
Econometric Theory, 10, 1994, 29-52. Printed in the United States of America. 

ASYMPTOTIC THEORY FOR THE 
GARCH(1 ,1) QUASI-MAXIMUM 

LIKELIHOOD ESTIMATOR 

SANG-WON LEE 
Indiana University 

BRUCE E. HANSEN 
University of Rochester 

This paper investigates the sampling behavior of the quasi-maximum likelihood 
estimator of the Gaussian GARCH(1, 1) model. The rescaled variable (the ra- 
tio of the disturbance to the conditional standard deviation) is not required to 
be Gaussian nor independent over time, in contrast to the current literature. 
The GARCH process may be integrated (a + a = 1), or even mildly explosive 
(a + f > 1). A bounded conditional fourth moment of the rescaled variable 
is sufficient for the results. Consistent estimation and asymptotic normality are 
demonstrated, as well as consistent estimation of the asymptotic covariance 
matrix. 

1. INTRODUCTION 

Explicit models of heteroskedasticity have a long history in statistics and 
econometrics. Engle [9] proposed a popular time-series model of hetero- 
skedasticity. His concept of autoregressive conditional heteroskedasticity 
(ARCH) literally revolutionized empirical work in financial economics, pri- 
marily in the modeling of stock returns, interest rates, and foreign exchange 
rates. ARCH specifies the conditional variance as a linear function of past 
squared disturbances, and suggests estimation by maximum likelihood. Re- 
cent contributions have extended the ARCH model to a wider class of spec- 
ifications, the most important of which is the generalized ARCH (GARCH) 
model of Bollerslev [5]. The Gaussian GARCH(1, 1) model has become the 
workhorse of the industry, with the largest number of applications. For a 
recent survey of the enormous number of empirical applications of the 
ARCH methodology, see Bollerslev, Chou, and Kroner [71. 

Despite the large empirical literature, there is a rather sparse literature 
investigating the sampling properties of the estimation techniques. Yet it is 
by no means obvious that the maximum likelihood estimator (MLE) will be 
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consistent or asymptotically normal in relevant modeling situations. As doc- 
umented by Bollerslev and Engle [6], estimated GARCH models typically 
suggest that the underlying data are "integrated." Nelson [13] studied the be- 
havior of the "IGARCH" process. One well-known finding is that the un- 
conditional mean of the IGARCH conditional variance is not finite. Thus, 
the model implies that the data may have an infinite variance, and it is known 
that regression with infinite variance processes typically leads to non-normal 
limiting distributions of the estimator. The existing literature for infinite vari- 
ance processes, however, concerns linear analysis, which is not applicable 
to the context of GARCH models which involve nonlinear functions of the 
entire past history of the data. 

Weiss [16] provided the first study of the asymptotic properties of the 
ARCH MLE. He showed that the MLE is consistent and asymptotically nor- 
mal, requiring that the unnormalized data have finite fourth moments. This 
effectively rules out most interesting GARCH processes (and of course all 
IGARCH processes). 

Bollerslev and Wooldridge [8] derived the large sample distribution of the 
quasi-maximum likelihood estimator under high-level assumptions (asymp- 
totic normality of the score vector and uniform weak convergence of the 
likelihood and its second derivative). They did not verify these conditions or 
show how they might be verified for actual GARCH models. 

Lumsdaine [12] was the first to study the asymptotic theory for GARCH 
models allowing for possibly integrated processes. She showed that there 
exists a consistent root of the likelihood equation, and that this root is as- 
ymptotically normally distributed. Her innovation over Weiss was to impose 
assumptions upon the rescaled variable -the ratio of the disturbance to the 
conditional standard deviation-rather than upon the observed data. As 
auxiliary assumptions, Lumsdaine assumed that the rescaled variable is in- 
dependent and identically distributed (i.i.d.) and drawn from a symmetric 
unimodal density with the 32nd moment finite. 

In this paper, we extend this literature to encompass a much broader class 
of GARCH processes. We are motivated by the concept of quasi-maximum 
likelihood estimation. In our framework, the researcher has specified the con- 
ditional mean and variance equations correctly, and then uses the Gaussian 
likelihood as a vehicle to estimate these parameters. In this framework, there 
is no reason to assume that all of the conditional dependence is contained 
in the conditional mean and variance, so the rescaled variable need not be 
(in fact, is unlikely to be) independent over time. Therefore, it is necessary 
to allow this variable to be time dependent. We do so by specifying that it 
is strictly stationary and ergodic. Note in contrast that the previous litera- 
ture has assumed that the rescaled variable is i.i.d. 

In addition, we do not restrict our analysis to GARCH and IGARCH pro- 
cesses. Instead, we only require that the series satisfies the necessary and suf- 
ficient condition for stationarity as given by Nelson [13], which allows for 
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mildly explosive GARCH processes. No conditions on the shape of the dis- 
tribution are required other than conditional moment bounds, and the inno- 
vations are not required to possess a density. 

As in Lumsdaine [12], we are only able to prove the existence of a con- 
sistent root of the likelihood if we allow for IGARCH. For this result, we 
require that the conditional 2 + 6 moment of the rescaled variable is uni- 
formly bounded. Restricting attention to nonintegrated GARCH models, we 
provide the first consistency proof for the quasi-maximum likelihood esti- 
mator. (Recall, Weiss [16] studied ARCH estimation.) Asymptotic normal- 
ity is proved (again including the IGARCH case) by adding the assumption 
that the conditional fourth moment of the rescaled variable is uniformly 
bounded. 

The order of this paper is as follows. Section 2 presents the model and 
the likelihood function. Section 3 provides two consistency proofs: one that 
allows for IGARCH processes and one that does not. Section 4 derives the 
large sample distribution theory for the quasi-MLE and demonstrates that 
a robust covariance matrix estimator is consistent for the asymptotic vari- 
ance of the quasi-MLE. Section 5 concludes. The mathematical proofs are 
presented in the Appendix. 

We use the following notation throughout the paper. IA = (tr(A'A))1/2 
denotes the Euclidean norm of a matrix or vector, and A II r = (EIAr)A 'r 
denotes the Lr-norm of a random matrix or vector. All limits are taken as 
the sample size n diverges to positive infinity. 

2. QUASI-LIKELIHOOD 

Suppose that we observe some sequence I y,j with 

Yt=Yo+Et, t=1,...,n, 

where E(et| t-l) = 0 a.s. and 't = o(ec, ,c-t,. . . ). Define the conditional 
variance hot E(Et | T-1). We assume that hot follows a GARCH process: 

hot = wo (l - i0) + aoE 2 1 + lohot-I a.s. 

An equivalent expression for the conditional variance can be derived as 
co 

hot = wo + ao Z /3 7z1- a-s- 
k=O 

This process is described by the parameter vector 00= ['yo wo cao 03]'. 
The model for the unknown parameters 0-6 y co a ]' is 

yt = y + et, t =1, ..., n, 

and 

h7*() = co(1-l) + ae2 1 + 3hO (0), t =2, ... ,n 
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with the start-up condition 

ht(6) =w. 

This gives the convenient expression for the variance process 
t-2 

h7(O) = k + t Z fke2_k 
k=O 

Define the compact parameter space 

O61:'y,y? -Y y",O WI<, w < cou O< a,?c?a <a, 

0 <f <0CC 11. 

We assume that 00 E 0. This implies that ozo > 0 and 30 > 0, which means 
that Et is strictly a GARCH process, ruling out the possibility of Et being 
either a pure ARCH process or even an i.i.d. process. 

We can define the rescaled variable zt = Et/h 1/2. By construction, 
E(z St-l = 0 a.s. and E(z72 I St-l,) = 1 a.s. Estimation of GARCH mod- 
els is frequently done under the assumption that zt -i.i.d. N(O, 1) so that 
the likelihood is easily specified. We follow this practice by assuming that the 
Gaussian likelihood is used to form the estimator. Thus, the log likelihood 
takes the form (ignoring constants) 

L(?) = 1 where I (O) In h (O) + 

Since the likelihood need not be the correct density, it is typically referred 
to as a quasi-likelihood, although we will sometimes refer to it as a likelihood 
for brevity. 

3. CONSISTENCY OF THE QUASI-MLE 

It will be convenient at times to work with the unobserved variance processes 
00 

ht () = w + oE et-k-e I 
k=O 

ht(0) = co + a > o3k(2 
k=O 

and the unobserved likelihood 

Ln( =1 t (0) where lt (0) In ht (0) + Zl t(6), h()t 
1 

The process ht (0) is the model of the conditional variance when the infinite 
past history of the data is observed. h'(0) is the same, except that it is a 
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function of the true innovations c, rather than the residuals e,. It turns out 
that these two variance processes are close up to scale: 

LEMMA 1. B1 h (0) c ht (0) c Bh (0) a.s., where 

0,)-I/'2(_YuI' au au B = I + 2(-13 )- l /2( -Py,) *max -,1 1+ (Yu (-YI)2. 

Assumption A. 1 

(i) z, is strictly stationary and ergodic. 
(ii) Z2 is nondegenerate. 
(iii) For some a > 0, there exists an S6 < oo such that 

E(72+1' Jt_1) I S6 < 00 a.s. 

(iv) suptE(ln(30 + caoZ2) IT-,_) < 0 a.s. U 

The conditions imposed in (A. 1) are fairly weak, although they are prob- 
ably not the weakest possible. It would be desirable to relax the strict station- 
arity of (i) to some form of weak dependence, such as mixing or near-epoch 
dependence, but this is beyond our technical capabilities. Strict stationarity 
does, however, greatly relax the universally made assumption of the preexist- 
ing literature that zt is independent and identically distributed. Condition 
(iii) might also be stronger than necessary. It trivially holds for i.i.d. data 
when E(z72+6) < Co for some 6 > 0. The strengthening to uniformity over 
the conditional expectation controls conditional heterogeneity. 

Nelson [13] showed that an analog of condition (iv), E ln(/30 + aozh <0 
is necessary and sufficient for the strict stationarity of zt. Note by Jensen's 
inequality that (iv) holds if 13 + ao c I and sup, p( 1 < 1 
for some e > 0, since E(Z2 I St_l) = 1 a.s. But the condition does not require 
that I0 + co0 c 1, as pointed out by Nelson [13]. Thus, we are allowing for the 
possibility of mildly explosive GARCH, in addition to integrated GARCH. 

The method of proof for consistency and asymptotic normality is standard 
in the sense that the results of Amemiya ([1], Theorem 4.1. 1, Theorem 4.1.2, 
and Theorem 4.1.3) can be applied. Further, we can use general forms of 
the ULLN (specifically, those in Andrews [2]) to verify the required condi- 
tions. Therefore, the main task involved in the proof is to show the finite- 
ness of various moments, such as those of the log likelihood, the score, and 
higher order derivatives. These proofs are quite demanding because these 
functions are nonlinear functions of the underlying innovations, where the 
latter need not have finite second moments. Most expressions can be reduced, 
however, to ratios of geometric averages in the squared innovations, and 
these can be bounded in expectation. 

One potential difficulty is that the observed likelihood process 1,t(0) is not 
a stationary process due to the presence of the startup condition. The unob- 
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served process It(0) is, however, and this observation will be instrumental in 
our proof methods. This fact is stated in the following result, which is a gen- 
eralization of the results of Nelson [13] in the context of i.i.d. z,. 

LEMMA 2. Under (A. 1): 

(1) ho, is strictly stationary and ergodic for all t. 
(2) It(0) and its first and second derivatives are strictly stationary and ergodic for 

all 0 E 0. 
(3) For some 1 > p > O, and all 0 E 0, E I h(0)I P < Hp < oo. U 

The analysis of the unobserved process It(6) can only be justified if the 
difference between it and the observed likelihood process is asymptotically 
negligible. This will hold only if the initial conditions become negligible (in 
some well-defined sense). Asymptotic negligibility of initial conditions in an 
integrated GARCH model is not immediately obvious since the conditional 
variance is a martingale plus drift. We find, however, that this is unimpor- 
tant for the quasi-likelihood function. 

LEMMA 3. Under (A.1), supeoIL,(0) - L*(6)l --+p 0. L 

While Lemma 3 allows us to neglect the initial conditions in the asymp- 
totic analysis, it still may be the case that proper handling of the initial con- 
ditions may have important effects in finite samples. 

The following lemma provides some basic results which will be used repeat- 
edly in the subsequent proofs. 

LEMMA 4. Under (A.1): 

(1) p{zIz I C2_Tt-_ (SI a. s. where (S 1 - [1/ (2(2?&)/ S^2/6)] e (0,1). 
(2) For all ; > 0 and all r 2 1, 

orE(( + )T-) _ E? + 1 |,T1) ' (R(6) a.s. 

where (R61) - (2 + 4(Y)/(2 + b) < 1. 

(3) For all finite r, 

Tt|-k-) I (\ a.s. 

where (Ro = (R6(1o) < 1. 

(4) If 0 ' o0, - c <K -+ < oo a. s. 
hot 'Do to 

h(o) wH c? o 
(4) If( 0 (3d0, <K,= - + < oo a. s. 

th 
I (0o ) 
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Part (2) of this lemma is of major importance for the proofs of this paper. 
One may question why the need for the supremum over t in part (2), since 
for all t, 

E( I + T < 1. 

With non-i.i.d. Zt, however, the conditional expectation is a random vari- 
able which (in principle) could take on values arbitrarily close to unity, which 
we need to exclude. 

The inequality in part (1) is sufficient for part (2), and this is the only place 
in the paper where we use part (1). Hence, if the bound in part (2) could be 
established using other means, then the inelegant part (1) could be avoided. 
We feel that the large role the bound (P plays in Lemma 4 and hence the 
resulting asymptotic theory is more an artifact of the proof of parts (1) and 
(2) of Lemma 4 than an important condition for distributional theory. It 
should be noted that the approach taken here differs fundamentally from 
the approach taken by the earlier literature. Lumsdaine [12], for example, 
uses the theory of expectations of ratios of quadratic forms of independent 
random variables, which does not have an immediate generalization to the 
dependent case. 

We now establish some further bounds on the ratio of the unobserved vari- 
ance process hot to its "estimate" h,(6). Part of the difficulty in dealing with 
potentially IGARCH processes is that when I0 + ao = 1, Eh, (0) is infinite. 
Thus, it is necessary to always work with appropriately selected ratios of ran- 
dom variables. It turns out to be particularly important to be able to bound 
the ratio ho0/ht(6) and its inverse uniformly in 0 E 0. The most difficult 
element of the parameter vector 0 to handle is 3. Note that h,(0) is a 
weighted average of squares of the data, with ,3 controlling this weighting. 
Our method of establishing the needed bounds is to split the parameter space. 

Set 

(RI, = R(K,71a,) < 1 

and pick positive constants qI and 77, which satisfy 

,q, < K o(l i 6R/6) 

and 

71u < fo(l -(R/6) 

((RG is defined in Lemma 4(3).) Define for 1 r c 6 the constants 

f3rl =10(/R + 771 < /o0 

flru = -1 > l o 
>R ll 
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and the subspaces 

or = tEe03 Or, < / < 330J 

0u = {eE e0: 0 < < rul 

Or =eI ueU. 

In the theory that follows, it is clear that small values of -q and qu detract 
from accuracy of the asymptotic approximations. The ability to allow rn 
and r,u to be large depends on the constants (1 and (R0 which are function 
of the parameter space 0 and the constant 1P. 

LEMMA 5. Under (A.1), for 1 < r < 6: 

h6 k (0) 0E-o 
(1) , k < ((R {/r)k uniformly in 0 E 0. 

(2) |h<() r s H = + < oo uniformly in 0 EOr 

LEMMA 6. Under (A.1), for 1 ' r ' 6: 

(1) < KU- + < oo uniformly in 0 E eOr. 
hot r Co0 71u0 

h I (0) /R o 
Ir \k 

(2) h) r 
< KuHu 3 ) uniformly in 0 U O. 

h k (O) /1 CI/r \k 
(3) t < KuH ) uniformly in 0 E o. U 

th'(0) r f0o 

We are now in a position to establish the pointwise convergence of the un- 
observed likelihood process. 

LEMMA 7. Under (A. 1), for all 0 E 01: 

e2 (,,Y, _ ^~/)2 + B 
(1) E_ et 

<H, + BH 
h, (0) CO/ 

lt (0) 
(2) Ln(0) -+p L(0) = E 2 . m 

The pointwise convergence of Lemma 7(2) is not sufficient for consistency 
of the quasi-MLE. It is necessary as well to establish uniform convergence 
and identification. A sufficient condition for uniform convergence is uniform 
boundedness of the expected value of the score (the vector of derivatives of 
the likelihood with respect to 0) which we denote by Vl (0). We now explic- 
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itly derive such bounds. First, we need to bound the derivatives of the vari- 
ance process. Lumsdaine [12, Lemma 1] showed that the quantities 

Ah,(0) 1 aht(0) 1 aht(0) I 
a-y h(6(0) aw ht()' c3e htz(0) 

are all naturally bounded by functions of the parameter space 0. This is 
not true for the derivative with respect to /, however. To simplify the nota- 
tion, set 

aht (O) 1 
h,t (0) = __ __ h,(__ a/3 ht (6) 

LEMMA 8. Under (A. 1): 

(1) For I < r ? 6, supoeIhd,(G)D?B2max( H,KLIHM) =H < X 

(2) SUPoGe2EIVlt(0)I < co. 

Now we can prove the local consistency of the quasi-MLE. Define the 
estimator 

6n = arg maxLn(O). 

On is the parameter value which maximizes the likelihood in the restricted 
region 02 C 0. It may or may not equal the global MLE 

0,n = arg max L*(O). 
Oe 

We can, however, establish the consistency of 6,n. 

THEOREM 1. Under (A.1), 6,n ̀p 6o- U 

Theorem 1 shows that there exists a consistent root of the likelihood equa- 
tion. Unfortunately, this is not sufficient for consistency of the global quasi- 
MLE, O,. We conjecture that 0,n is indeed consistent, but a formal proof 
appears to be quite challenging. 

If we restrict attention to nonintegrated GARCH processes, we can estab- 
lish the consistency of the quasi-MLE under the same conditions. Since this 
has not been established before, we state this result formally. 

THEOREM 2. Under (A.1) and ao + /0 < 1, 0n --+p ,. 

4. ASYMPTOTIC NORMALITY OF THE QUASI-MLE 

We now turn to the derivation of the large-sample distribution of the quasi- 
maximum likelihood estimator. For this development, we need a stronger 
condition. 
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Assumption A.2 

(i) E(zt4Ict_1) < X < 0 a.s. 
(ii) 00 is in the interior of 0. U 

Assumption A.2(i) strengthens condition (iii) of Assumption A. 1 to a uni- 
formly bounded conditional fourth moment for the rescaled innovations z,. 
Note that it is trivially satisfied by any i.i.d. process with finite fourth 
moment. 

We first establish a functional central limit theorem for the score function 
evaluated at 00, which implies the standard CLT required for the proof of 
asymptotic normality. This extra generality will not be used in this paper, but 
comes at no cost and could be useful in other applications. Let > denote 
weak convergence of probability measures with respect to the uniform met- 
ric, let W(r) denote a Brownian motion with covariance matrix I4, and let 
[.] denote integer part. 

LEMMA 9. Under (A. 1) and (A.2): 

(1) Forall 0 E 04, E I Vlt(0)Vlt(0)' I < oo. 

(2) -Ao1/2 AO It] Vl/7(00) * W(r) where Ao = E(Vlt(00)Vlt(00)'). -n-i 

To complete the derivation of the large-sample distribution of On, we need 
to examine the 4 x 4 matrix of second derivatives of the likelihood which we 
denote by V24t(0). We can simplify the notation somewhat by defining 

h''=a2 ht(0) I 1 3 ht(0) I1 
hoot (0) = d2 ht (0) ha3 ht(0) = d ( 

(0) 

LEMMA 10. Under (A.1), for 1 c r c 6: 

(1) SUPeC02rIhi3,t(0)IIr C 2H32 < 00. 

(2) SUPOe03r h 3,J(0)IIr < 6H,3 < oo. 

Set 

I n 

Bn (0) =--E V21t*(0). n t=l 

and 

B(0) =-EV2l,(0). 

LEMMA 11. Under (A. 1) and (A.2): 

(1) For all O Ee04 E i V2It (0)I < 00. 

(2) For all 0 E 04 and i = 1,2,3,4, E 
a 

V21t(0) < 00 
aoj 

where 0i is the ith element of 0. 
(3) SUp9eC4iBn(0) - B(0) -p O and B(0) is continuous in 04. U 
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We are now in a position to state our main distributional result. 

THEOREM 3. Under (A. 1) and (A.2): 

(O(69n - 00) D N(O, VO) 

where VO = B6 1A0 B6-l and Bo = B (00) = -E V2l1 (f0). 
Set 

Bn = Bn(69n). 

The matrix Bn71 would be the standard estimate of the covariance matrix for 
fn in the context of maximum likelihood. In the more general context of 
quasi-likelihood estimation, however, the asymptotic covariance matrix is 
Bo'AoB61 not B6o1, so Bn71 will not be a consistent estimate for this quan- 
tity. To construct a consistent estimate, define 

I n 
An (O) = -E Vl7*(O) Vl*(O)' 

n t=l 

An = An ( 60n) 

and 

A (0) =E VI, (0) Vlt (O)'. 

LEMMA 12. Under (A. 1) and (A.2): 

(1) suPoE061An (0) A (0)I -+p 0, and A (0) is continuous in 06. 

(2) Vn = Bn 'AnBn l pVO=Bo 1AoB -7' l 

Lemma 12 completes our characterization of the classical properties of 
the quasi-MLE for the GARCH(1, 1) model. It shows that the conventional 
"robust" covariance matrix estimator is consistent for the asymptotic vari- 
ance of the parameter estimator. 

5. CONCLUSION 

Models of conditional heteroskedasticity are routinely used in applied econo- 
metrics. This paper has explored the distributional theory for one simple ex- 
ample - the Gaussian GARCH(1, 1) model with an intercept. The potential 
generalizations of this simple case are numerous. To state a few: inclusion 
of additional regressors, GARCH(p,q) models, non-Gaussian likelihoods, 
and various nonlinear GARCH models. Unfortunately, the methods used in 
this paper to analyze the Gaussian GARCH(1,1) model are quite cumber- 
some and may not easily generalize to more complicated models. We believe 
that different approaches may be required in such cases. 

This paper has shown that the Gaussian likelihood will consistently esti- 
mate the parameters of the GARCH(1, 1) model even if the rescaled variable 
is neither Gaussian nor independent. This is certainly an advance over the 
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existing literature, which has universally assumed that the rescaled variable 
is independent. We are maintaining another important and unsatisfactory as- 
sumption, however. Throughout the analysis, we assumed that the true con- 
ditional variance is described by the GARCH equation. This is less than 
satisfactory, because most applied work implicitly views the GARCH equa- 
tion as an approximation to the true conditional variance. It would be inter- 
esting to know the properties of the quasi-MLE when the true conditional 
variance does not satisfy the GARCH equation. This would be a challeng- 
ing, yet rewarding, task for future research. 
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APPENDIX 

In this Appendix, all of the equalities or inequalities hold almost surely if applicable. 

Proof of Lemma 1. Define g Myo - -y, so E, = et + e-yo = et - g. Then 
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w + a j fk(et_1-k g)2 
h() ) k=O 

ht(0) ht(0) 

c + a Z 1ke2 + 2a I Z (kIe j + ag2/(l 3) 
k=O k=O 

ht (0) 

2a /kIet-l-kl 
+ k=O IgI + a g2 

ht (0) w(1 - /3) 

where the first inequality uses the triangle inequality and the second inequality uses 
the fact that h,(6) 2 w. Using Schwarz's inequality, 

a Z 1k t6 I jk a j 1 k/2 ( k/ I et-l-kI) 
k=O k=O 

ht (0) h, (0) 
( \ 1/2 oo 1/2 

ok f3ke2) 

Ol E k t-l-k 
( -k=O k=O 

ht (0) 

o /1/2 

= (1 $)-/2 _k=O 

a (~~~~ /3ke2) a ~ h,(0 
h~~~~~(6) ~ ~ ~ h 

(i) If 0 C ok ke2 C 1 
/ oo \1/2 

ae a>e2ke 
hz(6 t0 /3kk 

ttE ~ ~~ + a>] e,1 

k=O k 

ht (0) 

(ii) If Etko 1ke21-k >1 

oo 1/2 0o 

k=O k=O 

< (1 

ht?(0) 0) + oy - S e B. 
k=0 

Therefore, 

00 

a E: lkIet- I -k 

ht (0) -' (I--/ max(-1. 

We have shown that 

- t(a ' 1< + 2(1- u)-1/2 max cu, 1) (y Y-yi) + ,,u ;?(-Yu Y)2 _B. 
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Similarly, noting that 

h1(O) = c + a E (Et-(-k + g)2, 
k=O 

analogous calculations reveal that h,(0)/h'(0) c B as stated. U 

Proof of Lemma 2. (1) This is proved in Nelson ([13], Theorem 2) under the as- 
sumption of i.i.d. zt. But the SLLN for stationary and ergodic processes (Stout [15], 
Theorem 3.5.7) can be used to cover the present case. 

(2) From Billingsley ([4], Theorem 13.3), ht(O), e2, lt(0) and its derivatives are 
measurable functions of c-, and thus are strictly stationary and ergodic as shown by 
Stout ([15], Theorem 3.5.8). 

(3) Theorem 4 in Nelson [13] shows that under condition (iv) of Assumption (A. 1), 
there exists some 0 < p < 1 such that EhI4 < oo. Hence, using Lemma 1 and the fact 
that -k21 < a -hot, 

E(ht(O))P ' BPE(h'(0))P < BP(co+P + a' 0 (kp& 2p 

Proof of Lemma 3. First, note that 

h,(0) = h7*(0) + (38'a of3Eke2k = h,7(0) + (3t-(h1 (0) -w) c h7 (0) + f3'1h1(0). 
k=O 

Second, 

Lt(0 =)-Ln (0) = Z 2n eln = h h *O) ) 2 ,( h, (f) - (O) _ ) 

Third, 
/ _ n /n_ _ 2 2 _ _ 

O?Xs n In(h1(0) ) s lz In(l + ht(3t) ) s 3 t 0) h1(_) 

Ln=O -\hn(0) / _- Eh7(0) - = o ,( -3z 

Since Eh1 (0)P < oc by Lemma 2(3), it follows by Markov's inequality that 

1 '~ / h~(0 t=j h *(0) 0nt,h() h 0 

0 ht ln( h() n c _ h, (0) 

fl=1 \h7*() /hnco(1(3 ) 

Fourth, 

o?Z (hiG h,(O)) h, h hes 2 _h , Z h + =X2, 
t=1 t t=1 t ~~~~-t=1 

say. But 

l1 ( (O) I ) c 00 HpIh'IP H' s+ _o< 1X2 11 p2 <2 )z( (aiw h () (pl -(31) Hp'IP < 
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by Lemma 2(3), and thus by Markov's inequality 

0 ( et _ _et)_ 1 X2 0 
n t= h*(O) ht () / n 

-+ 

completing the proof. U 

Proof of Lemma 4. (1) Set Pt = PIz 2 < I Tt1J. Note that Pt < 1 for all t since 
E(Zt = 1. Denote the distribution function of zt conditional on <t-1 by Ft. 
Now we can define a new conditional distribution function Ft* = Ft /(1 - Pt) with 
positive support only on IZ2 > 2 ] . Then using Assumption A. l(iii) and Lyapounov's 
inequality we find that with probability 1, 

S5 E (Z26 TI) 2+6 dFt 
[z2> 1/2) 

- (I Ps) z2+6 dF* 

z7F (2+5)/2 
2(-t) 2 zt2d 

zt > 1/2) 

- (1-Pt) 6/2( z2 dFjt ) )2? /2 

> (1 - ~ zt> /2 

- (-pt )-612 2 d- 22b d/2+6/ 

The stated result obtains by rearranging the t t hat tP = 1 <1 
since S,3< oo, and (P >0O since S6 ? E(z72+5|IT-l ) > -EZt |Ct )(+/21. 

(2) First, since xT c x when x ? 1 and r 2?1, 

((d ;Z) | ,) E(( +v;z~2) )SE$+,[-t 

a.s., where the final inequality follows since fi < 1. Second, by part (1) of this lemma, 
with probability 1, 

E(t + , -F,_) z?22l/2i 1+1 2 dF +,>12 1 + 2dF 

/ J2~~~~~~~~~~t-1/2) VZ 

Az, <1/21 Az/>1/2} + i,t' dF, 

= -( ' T,-) + 2 Pt{ P({z72 > I} pT26) 

2+-P, 2+ 61 2 
Xr c 

(2 Frs, ine wenx+,6 an r >+ - 



44 SANG-WON LEE AND BRUCE E. HANSEN 

(3) Since E71 = hot-, Zt 

hot- I hot-, 

hot wo (l - ) + 00hOt-I + nOh1zot-1 0 + IOZt-l 

and 

hot-k hot-I hOt-2 hot-k k 1 

hot hot hot-, hotk+? i=1 /0 + OZt-i 

Applying part (2) of this lemma, 

E hot, ) Tk1 P((0X~,r Tk) k 6:R(cao) - 6o )k 
AE ((ho ) [F,_k _ 

I 
)S 

E ( ( + UO Z2 ) 
t-k- 

I 
ir< r3 

r 
3 

(4) Using the fact that B c 0?, 

00 

w + a E /3 kf2 
h1(0) _ k=O Eu (X u = c + K,. 

ho'~~~~ uO+(OES t-1-k 

k=O 

(5) Since / ? 00, 

co 

h0 0 

+ Ct Z 0 

/t-1-k 
hot = k=O 0o +o 

14(0) ~ 00< - + - 
= Hu 

h e(f) @+ at C 6t-1-k 

k=O 

Proof of Lemma 5. (1) By Lemma 4(4), 

ht hte 1 1 
E =2 --1 2 he? o,(1 -/3) +n t+/31 hOt 2z + I3IK1 zt 

and thus by Lemma 4(2) 

((ht) ] ) 
(((3, K) T 1) ' - 

Hence, 

ht ~~ E(hf )E 4t--l S(+) 

Taking expectations of both sides yields the desired result. 
(2) First consider 0 E Or. Using Minkowski's inequality, the fact that 2 E a s < -1h 

and part (1) of this lemma, 
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( Z fi -kE-i 

hot 
co k=O 

0 

t-k-I 
h'e(t) r a)h'(0) 

WJ UkO 00 he c _ + ? E Sk ||t,_k| 
?S ? k=O ht r 

Z I 
@ k=O 

WO 0o fi 

CO CI Orl COO 10 

=ao+ <a/ + ?-Hc. 

Lemma 4(5) established that 

h + Hu < Hc for fl?fl0, 
h'(0) w, a/ 

so the bound holds trivially in Or as well. U 

Proof of Lemma 6. (1) Since t7- I ? 0 

(co + a >j: kjE 2 
h_ k=O (.0 + ?l > fk hotk 

hot hot a)? a0 k=O hot 

By Minkowski's inequality and Lemma 4(3), 

11_ 11 ||- 11 -C _ + _khotk 

c 

(ru1/r) ru~ ~ oo ~ (irco hot r COO so k=O hot r COO Ceo0 k=O /ff 

-u - + u - 0 < Zu +au K 
CIO?00 - OruM0 I c0 u ?tO 

(2) Since by Lemma 4(5) 

ht-k = hot hE k hot-k hk ___k 
<Hu - _ 

h - ht hot k hot hotk hot 

and (ht'-k/hOt-k)r is 'Ft-k-I measurable, we have by Lemma 4(3) and part (1) of this 

lemma, 

||h,6 he U (^ r-k hot, 
r I )r 

t-k 
Hu__E_t_k 

ht r hot-k )((hot ) )]) 

aH (F (:h . ) (Rf)]) k l ( fR ) k 
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Proof of Lemma 7. (1) Using the facts that E(Et I St-,) = 0, ht(0) 2 wl, Lemma 
1, and Lemma 5(2), 

/ 2 / 
( 

2 

) 

2 

((, 
_ 

e)2 E < ?BE + (E (+ y 
ht (0) ht(0) W 

B 
hE(0) WI 

< BH + (,. 
_ 

-_) 

(2) Note that by Jensen's inequality, part (1) of this lemma, and Lemma 2(3) 

EI/1t()I <EIInh,(0)I +E e t 
<-IInEjI hP(0)l + HI ? - In H +HI <oo. 

(ht(0)) p P 

This allows the application of the strong law of large numbers for stationary and ergo- 
dic sequences, for example, Stout ([15], p. 181), which yields the desired result. 0 

Proof of Lemma 8. (1) Differentiating both sides of h, = w + fht_1 + ae72 with 
respect to A we find 

aht aht-I ~~ _ _ _ _ 
h t - 

d:13 '313 
or 

ht, ( 6 ) = k h () 

Using Lemma 1, and Minkowski's inequality, 

11 hot (0) 11, B 2 E k || t1kk 

When 0 E or, this is bounded by B2 E,((Rl/r )k = B2/(l - (R 1/') using 
Lemma 5(1). When 0 E Or, we have instead from Lemma 6(2) the bound 
B2 Zco o kHUKU (Rl/r/l0) < B2KuH?u . 

(2) First, note that 

dlt(0) = (ae _1 ht (0) 1 
dw ht (0) aw ht(0) 

and 

alt(0) e 
t____ -) ht (0) 1 

aca k ht(0) doc ht(0) 

These two gradients are therefore bounded in expectation since E (e2/ht (0)) - 1 < 
1 + H1 by Lemma 7(1) and the quantities (aht(0)/1w)/ht(0) and (aht(0)/1a)/ht(0) 
are naturally bounded as shown by Lumsdaine [12, Lemma 1]. 

Second, note that 
2 

't3(6) e 
( t -I ahth() 1 2 t 

-,y ht(0) )'y ht(0) h,(0) 
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and again (dht(0)/1ay)/ht(0) is bounded by Lumsdaine [12, Lemma 1], so it remains 
to show that Ejet/ht(0)j < oX. Indeed, 

____ ( __ ~ \1 /2 e2 \1/2 1 \1/2 
E _et_ et 2)/ E 1 et_ < 1 H I1 < 0 

ht (0) ht (0) cE ht (0) \- < 
X 

Finally, note that 

alt (2 
e2 _ ht '( 

dl~(O) h _ _(0) ah ht(0) 

By the triangle inequality, Holder's inequality, Lemma 5(2), and part (1) of this 
lemma, 

E as ) ?E ( h ) ht(0) + EIhot(0)I 3/3 ht (0) 

'E - 
hoth(0+) + F H41 + e ht(0) ht () h,()(/ 

h 1O Ihot (O)2 + E hot 
)2 II~(0)II12 + HO(I + ) 

c HcHd + (-) HO + H} 1 + ii) < 0. 

We have shown that each derivative is bounded in expectation which completes 
the proof. E 

Proof of Theorem 1. First, note that 02 is compact. Second, in Lemma 7(2) we 
showed that Ln(0) -p L(0) pointwise. Third, Lemma 8(2) implies that Ln(0) satis- 
fies the weak Lipschitz condition of Andrews [2]. Hence by Theorem 3 of that pa- 
per, Ln (0) -*p L(0) uniformly in 02 and L (0) is continuous in 02. Combined with 
Lemma 3, we find 

sup IL(0) - L(0)j ' sup IL (0) - 
L,(0)I 

+ sup 
IL,(0) 

- L(0)I -*p 0. 
Ce02 Oee2 CeO2 

Fourth, Lumsdaine [12, Lemma 5 and Theorem 1], generalizing the proof of Weiss 
[16], showed that the limiting likelihood L(0) is uniquely maximized at 00, and the 
proof carries over to the present case. We have established the standard conditions 
for consistency in nonlinear estimation, for example, Amemiya [1, Theorem 4.1.1]. 
We conclude that 0,n -p 00. U 

Proof of Theorem 2. The entire difficulty of the proof of Theorem 1 is the fact 
that when ac + f0 >? 1, Eho, = 00. In the present case, however, we can establish that 

Eh,(0) = c + a Z IkEe2 
k=O 

0O + (_Y _-J) 

Ehot + g 1-2 ao - 0 +h<u0 
=' + a 1 - Wu 1- h < X 

uniformly in 0 e 0. 
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There are few (but key) places in the proof of Theorem 1 where the restricted 
parameter space 02 is used. The first appears in the proof of Lemma 7(1) where we 
need a bound on E(E2l/ht(0)). In the present case it is simple to see that 

2 

E 
Et 

? Wc 1EE2 = c,lEhot' ? Tlh < oo. 
ht (0) 

I II 

Thus, Elt (0)I < oo and the pointwise convergence of Lemma 7(2) holds. To estab- 
lish uniform convergence, we need the derivative bounds in the proof of Lemma 8(2), 
which hold for Elalt(0)/afl l , Elalt(O)/alj, and Elalt(0)/aael trivially. It only re- 
mains to establish E I alt (0)/ad I < X . Indeed, 

E ( | < E hot 
hot (0) + E I hat (0) 

ao ht(0) 

and 

Elhot(0)l < B kEhe (0) kEh ()k B < 00. 
W k-CO k=O w/((-f 3) 

For t3 ? 00, from Lemma 1 and Lemma 4(5), 

E hat (0) ? BH,E l hot (0)l < 00. 

ht(0) 

For c 0? , we use the decomposition 

hot _ W0(I - j3k) k-I 2 khot- 

h'(0) h'(0) + 
0? i= 

0 h'(0) +0 h'(0) 

a0 /fl\0k k h0t-l-k 
+- k -j +/~ > 

co) a ~ wc 

since aoiE2 - _ h (0) and >k7-I (30/f)' _ k(/30/)k as (f0/f) 2 1. Thus, 

E h? t 
hot(0) ' BE hot hat(0) 

ht(0) h'(0) 
s0 

BkE( ht-k 1(0) COO I ( O 
k 

+ k hot- -k 
<BXf3E~ - - + -k + 0 

> B 2 Eht-k(0) + - kaEht-kl1(0) CO k=O ?MW k=O 

+ - 
kEh0_lk 

O k=O 

Bh( CO + '0_0_? 
1 

WIco/ @(I- U) aol( - /3o)2 (1- 00) 

where the third inequality uses the fact that 3k ht-k I(0)/ht(0) ? 1. This com- 
pletes the demonstration that Elalt(0)/a3l < 00. No other part of the proof of 
Theorem 1 depends on the restriction of the parameter space to 02, and we conclude 
that fJ -_+P 00. U 
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Proof of Lemma 9. (1) Lemma 8(2) established the existence of the first moment 
of the gradient. A review of that proof reveals that the derivatives with respect to w, 
ae, and ey will have finite second moments if E(E72/ht(0))2 < mc. Indeed, using (A.2), 
Lemma 1, and Lemma 5(2), uniformly in 0 E 04, 

'Et ho-tz?''t E(IEt = =E(~ ) 
ht (0) ht (0) 

= E(E(Zt I%t-1) ht(0 ) ) E 
XEht (0)) < C(BH')2 < 00. 

It remains to show that the derivative with respect to ,B has a finite second moment. 
Recall, 

alt(0) _ et_ 1 hth(0) 1 

ao ht (0) ao ht (0) 

whose second moment is clearly dominated by 

2_ _ 2 / 4 2 
E (~ ho(0>t ( 0) ) =E (E(Z4t ,,) hot ( 0) s || hot0 $,(0 

ht (0) ~~~~ht(60 ht (0) 2 

2 1 <hN(BH~)H o N C| ht (0) 411 hat(0) 14 - X 
H)2H,3 < 0, 

where the first inequality uses (A.2) and the final uses Lemma 1, Lemma 5(2), and 
Lemma 8(1). We have shown that the second moment of each element of the gradi- 
ent Vlt(0) is finite for 0 E 04, and hence EIVlt(0) Vlt(0)'I < oo as stated. 

(2) First, observe that [Vlt (o) ,TtI is a stationary and ergodic martingale dif- 
ference sequence with finite variance Ao (as shown in Lemma 9(1)). Thus, by the 
invariance principle for stationary martingale differences (e.g. Billingsley [3], Theo- 
rem 23.1), we have 

1 [nrJ 

AO Z' Vlt ( 00) =* W(r) . 
-wn t=l 

To complete the result, we need to show that 

I i 
7 max E (Vl,t (00) - Vlt(6o)) p 0, 

X i-n t=1 

which will follow if 

co 

E E I Vlt (00) - Vlt (0o) I < ?? 
t=1 

for some 6 > 0, which can be shown for 6 = p using methods analogous to the proof 
of Lemma 3. D 

Proof of Lemma 10. (1) Differentiation yields 

a2ht a 2ht-I aht-I d 2 d_ 2 
ao2 a132 a13 
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or 

hoot (0) = 2 E k ahk () 1 2 E kht-k- I (0) () 
k=O Th3 ht (6) k= 2OIkft6 ht (6) 

Using Minkowski's inequality, Holder's inequality, Lemma 8(1), and similar argu- 
ments yield uniformly in 0 E 02r, 

Ih,3t (0) 1 r ? 2 E flkl ht-k- I (0) 11 2r ht(ka() 
k=O ht (6) 2r 

' 2HO E hk (G) < 2HOHO. 

(2) Similarly, we find 

co a2 h kl (6) 1 00 ht-k-I(0) h ( 
t( ) = 3 E k (= 3 E hk(k 6) 

k=O W~ ht (6) k=O h 0 

and uniformly in 0 E 03r, 

hht ( ti ) 11 r 1 3 E 3 kII h 3t-k- I (0) II 3 r/2 
k=O ht h() 3r 

!56HLZa3k= htk1(O) 3 6H- 
. 

Proof of Lemma 11. There are 10 distinct second derivatives of the likelihood and 

16 distinct third derivatives, each of whose expectations needs to be bounded. All of 

these derivatives have closed-form solutions. Finding bounds in all cases consists of 

repeated application of Minkowski's and Holder's inequalities and the bounds of the 

previous lemmata. Since this full derivation would take too much space, we provide 

the full derivation only for the derivatives with respect to d. These derivatives are the 

most demanding and require the most restrictions. 

(1) A straightforward calculation yields 

a2It (6) 
2 

e 
W ) 

et 
h (h$,(O) - 2hfl1(0)2) + h3t(0)2 - h,t(0). 

Thus using Lemma 1, Lemma 8(1), and Lemma 10(1), 

E a24(6) E e'2 [hoot(6) + 2ha,(0)21 + Ehot(0)2 + Eh33t(0) 

<E( ' ht (0) [h) [ht(O) + 2hot (0)2] 
+ H02 + 2H2 

h -() /[h(0) + 2hot(0)2 + 3H 2 

ht( h0) 

( ht(6) 12 0 ) hohot(0) 112 + 21! ht,(0) 4(2) + 3H2 

(BHC + ( a )(2HO+8H )+3HO<X. 
,..I 
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(2) A straightforward calculation yields 

ai(o)= he(t) (hoot(O) - 6hoot(O)hot(f) + 2hot(0)3) 

- hoot(O) + 3ho,(O)hot(O) - 3hot(0)3. 

We find uniformly in 0 E 04, 

E E e( ) tE (( ) + 6hot (O)hot(O) + 2ht (0)3)) a/33 ht (0) 

+ Ehooot(O) + 3EhS3ot(0)hot(0) + 3Eho,(0)3 

( h,(O) 2 ) 

x (II hot,(0) 112 + 611 hoot(0) 11411 ho,(0) 114 + 211 hot(0) 116) 

+ hI hat(0)1 I + 311 hot(0) 11211 hot(0) 112 + 311 hot(0) I3 

s(BH, + ) (6H + 12HO3 + 2H,3) + (6H3 + Wo + 3H,3) 

0(B( + (( 
_ 

) 

(3) Since for all 0 E 04, V21t(o) is stationary and ergodic with finite expectation 
(as shown in part (1) of this lemma), the weak law of large numbers yields 

1n 
-- Z V2It(6) p B(0) 

n t= 

for all 0 E 04. The boundedness of the third derivatives (part (2) of this lemma) 
implies that V21t(0) is stochastically equicontinuous, so the convergence is uniform 
in 04 and the limit function B(0) is continuous in 04. See, for example, Theorem 3 
of Andrews [2]. The desired result therefore follows if 

I n 

sup - E (V21t(0) - V21t(0)) __O 0, 
Oee4 n t=1 

which can be shown using the same methods as in Lemma 3. B 

Proof of Theorem 3. The previous lemmata have established the standard condi- 
tions for asymptotic normality in nonlinear estimation (as for example Amemiya [1], 
Theorem 4.1.3). First, Qn is consistent (Theorem 1). Second, 

ln 

Zvl7nto) D N(O,AO) 
X it=l 

(Lemma 9). Third, 

-Z V2/t7(O) --+p B(0) 
l t=1 

uniformly in 04 (Lemma 11(3)). Fourth, B(0) is continuous in 04 (also Lemma 11 
(3)). Fifth and finally, Bo > 0, as shown by the proof of identifiability in Theorem 1. 

. 
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Proof of Lemma 12. (1) Pointwise convergence of (I/n)ZU1 V/f(O) V/t(6)' to 

A (0) is the result of the weak law of large numbers for stationary sequences, under 

the moment result of Lemma 9(1). Uniform convergence (and continuity of A (0)) 

will obtain if we can establish stochastic equicontinuity, which is a consequence of 

uniform boundedness of the expectation of the first derivatives. Again we focus on 

the derivative with respect to f for brevity. Differentiation yields 

I a a@It(o) 2 alt(o) a2it(o) 

2 ao\ a J a a 

e4e 
=h( h) (tht - 2h 3) + _ t- (3h 3 - 2hthoot) -h t + hothoot. 

Thus, uniformly in 0 E 06, 

E a / al,(0) 2 | 8EE + g h 2h3 
2 a(3 a3( ht(6) 

+ F ( hh0 + g 3h$ + 2hothotI) + Eh3t + Ehft hot 

_ 8X3C] h (?0) 2 ( || hat 11 11 h$t 14+ 211 ht 113 ) <Kht (6) 4(II h,8tII4IIhootiI14 ot+ 

+ 8g42 (1Il12Ih$stll2 + 2 11 hat 11 2) 

+ ho(t) 2 (3 lI ht ll3 + 2 I1 hot 114 II h lt 11 4) 

+ - (3llhIlt3 + 2llhtlIl21lhootl12) + IlhsolI3 + IIhot l211 hfltII2 

'(32X(BH,)2 + 32(yu _) + 7BHC + 7(yu 2 _)2 + 3) 
WI 

x H < 0, 

where the first inequality uses cr inequality. 
This bound implies that the sequence (Il/n) E'I VIt (6) Vlt (0)' - A (0) is stochas- 

tically equicontinuous in 0 e 06 as desired. The desired result therefore follows if 

I n 
sup - E (V/t(A) V/t(G)' - V/t7(0) V/7t(6)') p 0, 
Oe06 n t=1 

which can be shown using the same methods as in Lemma 3. 

(2) The result given in part (1) of this lemma and the consistency of 6,f for 00 

implies that A,n = An(60) -p A(00) = AO. Similarly, Lemma 11(3) yields B,n = 

Bn (0) _p B (0o) = Bo. The continuous mapping theorem completes the proof. E 
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