rank(G) = 1, which is a standard

condition for hypothesis testing.
Let Fy denote the cumulative distribution function (CDF) of W, let Fpys denote that of
DM, and let F denote the CDF of the x? distribution.

Theorem 1 The asymptotic expansion of W as n — oo is given by

Fy(z)=F (a: —n HGG)™! (nz + apz® + 043163)) +o(n™) (7)
where . .
o = —5tr (PDPD) + 1 (tr (PD))",
g — g (tr (PD))? — tx (PDD) — %tr (D) tr (PD) — gtr (PC® Q).
and
a5 = = (tr (PD))”
3= :



Theorem 2 The asymptotic expansion of DM as n — oo is given by
Foum(z) = F (m e (ede)m ozw) +o(nY), 8)
where aq is defined in Theorem 1.

The Edgeworth expansion (7) for W was derived by Park and Phillips (1988). The main
difference is that our expression (7) provides a much more compact set of expressions for the
coefficients «aq, s, as, which allows a direct comparison with the expansion for the GMM
statistic. The Edgeworth expansion (8) for DM appears to be new.

There are several striking implications of Theorems 1 and 2.

First, the expansion for the GMM statistic is a strict simplification of that for the Wald
statistic. The Wald statistic is approximately chi-square after a cubic transformation. The
GMM statistic is approximately chi-square after a linear transformation, and the linear term
is identical to that for the Wald statistic. Thus, up to order o(n™!), the expansion for the
GMM statistic is less distorted from the chi-square than is that for the Wald statistic.

Second, the expansion (8) shows that the CDF of (1 —n™ a'a)™ al)fl DM is F (z) +
o(n™1), so only a scale adjustment is necessary to achieve an o(n~1) approximation to the
chi-square distribution. This is a necessary condition for a statistic to be Bartlett correctable.

Third, since DM is invariant to the formulation of (1), so is its distribution Fpys, and
hence so is its Edgeworth expansion. It follows that the coefficient a4 is invariant to the
formulation of (1). This is also the leading term in the Edgeworth expansion for W. It follows
that the Wald statistic’s non-invariance to the formulation (1) appears in the Edgeworth
expansion (7) only through the higher-order coefficients as and «s. This generalizes the
finding of Park and Phillips (1988) who found that a; was invariant to the formulation (1)

in their examples. Indeed, the invariance of a; to the formulation of (1) is generally true.

5 Gregory-Veall Example

We illustrate the size performance of the GMM distance test in a replication of the Gregory-
Veall (1985) experiment. The model is

Yi = Bo + Bix1i + Boxoi + €5

with 310, = 1 and E (e; | ;) = 0. In our experiments, we generate 1;, To; and e; as mutually

independent, iid, N(0, 1) variables. We consider two formulations of the Wald statistic, based



on the hypotheses

1
H(‘)Aﬁl—@:()

and
Hégﬁlﬁg—lzo

Let W4 and W% denote the Wald statistics corresponding to these two formulations of
the null hypothesis. While Gregory-Veall only examined the behavior of the Wald statistic
constructed with a conventional covariance matrix estimate, we also consider the performance
of the Wald and GMM statistics constructed with Eicker-White covariance matrix estimates.

As shown by Park and Phillips (1988), the expansion of the W4 statistic has coefficients
ay and az which are very large, especially when 3, is small, yet the expansion of the W2
statistic has coefficients a» and as which are quite small, predicting that the W4 statistic
will have larger size distortions than the W? statistic.

We also consider the GMM statistic, which is invariant to the formulation Hg' and HP.
Let DM®* denote this statistic if the weight matrix is calculated using the unrestricted
estimates (the alternative hypothesis), and let DM™¥ denote the statistic if the weight

matrix is calculated using the restricted estimates (the null hypothesis).

Table 1
Percentage Rejections at the 5% Asymptotic Level
Tests Constructed Using Homoskedastic Covariance Matrix

Case Test n=20 n=30 n=50 n=100 n=>500
Gy =10, B, =0.1| W4 372 317 257 189 105
wE .066 .059 .055 .052 .051
DM .066 .059 .056 .052 051
DM™ | 039 042 .046 .048 .050
Br=5, fo=02 | WA 222 183 145 115 .069
wE .065 .061 .055 .053 .049
DM .065 .061 .055 .053 .050
DM™# | 038 .044 .046 .049 .049
Br=2, B=05 | W4 .091 .082 071 .059 .049
wE .065 .058 .055 .052 .052
DMa 067 .059 .056 .053 .052
DM™ | 040 .043 .046 .048 .051
Bi=1, Bo=1 wA 047 .043 .045 .046 .049
wE 078 .069 .062 .055 051
D Mot .065 .060 .056 .052 .050
DM™# | 039 .043 .046 047 .049




Table 2
Percentage Rejections at the 5% Asymptotic Level
Tests Constructed Using Eicker-White Covariance Matrix

Case Test n=20 n=30 n=50 n=100 n =500
G =10, B =0.1| W4 410 342 270 198 107
w58 024 .097 078 .064 .052
DM 125 .097 078 .064 .052
DM™# | 051 .050 .051 051 .050
Br=5, B=02 | WA .258 204 158 121 073
wh 122 .095 077 .064 .053
DMt 123 .096 078 .064 .053
DM™ | 049 .050 .050 051 .051
=2, =05 [ WA 124 104 .084 .064 .051
wh 123 .096 079 .062 .052
DMt 124 .098 079 .063 .052
DM™ | 051 .050 .051 .049 .050
=1, fo=1 w4 .094 077 .065 .058 .051
w58 133 104 .083 .067 .052
DMt 123 .096 077 .064 .052
DM™# | 049 .049 .049 .050 .049

We calculate the finite sample size (Type I error) of asymptotic 5% tests, using a selection
of parameter values and sample sizes from n = 20 to n = 500, from 100,000 Monte Carlo
replications!. The results are presented in Tables 1 and 2. As predicted by our theory, the
W4 statistic has substantial size distortion when 3, is small even if the sample size is quite
large, regardless of the method to compute the covariance matrix. The size distortions of
the WE and DM statistics are quite similar, and quite modest in comparison to the W4
statistic. In addition, the size distortions of W and DM are insensitive to the true value
of the parameters. If the homoskedastic covariance matrix estimate is used, these tests have
minimal size distortion (as the true error is indeed homoskedastic) but have moderate size
distortion if the heteroskedasticity-robust covariance matrix estimate is used.

The performance of the DM™ statistic is stunning. Regardless of the parameterization,
sample size, or covariance matrix estimation method, the Type I error is excellent. If the
heteroskedasticity-robust covariance matrix estimator is used, the estimated Type I error
ranges from 4.9% to 5.1%, which is not statistically different from the nominal 5.0% level.
Thus the robust DM™¥ statistic has dramatically better size performance than the robust

WE statistic or the robust DM statistic.

!The standard error for the estimated rejection frequencies is about .0007.



6 Conclusion

We have extended the explicit matrix approach to Edgeworth expansions developed by Park
and Phillips (1988), have extended their Edgeworth expansion for the Wald statistic, and
have developed a new Edgeworth expansion for the GMM statistic. The major limitation of
our results is that they are calculated for the restrictive setting of a normal regression with
known error variance. Variance estimation would dramatically complicate the expansions.
It would be quite desirable to relax this restriction in future work.

Our simulation reports near-perfect performance of the statistic DM™#. A theoretical

explanation of this finding would be an important avenue for future research.

7 Appendix A: The Park-Phillips Expansion

For coherence, we repeat below a summary of the Edgeworth expansion of Park and Phillips
(1988). Let Kj5 be the commutation matrix such that Ko vec A = vec (A') if A is k x k?,
K5 be the commutation matrix such that Ky vec A = vec (A') if Ais k? x k, and H =
I+ Kip + K.

The following result is a restatement of Theorem 2.4 of Park and Phillips (1988) for the
case r = 1 (in their notation). We use the result (vec P) (vec P)’ = P ® P, and a few other

minor algebraic simplifications.

Theorem 3 For a statistic S which has the asymptotic expansion

5 (G'm)* + n_l/;tbém) +n~"tv(m) Oy,

where

ulm) = J(m@mem),

v(m) = tr[L(mm' ® mm’)]

for some k® x 1 vector J and k? x k* matriz L, then the asymptotic expansion of the distri-

bution function Fs(x) of S is given by

Fs(z)=F (z —n Y(G'G)™" (ap + uz + azz® + azz®)) + o(n™")
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Qg

g

(%)

a3

1
Z (4@0 — bl) s

1

Z (4&1 +bl —bg),
1

E (4&2 +b2 —bg)7

1
—b
60 3

ap=tr{(P®P)L(I+K)}+ (VGCF),L (vec P),

ap = tr{((P®P)+(P®P))L(I+K)}
+ (vec P)' L (vec P) + (vec ?)/L (vec P)

as =2tr {(P®P)L} +tr{(P® P) LK},

b= (GG) I {H(PeP@P)H+H (P (vecP) (vecP) ) H

+2H (P @ (vec P) (vecP) ) H+ (P& K (P P))
+2(P K (P®P))+2(K(P®P)®P)
+(K(P®P)®P)+ K, (PR K (P®P)) Ky
+ 2K (PR K (P® P)) Ko } J,

by = (GG ' J{2H(Po P2 P)H

+2H (P ® (vec P) (vecP)) H + (P ® K (P ® P))
+2(PRK(P®P))+2(K(PoP)®P)
+(K(P®P)®P)+ K2 (P® K (P® P)) Kn

+ 2K, (PQ K (P®P)) Ko} J,

(G'G)Y ' J{H(P®P®P)+H(P® P2 P)H + (P& K (P® P))
+(K (PR P)®@P)+ K2 (P® K(P® P)) Ko} J.

11

(10)

(11)

(12)

(13)

(14)



8 Appendix B: Proof of Theorem 1

8.1 A Vector-Valued 3rd-Order Taylor Expansion

Our Edgeworth expansions will involve third-order Taylor series expansions. To facilitate

our explicit matrix formulation, the following algebraic development will be helpful.
Lemma 1 If g : R* — R is three times continuously differentiable, then

9(Bo+8) = g(By) + G'6 + %5/05 + %5/0 (6©6)+0(6]").
where G, D and C' are defined in section 3.

Proof: Note that for any 9,

50 D606 =

0
5 (vec D()) (6©8),

8@

SO
k

0
X tig (e D) (10) =505 00)
95,
Thus a third-order Taylor expansion of g(8y + ¢) about 6 = 0 yields

!/ 1/ !/
9B +8) = g(f) +G'8+ 56 Ds + 520@1350)55 +0 (|6

1
= 9(bo) +G'6+56' D8 + 65'0 (6®08)+0(|6"),

as stated. [ ]

Let K be the commutation matrix such that for any k& x k£ matrix A, K vec A = vec (4).

Note that K" = K. The matrix D is symmetric, so that vec D = vec (D’) and

KvecD = vecD. (19)
A similar set of properties hold for C. The following facts are useful.

Lemma 2

1. CK =}

12



2. vecC' = vec (C').

3. For any k x k matrix B and k x 1 vector a,

Proof: Let

and

tr [ (BC ®a)] =trja® BC| =tr[BC ®a] = tr[BC (I ® a)].

0
C; = 8—@17(50)

c; = vecC}

= Giﬂj vec D((p).

Note that ¢; is the j'th column of C’. Since K vec D(3) = vec D([3), it follows that

Ke; = %Kvec D(fy) = %VGC D(Bo) = ¢;.

Hence KC' = C" and CK = C, establishing part 1.

Also, we see that

o 0?
C; = %6@009(%)
0 )
= %dj(ﬁo),

where d;(/3) is the j'th column of D(3). Hence

Thus

C:[a Cy - C

But since ¢; is the j'th column of ",

vec C c1
vec Cy C2
vecC = _ =

vec Cly, Cr,
C1
Co

vec (C') =

Ck

13



so we conclude that vec C' = vec (C”) , establishing part 2.
For part (3), the equality tr [K (BC ® a)] = tr [a ® BC] is Magnus and Neudecker (1988,
Chapter 3, Theorem 9). Then since C' = CK,

tr(a® BC) =tr(a ® BCK) =tr((a® BC)K) =tr (K (a® BC)) =tr (BC ®a), (20)

establishing part (3).
For part (4),

tr [BC (Ixy @ a)] = tr[(Ix ® a) BC] = tr[(Ix ® a) (BC ® 1)] = tr[BC ® a] .

8.2 Expansion for Wald Statistic

Let

~ A\ 1 o
so that (G’G) = ¢(0).
First, note that

a —
a508) = ~2(GB'C () DB)G(B)
Second, as
0 ! o
<a_5'D(ﬁ°)G) = 8_6G D(S)
0
= vec(G'D)’
0
= 8—ﬁvec(D)/ (I®Q)
- CU®0),
thus
aggﬁlw(ﬁﬂ) = _2(G/G)72DD —+ 8(G’G)73DGG/D _ 2<G/G)72C (I ® G)
= 2(G'G)2[-DD +4DPD —C (I ® G)].
Hence
B(B) = 1 (1-n""22(G'G)"'G'Dm (21)

G'G
+n N (G'G)'m/ [-DD +4DPD — C (I @ G)|m) + Oy(n~3/?).

14



Under the assumptions, we have

W= g3y (¢0) olh)

Let
m=+/n (ﬁ - ﬁ) =n"2X'e ~ N (0,1)
By Lemma 1,
Vng(B) = G'm +n"V?m/Dm 4+ n1om/C (m @ m) + O, (n~%?).
Hence

(Vag®)" = (@m)* +n™ oG D

4

+n~ 1t F (m'Dm)* + ém'Gm'C’ (m®@m)| + 0,(n=3/?).

Putting (22) and (21) together, we obtain the asymptotic expansion

(G'm)?* + n~V2u+nlw

W = e + Op(n’3/2)7
where
uw=m'Gm'Dm — 2m' PmG'Dm
and
v= (3 (m/Dm)* + sm'Gm/C (m ® m) — 2m' Dmm/ PDm
+m'Pmm/ [-DD +4DPD — C (I ® G)]m.
Since

m'am'Dm = (' ® (vecA)') (m@m & m),
we can write u = J' (m ® m ® m) , where
J = (G®vecD)—-2(G®G®DG)(G'G)™!
= G® (vecD — 2vec(DP))
= G@VGC(D(?—P))
— (G@(?—P)@I)vecD.

15
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Similarly, since
m'Am m'Bm = (m®m)' (vec A) (vec B)' (m ® m)
= tr[((vecA) (vec B)') (m @ m) (m @ m)']
= tr [((VGC A) (vec B)/) (mm' ® mm')} ;

and by Magnus and Neudecker (1988, Chapter 2), Theorem 3,
mam’'A(m@m) = (m®@m) (A ® a)vec(mm')
= tr[(A' ®a) (mm’ @ mm')]
then v = tr [L (mm’ ® mm/)|, where

L = i (vec D) (vec D) — 2 (vec PD) (vec D)" — (vec P) (vec DD)’

+4 (vec P) (vec DPD)" — (vec P) (vec (C (I ® G))) + % (C®QG).

This expansion is equivalent to equation (7) of Park and Phillips (1988), but is in a differ-
ent algebraic form. The above expression turns out to be more convenient for evaluation of
the coefficients of the Edgeworth expansion. Using Theorem 3 in Appendix A, the coefficients
of the expansion (7) are found by explicit calculation of the coefficients ag, a1, as, by, b, b3

from the expressions for J and L.

8.3 Calculation of q

First, since (F ® ?) vec P = vec PPP = 0 and (F ® F) vec PD = vec PPDP = 0, then

(P& P) L=~ (vec (PDP)) (vec DY .

>~ =

Using (19) and the fact that vec A’ vec B = tr (A’'B),
w{(FeP)LU+K)} = §u{(vc(PDP)) (vec D) (I +K)}
= 5 tr{(vec (PDP)) (vec D)’}
= %tr (DPDP).
Second, as (vec P)' (vec P)’ = tr (PP) = 0, and (vec P)’ (vec PD) = tr (PPD) =0, and
0 = vee (G'PC) = (C' ® G') vec (P).

16



then
(vec F), L(vecP) = - (vec F), (vec D) (vec D)’ (vec ?)/ + % (vec F), C (I ®G) (vecP)

(tr (DP))”.

Summing these terms, we see that (13) equals

N S

@ = 5 tx (DPDP) 4 (ix (DP))”. (23)

8.4 Calculation of a;

First,
(P P)L(T+ K)] = | tr[(vecPDP) (vee D) (I + K)] = | tr (DPDP) .
Second, using Lemma 2 part 3,

tr[([PP)LUI+K)|] = tr{[—g (vec PDP) (ch)#%(FC@G)} (I+K)}

- _g tr (DPDP) + gtr (PC®G).

Third, using the fact that tr (P) = 1, and Lemma 2 part 4,

(vec P L(vecP) = §tr(DP)tx(DP) ~2tx(DP)tx (DP) — tr (P)tr (DDP)
+4tr (P)tr (DPDP) —tr (P) tr (PC (I ® G))
+é (vec P)' (C ® G) (vec P)

= —Z tr (DP)tr (DP) — tr (DDP) +4tr (DPDP) — % tr (PC®G).

The final equality uses Lemma 2 part 3 and the fact that K vec P = vec P, vec (C") = vec C,
Magnus and Neudecker (1988, Theorem 3, Chapter 2), and Lemma 2 part 3 imply that

(vec P) (C®G) (vecP) = (vecP) K (C®G) (vecP)

(vec P)' (G @ C) (vec P)

—  (vec(C'PQ)) (vec P)

(vec (C") (G® I ®I) (vecP)
(

(©
vecC) ((G® 1) ® I) (vec P)
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= tr [PC(G®I)]

= tr[(1®PC) (G®I)]

= ftr (G & ?C’)

= ftr (?C ® G) .
Fourth,

(VGCF), L(vecP) = 1tr (DP) tr (DP) + % (Vec?)/ (C ® Q) (vec P)

—

= 1 tr (DP) tr (DP).
Summing these three terms, we find that (14) equals
a; = —% tr (DP)tr (DP) + tr (DPDP) — tr (DDP)

= _g tr (DP)tr (DP) — tr (DPDP). (24)

8.5 Calculation of ay
Observe that
(PoP)L = i (vec PDP) (vec D) — 2 (vec PDP) (vec D) — (vec P) (vec DD)’
+4 (vec P) (vec DPD)" — (vec P) (vec (C (I ® G))) + % (PC®G).
Hence using Lemma 2 part 3, (15) equals
G = 3 {—Z tr (DPDP) — tr (DDP) + 4r (DPDP) — tr (PC ® G)}
+§tr(PC®G) +%tr(G®PC)
27

= 5 (r(DP))* =3t (DDP) = 2tx (PC ® G), (25)

where the final equality uses the fact that tr (DPDP) = (tr (DP))? since P has rank one.

8.6 Calculation of b,
First observe that

KipJ = (I®G® (P—P))vecD,
KynJ = (P-P)®I®G)vecD.
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Second, observe that
((? — P) ® I) vec P = vec P

and
((?—P) ®I) vec P = —vec P

Using the facts that J lies in the span of (G ® I ® I) , K15/ lies in the spanof (/ @ G ® ),
and Ko J lies in the span of (I ® I ® G), we see that (16) equals

b= (¢G) {1 (PoPaP)J+J (P (vecP) (vecP)') J
I (POK (PoP))J}
= 2vec D' (P ® P)vec D' + vec D' (vec P) (vec P) vec D
— 2tr (PDPD) + (tr (PD))". (26)

8.7 Calculation of b,

Using similar reasoning, we find that (17) equals

by = (G'G)"{2(KiJ + KnJ) (P® P ® P) (Ki2J + Ko J)
+2J' (P ® (vecP) (vecP)YHJ +2J' (P® K (P®P)) J
+J' (K (P®P)@P)J+ JK; (P2 K(P®P))KylJ}.

We take the terms on the RHS in turn. First, since
PRG=(GG) (GG 2aR)=(GR) ' (GaGE)=G® P,
then
(PO@P®P)(KpJ+KnJ)=[-(PRG®P)+ (P®P®G)]|vecD =0.
Second,

J' (P ® (vecP) (vecP))HJ = vecD' (G'® (vecP) (vecP)") HJ
= —3(G'G) (vec D) vec P (vec P) vec D
= —3(G'G)tr (PD) tr (PD).
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Third

J(PeK((P®P))J = —G'GvecD' (P® P)vecD
= —G'Gtr (PDPD).
Fourth,
J(K(P®P)®@P)J=GGvecD' (P®P)vecD=GGtr (PDPD).
Fifth,
J' K13 (P® K (P®P))KyJ=GGtr (PDPD).
Hence

by = —6tr (PD) tr (PD). (27)

8.8 Calculation of b;

First, (18) equals

by = (G'G) ' {JH(PRP®P)J+JH(P®P®P)HJ
+J' (PR K(P®P)J+J (K(P®P)®P)J
+J' K1y (P® K(P® P)) Ko J}. (28)

Next, note that
(PR P®P)J=—-(G®P® P)vecD

and

(P@P®P)H] = —[(GOPRP)+(PRG®P)+ (P® P ®G)|vecD
= -3(G®P®P)vecD,

since G @ P = P ® G. Thus the first term in (28) is

JH(P@P®P)J = 3(G'G)vecD' (P ® P)vecD
— 3(G'G) tr (PDPD)
= 3(G'G) (tr (PD))*,
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the last equality since the rank of PD is one. Similarly, the second term is
JH(P®P®P)HJ=9(G'G) (tr (PD))>.

The third fourth, and fifth terms are similar:

J(PRK(P®P)J+J (K(P®P)® P)J+J Ki2(P® K (P® P)) Ky J =3(G'G) (tr (PD))2 :

Hence
bs = 15 (tr (PD))?. (29)

8.9 C(Calculation of Final Coefficients

We now can calculate the coefficients agy through as for the expansion of the distribution of

the Wald statistic. From (9), (23) and (26), we have

1 1 — = 1 =2 1= 1, = 2
agzz(zlag—bl):itr(DPDP)JrZ(tr(DP)) —§tr(PDPD)—Z(tr(PD)) =0.

From (10), (24), (26) and (27), we have

- i(4a1+b1—b2)
= —w(DP)tr (DP) ~ tr (DPDP) +  tr (PDPD)
4 (i (PD))" + 2t (PD) tr (PD)
~ 2w (PDPD) + ¢ (r (PD))".

From (11), (25), (27) and (29)

= 1—12 (4as + by — by)
— % (tr (DP))* — tr (DDP) — %tr (PC®G) - %tr (PD)tr (PD) — % (tr (PD))”
— (tr(DP))’ - tr (PDD) — %tr (PC® Q) — %tr (I = P)D)tr (PD)
— % (tr (DP))? — tr (PDD) — %tr (PC®G) - %tr (D) tr (PD).
From (12) and (29)
a3 = by = 5 (1 (PD))?,

completing the proof of Theorem 1.
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9 Appendix C: Proof of Theorem 2

9.1 Expansion for GMM Statistic

In the simplified setting for the theorem, 3 = argming g J(8), where
J(B) = L (Y = XB) XX' (Y — XB).

Newey and McFadden (1994) established that £ —p Bo (Theorem 9.1) and that ¢ =
vn (B — ﬁo) = Op(1) (p. 2219). Thus with probability that tends to one as n — oo, B lies

in the interior of the parameter space and there exists a Lagrange multiplier X such that
0= —1i+ GA. (30)
where m = n"1/2X’ (Y — XB) and G = G(3). Hence we can write \ = (G’é’) - G'm and
=G (G’G*)_l G, (31)
Expanding G = G(B) about [y, and using the fact that § = O,(1), we see
G=G+n2Dj=G+ 0,(n?). (32)
(31) and (32) combine to yield 7 = P + O,(n"'/2), or
Prn = 0,(n"Y/?). (33)
From Lemma 1 evaluated at § and noting that g(3) = g(3) = 0, we have
0=0G'q+ n—l/%q’Dq + n—léq’o (G®4) + 0, (n3?). (34)

One implication of (34) is that G'¢ = O,(n"*/2?) and hence P§ = O,(n~*/?). Thus since

Cj =m—-m,
Pg+ Op(n*1/2)

= Pm— Pm+0,(n~'?)
= Pm+ Op(n_1/2),

2
I

where the last equality is (33). We have established that
G =Pm+ O,(n~'?). (35)
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Our next task is to obtain an expansion of the form § = Pm+n—"2¢, +0,(n™'). Applying
(35) to (32), we find
G =G +nY2DPm+ O,(n7Y).

G (GG) T ey [(G’G)*1 DPm — G(G'G)"2G'DPm]| + 0,(n™)
= GER) " +n VGG PDPm + O,(n ). (36)
Applying m = m — G to (34), we find that
G = G'm + n_l/%cj’ch + n‘%cj’C (G®3§) + 0, (n3/?). (37)
Combined with (35), this implies

G'm = G'm + n_l/%m’?D?m +O,(n7h). (38)
Thus (31), (36), and (38) combine as
m=G(GG) " Gm+n GG {G’m?D?m + %Gm’ﬁD?m} +0,(n7Y).

This implies

— _ . 1 _
G=Pm—n""*Gae)" [G’mPDPm + §Gm’PDPm} +0,(n7 1), (39)
as desired.

From (31), we have the representation for the test statistic

DM = m'

m
— WG (G’G) ez (G@) el

14

e u(d) (40)
where a(3)G(3)
YO = Gam)y

We proceed by developing expansions for (G’ fn)2 and \I/(B), each to the order O,(n=3/2).
We first take (G'm)?. (37) combined with (39) yields

1
G'm =G'm+ n_l/zim'PDPm +nT + 0, (n7Y?),
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where

_ — - = 1 S 1 — —
T=—(G'G) "' m'PD |G'mPDPm + aGm’PDPm} - Em’PC’ (Pm ® Pm).

(G/m)2 — (G/m)Z + n V2" mm' PDPm 4+t H (m’FDFm)Z + 2G’m"f} + Op (n’3/2) '
(41)

Second, consider ¥(3). Note that

5 2 26(8)/G(9)

8—5‘1’(@ = WDW)GW) GGH) D(B)G(5),

SO

0 2 2G'G
%‘P(ﬁo) . DG

@672 (GG
— 0.

We also calculate that
0? 2 2
v = DD —
opor ") = o T Gar
9 _
= DPD.
(G'G)

Thus a second-order Taylor expansion yields

DGG'H

2

V(g = W{»+n‘l/za%womn—léq’agaﬁ,\lf(mmOp<n‘3/2>

= (G'G) " {1+nHG'G) 'm'PDPDPm} + O,(n~3/?). (42)

Combining (40), (41), and (42),

G'm)* +n Y 2u 4+ n

aa + Op(n73/2),

DM:(

where

u= G'mm' PDPm
and
(mPDPm)’ +2G'mY + (G'm)*(G'G) " 'mPDPDPm

= (m/?Dme —m'Pmm'PDPDPm

I A

_ _ 1 — _
—m'PDPmm'PDPm + G'm=m'PC (Pm ® Pm)
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We can write u = J' (m ® m ® m), where
J = (G®F®?) vec D,
and v = tr [L (mm’ @ mm/)], where

L = Y (P&P)(vecD)(vee DY (P& ) — (vec P) (vec DPD) (P & P)

W

~(P® P) (vec D) (vee D) (P& P) + 3 (PC (PO P)) 0 G.

Using Theorem 3 in Appendix A, the coefficients of the expansion (8) are found by calculation
of the coefficients ag, a1, as, by, be, bg from the above expressions for J and L. We calculate

each explicitly.

9.2 Calculation of q

First,
(PoP)L = (PoP)(vecD)(vec D) (P P),

"

(P& P)L(I+K)} =5 (vee D) (P& P) (vec D) = 5 tx (PDPD).
Second,

(veeP)' L (vec P) = § (vec P)’ (vee D) (vee DY (vecP) =  (1r (PD))’.
Sumrming these terms, we see that (13) equals

a = tr (PDPD) +  (ir (PD))". (43)

9.3 Calculation of a;

First

(PeP)L+(PoP)L=—(PoP)(wcD)(vecD) (PoP) + (PC(PaP) oG,
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SO

tr{((P®P)+ (P®P))L(I+K)}
= —2(vec PDP)’ (vec PDP) + %tr {(PC(P®P))®G}+ %tr {G® (PC(P®P))}

= 0 {(PC® @) (PoP)} +5u{(GaPC) (PaP))

= u{(PeP) (Pceq)}+:u{(PeP)(@oPC)}

= 0

Second,

(vec P)'L (vecP) = — (vec DPD), (vec P) + i1’> (vec P)' ((PC (P® P)) ® G) (vec P)
= —tr (PDPD) + = (vec P)' (PC ® G) (vec P)
= —tr (PDPD) + % (vec G’PPC) (vec P)
= —tr (PDPD)

Third,

(vec F), L(vecP) = = (vec ?)/ (PC(P®P))®G) (vec P)

(VGC?)/ (PC®G) (P ®P) (vecP)

O Wl Wl

Summing these terms, we see that (14) equals

9.

N

a1 = —tr (PDPD). (44)

4 Calculation of as

ote that
(P® P)L = — (vec P) (vec DPD)' (P © P),

SO

az =2tr{(P® P)L} +tr {(P® P) LK} = —3tr {PPDPDP} = 0. (45)
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9.5 Calculation of by, by, bs.

First, observe that
(P P®P)HJ = (GQP®P)vecD,
(PeK(PeP))J = (GoP®P)veD,
KynJ = (P®P®G)vecD
Thus (16) equals
b = (G'G) " (vee D) {26'G (P& P) + GG (vec P) (vec P)'} vee D
— 2tr (PDPD) + (tr (PD))". (46)

By simple projection calculations, it is simple to calculate that by = 0 and b3 = 0.

9.6 Calculation of Final Coefficients

We now can calculate the coefficients o through as for the expansion of the distribution of

the GMM statistic. From (9), (43) and (46), we have

1
Qy = Z (4&0 — bl)

— St (PDPD) + ¢ (tx (PD))’ - @ tx (PDPD) + 1 (ir (Fp)f)
- 0.

From (10), (44), (46) and by = 0, we have

1
o = 7 (4ay + by — by)

— —(PDPD) + 5 tx (PDPD) + 1 (ix (PD))’

o]

~ L (PDPD) + (1 (PD))".
From (11), as =0, bp =0, and b3 =0

1
a2:ﬁ<4a2+b2—bg)20

From (12) and b3 =0

1
as 60 3 3

completing the proof of Theorem 2.
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