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CONVERGENCE TO STOCHASTIC 
INTEGRALS FOR DEPENDENT 

HETEROGENEOUS PROCESSES 

BRUCE E. HANSEN 
University of Rochester 

This paper provides conditions to establish the weak convergence of stochas- 
tic integrals. The theorems are proved under the assumption that the inno- 
vations are strong mixing with uniformly bounded 2+ moments. Several 
applications of the results are given, relevant for the theories of estimation with 
I(1) processes, I(2) processes, processes with nonstationary variances, near- 
integrated processes, and continuous time approximations. 

1. INTRODUCTION 

A considerable research program has developed in econometrics concerning 
an asymptotic distribution theory for integrated and near-integrated processes. 
Frequently, the theory involves sequences of cadlag' processes I U, (s), V, (s)J 
which converge weakly in the Skorohod topology to [ U(s), V(s)). It is 
often desirable to obtain the limiting distribution of the integral process 
fOs U, d V,. In certain cases, fJ U, d V, = f s U- d,2 but it is known that this 
result is typically violated when V, is not a martingale. See, for example, 
Phillips [16]. 

There is a growing literature studying the asymptotic distribution of sto- 
chastic integrals. Chan and Wei [4, Lemma 2.4] derive the distribution of 
Jf U, dV, when U, and V, are martingale arrays with uniformly bounded 
conditional variances (which excludes many conditionally heteroskedastic 
processes, such as ARCH). Phillips [19] extends the results of [4] to allow 
the innovations to be general linear processes with independent identically 
distributed innovations. Strasser [22, Theorem 1.7] derives a functional limit 
theorem for fJ U, dV,, for the case that V, is a martingale array and U, a 
Lipschitz function of a martingale array. In another paper, Phillips [18] at- 
tempts an alternative proof for mixing processes, but makes an error.3 
Jeganathan [9, Proposition 6] provides a proof for the case that V, is a mar- 
tingale array and (U, V) are continuous processes. The most general results 

This paper has grown out of work initiated in my Ph.D. thesis. I would like to thank Peter Phillips and Don 
Andrews for helpful advice, encouragement, and comments, and three referees for a careful reading of ear- 
lier drafts, which eliminated several important errors, led me to new references, and generally improved the 
quality of the paper. This research was partially supported by the NSF. 

? 1992 Cambridge University Press 0266-4666/92 $5.00 + .00 489 



490 BRUCE E. HANSEN 

yet published for martingale arrays are contained in Kurtz and Protter [10]. 
These authors consider a variety of limit theorems when V, is a semimar- 
tingale. 

This paper provides an asymptotic theory for stochastic integrals which 
arise in econometric applications. The assumptions allow for weakly depen- 
dent heterogeneous data. Section 2 considers stochastic integrals with respect 
to a martingale process. Section 3 develops a martingale difference approx- 
imation for strong mixing sequences. Section 4 demonstrates the usefulness 
of the results for several examples of major interest. In all cases, the differ- 
ences of V, are assumed to be strong mixing. The first example assumes that 
the differences of U, are strong mixing, which has applications in the the- 
ory of multivariate unit roots [4] and cointegration among I(1) variables 
[8,12]. The second example assumes that U, is the product of processes 
whose differences are strong mixing, which has applications in the theory of 
heteroskedastic cointegration [6] and nonstationary variances [7]. The third 
example assumes that the second differences of U, are strong mixing, which 
has applications in the theory of cointegration among I(2) variables [13]. The 
final example assumes that Un is a vector process with a root local to unity, 
which has applications in the theory of near-integration [3,17,20] and con- 
tinuous time approximations [14,15]. The appendix contains the proofs. 

A word on notation. The symbol "_" denotes equality in distribution, 
JIB 1 r = (ZijElBij 

I 
r ) l/r denotes the Lr-norm, "BM(Q)" denotes vector 

Brownian motion with covariance matrix Q, Mktn denotes the real-valued, 
k x m matrices, D denotes the space of cadlag functions, and ">" denotes 
weak convergence with respect to the Skorohod metric (as defined in [2]). 

2. MARTINGALE DIFFERENCES 

Consider random arrays ( Un,, Y,,: I < t c n; n l 1} where U,t is a k x m 
matrix and Yn, is an m x 1 vector. We can transform these arrays into ran- 
dom elements on [0,1] by defining 

Un(S) = Un[ns,], Yn(s) = Yn[ns], 0 O s c 1. 

Also, define the differences ,nt = Ynt- Yn,,- We can then define the sto- 
chastic integral 

5 rS [ns] 
j SUn(r)dYn(r) fUndYn UniEni+I 

? ? ~~~~~~~~~i=l 

To evaluate the limit distribution of fs Un dY, we start by assuming that 
Yn, is a martingale. This allows us to apply a result from Kurtz and Protter 
[10] to obtain the following theorem. 
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THEOREM 2.1. For each n, let Un, Ynt I be an I )Fn, I -adapted process 
with sample paths in DMkmn,Rm [0, 1 ], and let Yn, be an T F,, )-martingale. 
If (Un, Yn) =* (U, Y) in DMkmXEm[O,2], and sup Z7=1E(c2,) < oo, then Y 
is a martingale with respect to a filtration to which U and Y are adapted, and 

(Un, Yn, UfdYn) dY (U Y, U- dY) in DMktfxlRtfxk[O,l] I 

Theorem 2.1 is a special case of one of the several theorems provided in 
Kurtz and Protter [10]. Their results encompass a broad range of processes, 
including semimartingales with weaker moment conditions. For the applica- 
tions considered in this paper, however, the level of generality provided in 
Theorem 2.1 is sufficient. 

3. MIXING SEQUENCES 

Theorem 2.1 gives general conditions for the convergence of stochastic in- 
tegrals when the process E,i is a square integrable martingale difference. 
This is not sufficiently general for many applications in econometrics. Phil- 
lips [19] used a martingale difference approximation taken from Hall and 
Heyde [5] to derive analogous results for strictly stationary linear processes. 
We extend this analysis to cover strong mixing (ar-mixing) sequences. 

To facilitate the analysis, we assume that the array I Vn, J is a normalized 
stochastic partial sum process: 

1 t 
Vnt =- Vt, I vt = EVi (1 

On- i=1 

The stochastic integral of interest is 

S 1 [ns] 

I Un dVn E Univi+?1 

We assume that the sequence I vt I satisfies the following assumption. 

Assumption 1. For some p > / > 2, [ vi I is a zero mean, strong mixing 
sequence with mixing coefficients am of size -p/3/(p - /) and supj,I 11 vi II, = 
C < oo. In addition, (1/n)E(Vn V) -Q 0 < oo as n -+ oo. 

Set T, = ao( Uni, vi: i < t, n > 1 J to be the smallest sigma-field containing 
the past history of I Un, vt) for all n, and denote E(XI T|) by Ei X. Define 

00 00 

Z (EiVi+k -Ei- Vi+k), Zi= Z EiVi+k 
k=O k= 1 
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It is not hard to verify that 

vi := i + Zi-I-Zi, Ei_jEj = 0. (2) 

This representation is useful because of the equality 

Un = U UndYn + An(s) (3) 

where Yn(s) = Yn[ns], Ynt = Yt/\/, Yt = Ei, and 

A* =i (Uni - Uni--)Zi- UntZt?+1. 

Since IEj,'Fj I is a martingale difference sequence, fJ Un dYn can be ana- 
lyzed via Theorem 2.1. This is stated in the following theorem. 

THEOREM 3.1. If Assumption 1 holds and (Un, Vn) > (U, V) in 
DMk.xIRf [0,1] then 

fS =o f 

Un udYn J> u- dV, 

with V(s) = BM(Q), and Q being defined in Assumption 1. U 

Theorem 3.1 gives a convergence result for the martingale approximation 

fo Un dYn. To achieve a convergence result for the process fJ Un dVn itself, it 
is necessary to examine the process Ant. We have not been able to establish 
a general result. Instead, in the next section we illustrate the results for sev- 
eral common applications. We will find the following two results useful 
in the sequel. Theorem 3.2 gives a mixingale-type bound for the sequence 

- viz'-Eviz' 3. Theorem 3.3 shows that L 1 -mixingales are asymptotically 
uncorrelated with arrays which have continuous asymptotic sample paths. 

THEOREM 3.2. If Assumption 1 holds, then 

IlEi-_m(VjZ' 
- Ev,iz) 113/2 5 C2Im 

where {m = 12m4e 2(11-11p) + 14 - oe2(1/- lp) and E 0=i <C 0. 

THEOREM 3.3. Suppose Un U u in DMkm [0, 1 and U(.) is almost surely 
continuous. For a random sequence I ei I and a sequence of nondecreasing 
sigmafields I IF j to which I ei 3 is adapted, assume that supi E I E(ei I I-" m) 
0 as m -+ oo. Then 

i [ns] 

sup - E Uj ei p 0. U 
0-s?1 n j=1 
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Theorem 3.3 has the following interesting corollary. 

COROLLARY. For a random sequence I ei } and a sequence of non- 
decreasing sigma fields T I I to which eiI is adapted, assume that 
supi E I E(ei I TIFm) e O as m -+oo. Then 

max Z eil p 0 
t- n nij= 

4. APPLICATIONS 

In the following applications, Vn is defined as in (1). 

4.1. /(1) Processes 

For our first application, we set Un, = V,t. Thus, 

rs 1s i [ns] 
JUn dVn = Vn dVn' =- Vir+ 

n j=1 

Convergence of matrices of this form is an important component of re- 
gression theory under cointegration (see [121 for an application involving 
fJ V,n dVn, or [8] for an application using the stochastic integral process 
fJ sVn dVn). The only existing valid result which allows for serial correlation 
is [19] which uses general linear processes with square integrable i.i.d. inno- 
vations. This is quite restrictive, excluding, for example, conditional heter- 
oskedasticity. The following theorem allows for strong mixing processes, and 
provides the first proof of weak convergence of the stochastic integral pro- 
cess for serially correlated arrays. Define 

1In X0 
A = lim - E E E(vivl'). 

n--+o n j=1 j=i+l 

THEOREM 4. 1. If Assumption 1 holds, then 
Ls ns 

JSJVn d V BdB' + sA, as n -oo, 

where B BM(Q). 

4.2. Products of /(1) Processes 

For our second application we set Un, = Vn0 ( Vn = (I/n) V, V,. Thus, 

rS 1 [ns] 

JoUnJdon Vn (f i 
Vn)dVn =Vt l Vt) 

vit+ 
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Stochastic integrals of this form have arisen in models with nonstationary 
variances [6,7]. 

THEOREM 4.2. If Assumption 1 holds with f3 = 3, then 

fS(Vn Vn) dVn f (B ? B)dB'+ A@ fB+f B A. A 

4.3. /(2) Processes 

The third application sets Unt = (1/n)t=l Vni = n-32tV,, where V1 = 
EiZ=$ Vt. Thus, 

s [ns] 
foUn dVn; = n -2 VEiv,+- 

Vi is known as an 1(2) process. Stochastic integrals of this form are studied, 
for example, in [13]. 

THEOREM 4.3. If Assumption 1 holds, then 

J JUndVnS J BdB', as n--oo, U 

where B(r) =fOB. 

4.4. Near-integrated Processes 

The final application is to near-integrated arrays, which have been studied 
by [3], [17], and [20], and relate to continuous time approximations [14,15]. 
Define for some matrix G the near-integrated array 

Xni = exp(G/n)Xni-l + vi 

and the limit diffusion 

rr 
UG(r) = exp(r- X)GJ dB(X). 

Set Uni = (1l/<H)Xni. Here 

Js 1 [ns] 
Un dVn=-E Xnivi. 

0 ~~~n j=1 

THEOREM 4.4. If Assumption 1 holds, then 

(a) Un[ns] > UG(S); 
(b) fs Un dV, f s UGdB' + sA. U 
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NO TES 

1. A process is cadlag if it is right continuous with left limits. 
2. U-(-) is the left limit of U(.). 
3. Equation (24) in the proof of Lemma 2.5 (b) in [18] is valid, but the subsequent critical 

step is invalid, for the processes w, and LG depend upon the matrix G. 
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APPENDIX 

Proof of Theorem 2.1. We simply need to verify the conditions of Theorem 4.6 of 
[101. Since Y, is a martingale, it is a semimartingale, and their condition (4.20) holds 
trivially with 'YT(,q) 0. To show that their condition C2.2(i) holds, set 6 = oo and 
Tna= 2a. Thus, for all a > 0, P <T, < a) = 0 < 1/a. In the notation of Kurtz-Protter, 
M6 = Yn6 = Yn, A6 = 0, and 

sup E([Mn ]sATa + TSAT- (A n)) 
n 

[n (sA2a)] n 

= supE[Yn]sA2a = sup E (2 < sup E E 2I < o. 
n n 1 n 1 

In this expression, [Yn ] denotes the quadratic variation process of Yn, and T(A) de- 
notes the total variation of A. C 

Proof of Theorem 3.1. We first establish the moment condition for c,ni. By 
Minkowski's inequality and McLeish's strong mixing inequality [11] 

1| z,|l = | Ei- IVi+k|< E ||Ei- IVi+k 
11 

k=1 f3 k=1 

E 6az 
1/U P Vi+k/lp <i6C oe 10-11/p < o (A.1) 

k=1 k=1 

uniformly in i. Set ,ni = ,/-Pi. It follows that 

n 
ZE,E2. < sup E = (sup | Vi Zi- _1 + Z112 )2 
i=1 icn i?n 

< (sup 11 vi 11 + 2 sup II Zi 11)2 < 00. (A.2) 
icn i-n 

Note that Vn1(s) =* V(s) - BM(Q) as shown by Wooldridge and White [23, Cor- 
ollary 4.2]. It remains to show that (Un, Yn) > (U, V). Since 

( Un, Yn ) = ( Un,, Vn,) + (0, ( Yn - Vn)), 

the result follows from the continuous mapping theorem since (Un, Vn) = (U, V) 
and (Yn - Vn) * 0. We now show the latter. For all r > 0, 

n 

P{suplzil > -,/nnl ' SPI IziI > -,n-q 
i=1 

n f f\ 

- 

$n/ 

El zilg <_ -q' n6C 1 f/0-1/P) n 1-0/2 o 

since 3 > 2. Therefore 

sup l Ynt - Vnt I < 2 sup lz,I z 0. (A.3) 
t-n t-<ni~, P 
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This establishes that (Y, - V",) > 0 in the uniform metric, which implies convergence 
in the Skorohod metric as well (since the zero function is continuous). The conditions 
of Theorem 2.1 are satisfied and we conclude that 

fS fSU 

Un d Yn > U- d V'. 

Proof of Theorem 3.2. By Minkowski's inequality 

Ei-m[viZ' - Evi z] 113/2 = | (Ei-mVi Vi'k iV+k) 
k=1 ,B/2 

m 
E im V - - ,Vi? i+k 113/2 

k=l 

00 

+ E (Ei -EmVijV,'+ kIp2 + EViv'?kI11,3/2) (A.4) 
k=m 

By McLeish's strong mixing inequality [1 ], Minkowski's inequality, the Rao-Black- 
well theorem, and Holder's inequality 

m 
X IIEi-m ViVI+k -Liv+k? 11 /2 

k=1 

< 6ma2 ||20v2vp+k - Evi V'+k IP,2 

< 6ma 2/0-2/P(||ViV p/2 + LviV,+kllp/2) 

S 12mc" 12"2/| Vi lIP II Vi+k IlP s 12C2m4hm/32/p. (A.5) 

In addition, 

||Ei-m ViV?k 113/2 ? || ViEi V.+k 110/2 

s1 Vi| Ip||Ei Vi+kull3p1(2p,3) ? 6C2ak .2p (A.6) 

Finally, by an a-mixing inequality [5, Corollary A.2], 

||EviV' kII012 s 8ce 2/0-2/p 1|Vi Vt'+X C 8 C20ek2l/-21p (A.7) 

(A.4), (A.5), (A.6), and (A.7) together establish the main result. Finally, 

00 O0co 

z m = 12mam + 14 Z 2k 
m=1 m=1 k=m 

= 26 z ma 21'-11p) < 00, 
m=1 

since a 1/,- 7p is of size -1 by Assumption 1. U 

Proof of Theorem 3.3. For some 6 e (0,1), set N= [1/6], tk = [kn/N] + 1, and 
tk = tk+I - 1,N = [(N- 1)s], and t * = min(t *,[ns]). Then 
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1 [ns] Ns* tsk 
sup Uni ei = sup - Unt et o s-I n j=j O?s1 l nk=-O t=tk 

Ns tsk 1Ns tsk 
< sup - > Unt, > et + sup - i > (Uftl-Utk)e( o?s<, n k=O t=tk Ocss1 l k=O t=tk 

1 N-I tk 1 N-I tk 

U E l Uk I Z e, + - Z | le tk | n k=O t=tk n k=O t=tk 

1 N-1 tk 
< sup I Un(s)t - Z , et 

0?s- I fn k=O 
t=tk 

I n 
+ sup I Un(r)- Un(s)I - Z leil. 

Jr-si?6 n j=1 

Since Un converges in the Skorohod topology, supsl Un(s)l = Op(l), while (1/n) x 
I (ei, = Op( 1) since ei is uniformly integrable. Furthermore, 

IN-i tk N tk 1 bn 

E- X | e, < - sup E ; et < sup E- - ei - 0 
n k=O t=tk n 0-k-N-1 t=tk, tcn 6n j=t 

as n oo, by Andrews [1, Theorem 1]. The proof is completed by noting that 

sup IUn(r) - Un(s) -+ sup IU(r) - U(s)j as n oo, 
ir-si-6 d I r-sV6 

-p 0 as 6-0, 
p 

since U(.) is continuous. U 

Proof of Theorem 4.1. As discussed in the proof of Theorem 3.1, 

[ns] 

Un(S) = Vn(s) = - * Vi B(s) BM(Q). 
v 1n 

The martingale difference approximation (2) allows decomposition (3), which in this 
case is 

ns ps 
f d VdV =f VndYn, +A 

with 

it 1 
A* = i- Zv1z -- Vz,'+1. 

n i=1 n1 

By Theorem 3. 1, fo V, dYn > fos B dB'. It remains to show that A*[,sl= sA. Since the 
limit process is nonrandom, this is equivalent to uniform convergence in probabil- 
ity. It is therefore sufficient to consider the case where Ant is scalar. 

First, observe that 

sup - Vtzt+II ? sup t Suup Izti 0 
t?n n tcn lii -,[fiitn 

since supt1cn |V = ?Op (Vii ) and (I/ ni)suppt, I zt | 0 as in (A3). 
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Second, by Theorem 3.2, the sequence viz' - Eviz' is an L /2-mixingale. Since 
f3> 2, the sequence is therefore a uniformly integrable LI -mixingale. Applying the 
Corollary to Theorem 3.3, we find 

I t 
sup - > (vizi - Evizi) -O0. 
t-n nfl= P 

Finally, observe that 

I [nsn 1 [ I] [ns] 00 

F- viz' = - E vi E E1v,?) - Z E (Vi V+k) - sAn - 
n i=1 n i=1 k=_ n i=l k=1 

Proof of Theorem 4.2. By the continuous mapping theorem, U, = Vn 0j Vn= 
V (? V. Employing the martingale difference approximation (2)-(3) and Theorem 3. 1, 
we obtain 

fS(Vn @ Vn)dYn =f (V V) dV'. 

To analyze the bias term A*t, note that 

Ant = n ((V' t Vi) - (VI-> (0 V-1))Z' + oP(1) 

= 3-/H ((Vi-iD vi) + (vi 0 Vi) + (Vi,( 0Vi))Z + op(l) 

= 3/2 ZE Vi- 0 (viZ ) + n~372 Z (viZ') 0g VKi_ 

it 
+ n 3/2 X (vi 0 vi)zi' + o?(l). (A.8) 

First, 

Esup 372 Z (Vi) vi)z.' < 3/2 Z IVEII DzjII3 0 (A.9) 
t-n n 3/2 

i=13/2 
Zi 3 

-i=1 

as n -* oo by (A.1). Second, set ei = ei= viz' - A, which by Theorem 3.2 satisfies 
the conditions of Theorem 3.3, yielding 

1 [ns] 
sup - Z Vni- I 0 ei p 0 

o-s-i nl i=I, 

and therefore 
[ [nsJ ] [ns] 1 [ns] s 

.3/2 ZV,-l0 ) (vizi) V/2Z 0A+ - VnlI ei B A 
n 

i n 3/2 n~~~~~~~~~l =1J 

(A.10) 

by the continuous mapping theorem. Similarly, 

I [ns] rs 
3/2 (vizi) 0 Vi -I* A 0 B. (A.11) 

(A.8)-(A. 11) combine to yield the result. U 
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Proof of Theorem 4.3. Since V, > V, it follows that U, => V by the continuous 
mapping theorem. Therefore by Theorem 3.1, 

U, d Yl f d V'. 

Additionally, A* [nsj 0 0 since 

[ns] 
sup = n2 sup n 2 iZ+ I + op(l) 

n n 
< n -2 E j 

Viz'iZ I III + op (1) C :-2 n Vi |2 |Z' 112 + op(1) 
i=l i=l 

0 asn-oo. U 

Proof of Theorem 4.4 

i[nis l// ns] - k\ 
(a) Un[ nsI= exp-( )Ghv4+ op (l) 

-Jh k=O \\ fn / 

ex(- ~ G exP(- )G) (Ek Zk-l + Zk) + op(l). 

Note that 

ext(n 
)G 

n)E ke P(n) 

rs rS 
> exp(-sG) exp(X G) dB(X)' = f exp((s-X) G) dB(X)' = UG(s) 

by Theorem 3.1. In additon, standard manipulations can show that 

1 [ns] k 

k=O \\fl)/ 

establishing the result. 

(b) By Theorem 3. 1, fJ Un dYn fo J UG d V. In addition, 

1 [ns] 
An*(S) =- Z AXnizi + Op(l) 

n j=i 

1 [nrs] G G\ ns 
- X v,zi + [exp(_ G)-I , Xni-lZi ex o-fp(l) =* sA 

as shown in the proof of Theorem 4.1. (Note that the op (1) terms hold uniformly in 

sE [0,1].) U 
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