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SHRINKAGE EFFICIENCY BOUNDS

BRUCE E. HANSEN
University of Wisconsin

This paper is an extension of Magnus (2002, Econometrics Journal 5, 225–236) to
multiple dimensions. We consider estimation of a multivariate normal mean under
sum of squared error loss. We construct the efficiency bound (the lowest achievable
risk) for minimax shrinkage estimation in the class of minimax orthogonally invari-
ate estimators satisfying the sufficient conditions of Efron and Morris (1976, Annals
of Statistics 4, 11–21). This allows us to compare the regret of existing orthogonally
invariate shrinkage estimators. We also construct a new shrinkage estimator which
achieves substantially lower maximum regret than existing estimators.

1. INTRODUCTION

Let X ∈ Rp be a single observation from a multivariate normal distribution
with unknown mean vector θ ∈ Rp and known covariance matrix Ip, that is,
X ∼ N(θ,Ip). The goal is to estimate θ . Consider the class of orthogonally in-
variate estimators which shrink X toward the zero vector and can be written as

δφ(X) =
(

1− φ(‖X‖2)

‖X‖2

)
X, (1)

where φ : [0,∞) → [0,∞). Under quadratic loss, the risk of the estimator (1) is

Rp(ψ,δφ) = E
∥∥δφ(X)− θ

∥∥2
, (2)

where ψ = ‖θ‖2. We write the risk as a function of the scalar ψ as it is well known
(e.g., equation (3)) that the risk only depends on θ through ψ and p.

For any given estimator δφ(X) its maximum risk is R∗
p

(
δφ

) = supψ Rp
(
ψ,δφ

)
.

The maximum risk of the usual estimator δφ(X) = X is R∗
p (X) = p and is

the minimax bound (e.g., Proposition 8.6 of van der Vaart, 1998), meaning that
R∗

p

(
δφ

) ≥ p for all estimators δφ(X). An estimator such that R∗
p

(
δφ

) = p is called
minimax. When p > 2 the usual estimator X is no longer the unique minimax es-
timator. Sufficient conditions on φ for the estimator (1) to be minimax have been
developed by Baranchik (1970), Strawderman (1971), Alam (1973), Stein (1973,
1981), Berger (1976a, 1976b), Efron and Morris (1976), Faith (1978), DasGupta
and Strawderman (1997), and Fourdrinier, Strawderman, and Wells (1998).
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Many minimax estimators in the class (1) have been proposed. The most fa-
mous are the James–Stein estimator (James and Stein, 1961) and its positive-
part version (Baranchik, 1964). Others include those of Strawderman (1971),
Alam (1973), Berger (1976a), Li and Kuo (1982), Kubokawa (1991), Guo and
Pal (1992), Shao and Strawderman (1994), Maruyama (1998, 2004, 2007), and
Kuriki and Takemura (2000). It is difficult, however, to rank these estimators. For
example, the only estimator known to dominate the positive-part estimator is that
of Shao and Strawderman (1994).

While the risk of the estimator class (1) has been widely studied, there has been
no investigation of efficiency bounds (the lowest possible risk) with the exception
of Magnus (2002) who only considers the case p = 1, and thereby could not
investigate minimax estimators. Our paper provides a sharp efficiency bound for
p ≥ 3, by taking the infimum of the risk Rp

(
ψ,δφ

)
across the class of minimax

estimators defined by the sufficient conditions of Efron and Morris (1976).
Given the efficiency bound, we define and evaluate the regret and maximum

regret (MaxRegret) of common minimax shrinkage estimators. The regret of an
estimator is the difference between its risk and the efficiency bound, and the
MaxRegret is the maximum of the regret across the parameter space. For each es-
timator, we select its shrinkage parameter(s) to minimize the MaxRegret, a choice
which can greatly improve estimator efficiency. We can also construct the small-
est possible MaxRegret across the space of minimax shrinkage estimators, and we
find that this value is substantially smaller than the MaxRegret of existing shrink-
age estimators. Finally, we construct a new simple shrinkage estimator which has
substantially smaller MaxRegret than existing shrinkage estimators.

In recent years, a new class of shrinkage estimators has been developed around
the concept of the Lasso introduced by Tibshirani (1996). Both the Lasso and
the estimator class (1) shrink unrestricted estimates toward zero, but with quite
different effects. The orthogonally invariant estimators (1) shrink all estimates
proportionately, while Lasso estimates shrink coefficients individually. Conse-
quently, Lasso estimates can work much better in sparse settings, while the esti-
mator class (1) can work much better when coefficients are of similar magnitude.
Lasso-type estimators have received considerable attention in the recent statistics
literature and have started to become quite popular in the econometrics litera-
ture as well. See, for example, Caner (2009), Belloni and Chernozhukov (2011),
Belloni, Chen, Chernozhukov, and Hansen (2012), Belloni, Chernozhukov, and
Fernandez-Val (2013), Liao (2013), Belloni, Chernozhukov, and Hansen (2014),
and Liao and Phillips (2014).

Gauss code for the numerical work is available on the author’s webpage
http://www.ssc.wisc.edu/˜bhansen/.

2. RISK

We start with a simple yet insightful new representation for the risk (2).

THEOREM 1. If φ is Borel measurable,

Rp(ψ,δφ) = R0
p (ψ)+ Dp (ψ,φ), (3)
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where

R0
p (ψ) = p −

∫ ∞

0
φ∗

p (q,ψ)2 q−1 fp (q,ψ)dq,

Dp (ψ,φ) =
∫ ∞

0

(
φ(q)−φ∗

p(q,ψ)
)2

q−1 fp (q,ψ)dq, (4)

φ∗
p(q,ψ) = q −ψ

fp+2 (q,ψ)

fp (q,ψ)
, (5)

and fk (q,ψ) is the density of χ2
k (ψ), a noncentral chi-square random variable

with k degrees of freedom and noncentrality parameter ψ .

Proof. For any φ,

∥∥δφ (X)− θ
∥∥2 = ‖X − θ‖2 + φ2(‖X‖2)

‖X‖2
−2φ(‖X‖2)+2θ ′ X φ(‖X‖2)

‖X‖2
. (6)

Taking expectations of (6), using the fact that for any function g(q),
E(Xg(‖X‖2)) = θE(g(χ2

p+2(ψ))), (see, for example, Bock, 1975, Thm. A), we
obtain

Rp
(
ψ,δφ

) = p +
∫ ∞

0

(
φ2 (q)−2qφ (q)

)
q−1 fp (q,ψ)dq (7)

+2ψ

∫ ∞

0
φ (q)q−1 fp+2 (q,ψ)dq.

Using definition (5) and completing the square, this equals

p +
∫ ∞

0

(
φ2 (q)−2φ (q)φ∗

p (q,ψ)
)

q−1 fp (q,ψ)dq

= p −
∫ ∞

0
φ∗

p (q,ψ)2 q−1 fp (q,ψ)dq

+
∫ ∞

0

(
φ(q)−φ∗

p (q,ψ)
)2

q−1 fp (q,ψ)dq

= R0
p (ψ)+ Dp (ψ,φ) . n

Theorem 1 decomposes the risk into two components: R0
p(ψ) which depends

only on p and ψ , and Dp(ψ,φ), which can be written as a weighted distance
between φ and φ∗

p. We now describe some critical features of the related function
h∗

p(q,ψ) = φ∗
p(q,ψ)/q.

LEMMA 1. h∗
p(q,ψ) = φ∗

p(q,ψ)/q is continuous and monotonically increas-
ing in q ≥ 0, h∗

p (0,ψ) = 1−ψ/p, and limq→∞ h∗
p (q,ψ) = 1.
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See the Appendix for the proof.
On a side note, one useful implication of Theorem 1 and Lemma 1 is a simple

proof that positive-part trimming always reduces risk. Suppose that we have an
estimator δφ where φ(q) > q for some q > 0. Then define a positive-part version
φ+ = min(φ(q),q) and estimator δ+

φ = δφ+ .

LEMMA 2. If P(φ(‖X‖2) > ‖X‖2) > 0, then Rp(ψ,δ+
φ ) < Rp(ψ,δφ).

Proof. Lemma 1 shows that h∗(q,ψ) ≤ 1 so φ∗(q,ψ) ≤ q. It follows that on the
set Q = {q : φ(q) > q}, (φ(q)−φ∗(q,ψ))2 > (φ+(q)−φ∗(q,ψ))2. Examining
(4), we see that Dp(ψ,φ) > Dp(ψ,φ∗), and the inequality is strict since P(Q) > 0
by assumption. From (3) we find Rp(ψ,δ+

φ ) < Rp(ψ,δφ) as required. n

Contrast Lemma 2 with Theorem 5.4 of Lehmann and Casella (1998) which
provides the same inequality under the additional restriction that h(q) = φ(q)/q
is strictly decreasing in q. Lemma 2 shows that this restriction is unnecessary.

3. EFFICIENCY BOUNDS

An efficiency bound is the infimum of Rp
(
ψ,δφ

)
across φ in some function class.

We focus on minimax estimators and thus restrict attention for the remainder of
the paper to p ≥ 3. Efron and Morris (1976, Thm. 3) established that the estimator
(1) is minimax if

0 ≤ φ(q) ≤ 2(p −2) for all q ≥ 0, (8)

if for all q with φ(q) < 2(p −2), then

ζ(q) = q(p−2)/2φ(q)

2(p −2)−φ(q)
(9)

is nondecreasing, and if q∗ exists such that φ(q∗) = 2(p −2), then

φ(q) = 2(p −2) for all q ≥ q∗. (10)

Conditions (8)–(10) are broader than those of Baranchik (1970), Strawderman
(1971), and Alam (1973). Notice that condition (9) is satisfied if φ(q) is non-
decreasing, but (9) is broader and allows φ(q) to be nonmonotonic. Conditions
(8)–(10) appear to be close to necessary for minimaxity, as to my knowledge
there is no known minimax estimator which does not satisfy (8)–(10). Further-
more, Efron and Morris (1976, Thm. 2) established that (8)–(10) are necessary
for minimaxity assuming that the function φ(q) is absolutely continuous and that
the Stein unbiased estimator of risk exists. Consequently, we will restrict atten-
tion to estimators which satisfy (8)–(10). This is a slight restriction on the class
of minimax estimators, but a restriction which does not appear to be particularly
important.
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Let � be the set of functions satisfying (8)–(10). The efficiency bound for
shrinkage estimators in the class � is the infimum of Rp

(
ψ,δφ

)
across φ ∈ �:

Rp(ψ) = inf
φ∈�

Rp
(
ψ,δφ

)
. (11)

From decomposition (3) we see that minimizing Dp (ψ,φ) is equivalent to min-
imizing Rp

(
ψ,δφ

)
. As the former is a weighted average of the squared distance

between φ(q) and φ∗
p (q,ψ), it is minimized by setting φ(q) as close as possible

to φ∗
p (q,ψ). Suppose for the moment that we only impose condition (8). In this

case the minimizer of Rp
(
ψ,δφ

)
is the truncated function

φ∗∗
p (q,ψ) = φ∗

p(q,ψ)I
(

0 ≤ φ∗
p (q,ψ) ≤ 2(p −2)

)
+2(p −2)I

(
φ∗

p(q,ψ) > 2(p −2)
)
.

Since the function h∗
p(q,ψ) is continuous in q (Lemma 1), then so are φ∗

p(q,ψ)
and φ∗∗

p (q,ψ). Furthermore, since h∗
p(q,ψ) is monotonically increasing in q

(Lemma 1), then φ∗∗
p (q,ψ) is monotonically increasing in q on the set

φ∗∗
p (q,ψ) ≥ 0. It follows that φ∗∗

p (q,ψ) is continuous and nondecreasing in
q ≥ 0, and therefore satisfies conditions (9) and (10) in addition to (8). It fol-
lows that φ∗∗

p (q,ψ) is the minimizer of Rp
(
ψ,δφ

)
over φ ∈ �, and thus (1) with

φ(q) = φ∗∗
p (q,ψ) is the pointwise (in ψ) optimal minimax estimator for θ .

From (3) we see that the minimized value (the efficiency bound) is

Rp(ψ) = R0
p(ψ)+ Dp(ψ,φ∗∗

p ).

Our main result gives a simplified expression for the efficiency bound.

THEOREM 2. For p ≥ 3, the efficiency bound for estimation of θ by (1) with
φ ∈ � is

Rp(ψ) = p −8(p −2) fp (q2(ψ),ψ)

−
∫ q2(ψ)

q1(ψ)
φ∗

p (q,ψ)2 q−1 fp (q,ψ)dq, (12)

where q1(ψ) is the smallest q ≥ 0 such that h∗
p(q,ψ) ≥ 0 and q2(ψ) is the unique

q > 0 where φ∗
p(q,ψ) = 2(p −2).

See the Appendix for the proof.
While the efficiency bound is the lower envelope of the risk functions of all

minimax shrinkage estimators satisfying (8)–(10), there is no single estimator
whose risk function equals the efficiency bound.

We display1 the bound Rp(ψ) for p = 3 and p = 6 in Figure 1. For reference
we also plot the risk of the James–Stein estimator δ J S , Kubokawa’s estimator δK ,
Baranchik’s positive-part estimator δB , and a new estimator δT L which will be in-
troduced in Section 6. Observe that the efficiency bound Rp(ψ) is monotonically
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FIGURE 1. Risk and efficiency bounds.
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increasing in ψ , asymptotes toward the minimax bound p, and is strictly less than
the risk of any of the individual estimators displayed. We also see the well known
properties that Baranchik’s estimator uniformly dominates the James–Stein esti-
mator, that Kubokawa’s estimator uniformly dominates the James–Stein estimator
everywhere except at ψ = 0 (where their risks equal), and that neither Baranchik’s
nor Kubokawa’s estimator uniformly dominates the other. Plots for other values
of p are ualitatively similar.

4. REGRET

The regret of an estimator δφ(X) is the difference between its risk and the effi-
ciency bound:

Regretp(ψ,δφ) = Rp(ψ,δφ)− Rp(ψ).

The regret is the cost due to the use of the estimator δφ instead of the infeasible
pointwise optimal estimator and varies with ψ . For illustration, Figure 2 plots the
Regret functions of the four estimators from Figure 1 for p = 3 and p = 6.

One measure of the uniform performance of an estimator is the MaxRegret—
the maximum of the regret function over ψ :

MaxRegretp

(
δφ

) = sup
ψ≥0

Regretp

(
ψ,δφ

)
.

An estimator with low MaxRegret has the desirable property that its risk is
uniformly close to the infeasible efficiency bound. As the MaxRegret is free of
unknowns it can be (numerically) calculated and used to compare and rank esti-
mators.

We will now compare the MaxRegret of eleven minimax shrinkage estimators.
For each, we give the shrinkage function φ and the known parameter restrictions
which are sufficient for minimaxity.

1. James and Stein (1961)

φ J S(q) = p −2

2. Baranchik (1964)

φB(q) = min(q, p −2)

3. Li and Kuo (1982)

φL K (q) = p −2− c1q−α1/2,

where

c1 = α12α1/2 
(p/2− (1+α1/2))


(p/2− (1+α1))

with 0 < α1 < p/2−1.
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FIGURE 2. Regret.
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4. Guo and Pal (1992)

φG P (q) = p −2−
n∑

j=1

cj q
−αj /2

with 0 < α1 < · · · < αn < p/2−1. Guo and Pal (1992) give explicit expres-
sions for the constants cj .

5. Shao and Strawderman (1994)

φSS(q) = min(q, p −2)+ag(|q|),
where

g(t) =
⎧⎨
⎩

2τ −1+ t, 0 ≤ t ≤ τ
t −1, τ < t ≤ 1

0, 1 < t < ∞.

Values for a and τ such that δSS dominates δB are given in Shao and Straw-
derman (1994, Table 1).

6. Kuriki and Takemura (2000)

φK T (q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p −2− r

q1/2 − r
, if q ≥

(
p −1

p −2

)2

r2

0, if q <

(
p −1

p −2

)2

r2

with r ≥ 0.
7. Strawderman (1971), Alam (1973), Kubokawa (1991), and Maruyama

(1998, 2004)

φM (q) = q
B(b +1, p/2−a +2)1 F1 (b +1; p/2−a +b +3; q/2)+β

B(b +1, p/2−a +1)1 F1 (b +1; p/2−a +b +2; q/2)+β
,

where B(a,b) = 
(a)
(b)/
(a +b) is the beta function and 1 F1(a,b, x) is
the confluent hypergeometric function, with

3− p/2 ≤ a ≤ 1+ p/2,

b ≥ − a + p/2−3

3p/2+1−a
,

and

0 ≤ β ≤ B(p/2−a +1,b −a + p/2+2)

×
(

−1+
√

1+ D(a,b)(p/2−a +1)(b +1)

(b −a + p/2+2)(b −a + p/2+3)

)
,
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where

D(a,b) =

⎧⎪⎨
⎪⎩

a + p/2−3, if b ≥ 0

b(3p/2+1−a)+ (a + p/2−3)

b +1
, if b < 0.

Unrestricted, this is a shrinkage function due to Maruyama (2004). The oth-
ers are special cases, and all set β = 0. Maruyama (1998) leaves a and b free.
Kubokawa (1991) sets a = 2 and b = 0. Strawderman (1971) sets b = 0 and
leaves a free. Alam (1973) sets b = ν −1 and a = ν +1 and leaves ν free.

For the estimators which depend on parameters (all of those described above
except those of James and Stein, 1961; Baranchik, 1964; and Kubokawa, 1991),
we select the estimator’s parameters to minimize the MaxRegret, searching
among the set of parameters satisfying the minimax condition. The minimizing
parameter values are given in Table 1 for p = 3, . . . ,10. By using these parameter
values, we obtain the smallest possible MaxRegret for each estimator.

MaxRegretp for the eleven estimators is reported in Table 2, with the estima-
tors listed in rough order of descending MaxRegret. We can see that the least
efficient estimators are those of James–Stein and Kubokawa. While Kubokawa’s
estimator weakly dominates the James–Stein estimator, the two estimators have
equal MaxRegret since both regret functions are maximized at ψ = 0 where they
have equal risk. Based on the MaxRegret criteria, the estimators of Li and Kuo
(1982), Guo and Pal (1992), Alam (1973), and Kuriki and Takemura (2000) are
less efficient than the simple positive-part estimator of Baranchik (1964). The im-
provement of the Shao–Strawderman estimator over Baranchik’s is quantitatively
negligible. More substantial reductions in MaxRegret relative to Baranchik’s es-
timator are obtained by the estimators of Strawderman (1971) and Maruyama
(1998, 2004), but these three estimators are essentially equivalent. Since the
Strawderman estimator includes Kubokawa’s as a special case, we can see the
importance of optimal parameter selection. For example, for p = 3, Kubokawa’s

TABLE 1. Minimizing MaxRegret parameters for shrinkage estimators

Estimator Parameter p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

Strawderman (1971) a 1.50 1.09 0.95 0.86 0.79 0.74 0.69 0.66
Alam (1973) ν 0.93 0.89 0.87 0.85 0.84 0.83 0.82 0.81
Li and Kuo (1982) a1 0.38 0.74 1.09 1.41 1.72 2.00 2.27 2.52
Guo and Pal (1992) a1 0.38 0.75 1.11 1.44 1.75 2.04 2.32 2.58

a2 0.48 0.96 1.44 1.91 2.37 2.83 3.29 3.73
Kuriki and Takemura (2000) r 0.08 0.27 0.50 0.72 0.93 1.06 1.12 1.14
Maruyama (1998) a 1.50 1.10 1.04 1.02 1.02 1.04 1.06 1.05

b 0.00 −0.01 −0.07 −0.11 −0.14 −0.17 −0.19 −0.19
Maruyama (2004) a 1.50 1.10 0.98 0.95 0.99 0.98 1.02 1.01

b 0.00 −0.01 0.00 −0.04 −0.11 −0.12 −0.16 −0.16
β 0.000 0.000 0.015 0.015 0.009 0.012 0.008 0.010
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TABLE 2. MaxRegret

Estimator p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

James and Stein (1961) 1.113 1.459 1.637 1.744 1.814 1.861 1.895 1.920
Kubokawa (1991) 1.113 1.459 1.637 1.744 1.814 1.861 1.895 1.920
Li and Kuo (1982) 1.026 1.299 1.418 1.479 1.511 1.528 1.537 1.540
Guo and Pal (1992) 1.026 1.298 1.416 1.476 1.507 1.523 1.531 1.533
Alam (1973) 0.973 1.239 1.377 1.444 1.494 1.521 1.535 1.540
Kuriki and Takemura (2000) 0.795 1.104 1.278 1.379 1.437 1.485 1.548 1.624
Baranchik (1964) 0.716 0.930 1.037 1.097 1.133 1.156 1.170 1.178
Shao and Strawderman (1994) 0.715 0.930 1.037 1.097 1.133 1.156 1.170 1.178
Strawderman (1971) 0.501 0.609 0.772 0.886 0.969 1.032 1.082 1.121
Maruyama (1998) 0.501 0.609 0.768 0.878 0.957 1.017 1.062 1.100
Maruyama (2004) 0.501 0.609 0.768 0.878 0.957 1.016 1.062 1.098
Trimmed Linear shrinkage 0.308 0.483 0.614 0.714 0.790 0.852 0.903 0.945
MinRegret 0.297 0.476 0.600 0.693 0.765 0.824 0.873 0.907

estimator (a = 2) has MaxRegretp = 1.113 while with the optimal choice of
a = 1.5 then MaxRegretp = 0.501.

5. MINIMUM MAXREGRET

In the previous section we calculated the MaxRegret for a number of minimax
shrinkage estimators. While the lowest MaxRegret was achieved by the estimator
of Maruyama (2004), we might wonder if further substantive reductions are pos-
sible. To answer this question we define the smallest possible MaxRegret among
minimax shrinkage estimators satisfying (8)–(10):

MinRegretp = inf
φ∈�

MaxRegretp(δφ). (13)

This is the lower bound for the MaxRegret among minimax shrinkage estimators
satisfying (8)–(10).

While a closed form expression for the MinRegret is not available, we can
numerically approximate its value by minimizing the MaxRegret over a dense
class of approximating shrinkage functions. It turns out to be convenient to use
the class of continuous linear splines. We also tried the class of quadratic splines,
but found no quantitative improvement.

For some positive integer N and knots 0 = τ0 < τ1 < τ2 < · · · < τN < ∞, let
θ = {a1,b1, . . . ,aN ,bN ,c} denote a set of parameters. Our spline function takes
the form

φθ (q) =
N∑

n=1

(an +bnq)I (τn−1 ≤ q ≤ τn)+ cI(q > τN ) (14)

subject to the continuity constraints
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a1 = 0 (15)

an +bnτn = an+1 +bn+1τn for 1 ≤ n ≤ N −1 (16)

aN +bN τN = c. (17)

By picking N and τN sufficiently large, the class (14) can approximate any func-
tion in � (see, for example, Chapter 3 of de Boor, 2000).

Let δθ = δφθ . To calculate the risk of this estimator, we recall the well known
result (e.g., Maruyama, 2004, eqn. (4.1)) that the risk of δφ for any absolutely
continuous φ is

Rp (ψ,δh) = p +
∫ ∞

0

(
q−1φ(q)(φ(q)−2(p −2))−4φ′(q)

)
fp(q,ψ)dq.

Applying this formula to the continuous linear spline (14), it is straightforward to
calculate the risk of δθ .

LEMMA 3. The risk of the estimator (1) with the shrinkage function (14)–
(17) is

Rp(ψ,δθ ) = p +
N∑

n=1

{
an (an −2(p −2))

∫ τn

τn−1

q−1 fp (q,ψ)dq

+2bn(an − p)

∫ τn

τn−1

fp (q,ψ)dq +b2
n

∫ τn

τn−1

q fp (q,ψ)dq

}

− c (2(p −2)− c)
∫ ∞

τN

q−1 fp(q,ψ)dq.

For numerical computation it is convenient to write the integrals in the above
expression as convergent infinite sums. Using the infinite series definition of the
noncentral chi-square (see equation (A.1) in the Appendix) and integrating term-
by-term, it is straightforward to obtain the following result.

LEMMA 4. For s > −p/2,

∫ τ

0
qs fp (q,ψ)dq = e−ψ/22s

∞∑
j=0

(ψ/2) j

j!

γ
(

s + p

2
+ j,

τ

2

)



( p

2
+ j

) ,

where γ (x,a) = ∫ a
0 e−qqx−1dq is the incomplete gamma function.

Combining Lemmas 3 and 4, we find that Rp(ψ,δθ ) is computationally simple
to evaluate even when N is large. For φθ to lie in � it must satisfy (8) and (9),
which is equivalent to the following conditions on the parameters in (14). For
n = 1, . . . , N ,

2(p −2)an −a2
n +2bn(p −an)τn−1 −b2

nτ 2
n−1 ≥ 0 (18)

2(p −2)an −a2
n +2bn(p −an)τn −b2

nτ 2
n ≥ 0 (19)

0 ≤ an +bnτn ≤ 2(p −2). (20)
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Let �N be the set of parameters θ which satisfy (15)–(17) and (18)–(20). The
smallest MaxRegret among all minimax shrinkage estimators using the spline
function (14) is then

MinRegretN
p = inf

θ∈�N
sup
ψ≥0

(
Rp(ψ,δθ )− Rp(ψ)

)
.

Since the class of functions (14) is dense in the class �, MinRegretN
p is a good

approximation to MinRegretp when N and τN are large.

Setting N = 50 and τN = 30p, we numerically calculated MinRegretN
p by

searching over θ using a constrained Broyden-Ftetcher-Goldfarb-Shanno (BFGS)
algorithm. The result is printed in the bottom row of Table 2. We find that Min-
Regret is indeed substantially smaller than the MaxRegret of the estimators thus
far considered, especially for small p. For example, for p = 3, the estimators of
Strawderman (1971) and Maruyama (1998, 2004) achieve a MaxRegret of 0.501,
while the MinRegret is 41% lower at 0.297. While the 50-knot linear spline φθ

just introduced could be used for a shrinkage estimator, this is an inelegant choice
and thus not recommended. Instead, in the next section we recommend a simple
approximation which achieves near-equivalent efficiency.

6. TRIMMED LINEAR SHRINKAGE

In this section, we introduce a simple shrinkage function and estimator which
is nearly equivalent to the 50-knot MinRegret estimator of the previous section,
and is recommended for practical application. For parameters a and b satisfying
0 ≤ a ≤ 2(p −2) and 0 ≤ b ≤ 1, let

φT L(q) = min[q,a +bq,2(p −2)].

This function is a special case of (14) with N = 2, a1 = 0, b1 = 1, a2 = a, b2 = b,
τ1 = a/(1−b), τ2 = (c −a)/b, and c = 2(p −2), and its risk is given in Lemma
3. It may be also convenient to observe that the estimator can be written as

δT L(X) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, ‖X‖2 ≤ τ1(
1−b − a

‖X‖2

)
X, τ1 < ‖X‖2 ≤ τ2(

1− 2(p −2)

‖X‖2

)
X, ‖X‖2 > τ2.

By construction, φT L(q) satisfies the minimax conditions (8)–(10), so the
estimator δT L = δφT L is minimax for all parameter values.

We selected the parameters a and b to minimize the estimator’s MaxRegret and
report the optimal parameter values in Table 3 for p = 3, . . . ,25. The MaxRegret
of the estimator δT L = δφT L is reported in Table 2 in the second line from the
bottom. The Risk and Regret functions for the estimator are displayed in Figures 1
and 2, respectively.
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In Table 2, we see that the MaxRegret of the estimator δT L is nearly equivalent
to the MinRegret lower bound and is substantially lower than that of the exist-
ing shrinkage estimators. In Figures 1 and 2, we see that the risk and regret of
δT L are uniformly smaller than the regret of the other estimators shown for the
range of ψ displayed, and that for some values of ψ the difference is substan-
tial. It is not the case, however, that δT L uniformly dominates these estimators
for all ψ . For example, the risk of δB is lower than that of δT L for ψ ≥ 21.6 for
p = 3 and ψ ≥ 43.2 for p = 6. But these are extremely large values of ψ where
the risk functions are extremely close to one another. Our interpretation is that
for practical purposes δT L has substantially lower risk than δB and δK for most
values of ψ .

Based on this analysis, for practical applications we recommend the estimator
δT L with the parameter values from Table 3.

As a final comparison of the shrinkage estimators, in Figure 3 we display
the Kubokawa, Baranchik, Strawderman, and Trimmed Linear shrinkage func-
tions φK , φB , φS , and φT L , (using the optimal parameters) for p = 3 and
p = 6.

TABLE 3. Trimmed Linear shrinkage parameters

a b τ1 τ2

p = 3 1.315 0.038 1.36 18
p = 4 2.356 0.056 2.50 29
p = 5 3.315 0.061 3.52 44
p = 6 4.245 0.060 4.52 62
p = 7 5.170 0.058 5.49 83
p = 8 6.091 0.055 6.44 108
p = 9 7.010 0.052 7.39 135
p = 10 7.927 0.049 8.33 166
p = 11 8.844 0.046 9.27 199
p = 12 9.760 0.044 10.2 235
p = 13 10.677 0.041 11.1 274
p = 14 11.594 0.039 12.1 315
p = 15 12.518 0.037 13.0 360
p = 16 13.486 0.036 14.0 406
p = 17 14.447 0.034 15.0 455
p = 18 15.475 0.033 16.0 507
p = 19 16.496 0.031 17.0 562
p = 20 17.502 0.030 18.0 620
p = 21 18.470 0.029 19.0 681
p = 22 19.503 0.028 20.1 744
p = 23 20.492 0.027 21.1 811
p = 24 21.574 0.025 22.1 886
p = 25 22.667 0.024 23.2 964
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FIGURE 3. Shrinkage functions.
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7. CONCLUSION

This paper investigates orthogonally invariant shrinkage in the exact multivari-
ate normal context. We develop a new efficiency bound for minimax shrinkage
estimators and show how to rank existing shrinkage estimators using maximum
regret. We use the maximum regret concept to motivate a new shrinkage estima-
tor with better performance than the existing estimators. The gains are greatest
in low-dimensional contexts which may be relevant for parametric econometric
applications.

While our results are strictly for the exact multivariate normal context, they
should apply asymptotically to any asymptotically normal estimator, as shown by
Hansen (2014).

NOTE

1. For details on this and other numerical calculations see the Numerical Appendix.
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APPENDIX

Proof of Lemma 1. The density of the noncentral chi-square can be written as

fk (q,ψ) = e−(q+ψ)/22−k/2qk/2−1
∞∑

j=0

(
ψq

4

) j

j!


(
k

2
+ j

) . (A.1)
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We can thus write h∗
p(q,ψ) = 1− (ψ/2)g(ψq/4) where

g(x) =

∞∑
j=0

aj x j

∞∑
j=0

bj x j
,

aj = 1/( j!
(1+ p/2+ j)) , and bj = 1/( j!
(p/2+ j)). Since aj /bj is monotonically
decreasing in j , then as discussed by Lehmann and Romano (2005, p. 308), g(x) is mono-
tonically decreasing in x , so h∗

p(q,ψ) is monotonically increasing in q. It is also easy to
see that g(0) = a0/b0 = 2/p so h∗(0,ψ) = 1−ψ/p.

An alternative expression for the noncentral chi-square density is

fk (q,ψ) = 1

2
e−(q+ψ)/2

(
q

ψ

)k/4−1/2
Ik/2−1

(√
qψ

)
,

where Im(x) is the modified Bessel function. Thus we can write

h∗
p(q,ψ) = 1−ψ

fp+2 (q,ψ)

q fp (q,ψ)

= 1−
√

ψ

q

Ip/2
(√

qψ
)

Ip/2−1
(√

qψ
) .

The Bessel function satisfies the large-argument expansion (see Magnus, Oberhettinger,
and Soni, 1966, p. 139)

Iα(x) ∼ (2πx)−1/2 ex
(

1+ O
(

x−1
))

,

implying Ip/2(x)/Ip/2−1(x) = 1+ O(x−1) and thus h∗
p (q,ψ) → 1 as q → ∞. n

Proof of Theorem 2. To simplify notation we omit the ψ argument from the functions
and write φ∗

p(q) = φ∗(q,ψ), q1 = q1(ψ), q2 = q2(ψ), fp(q) = fp(q,ψ), and so on.
It is convenient to observe that we can write

φ∗∗
p (q) =

⎧⎨
⎩

0, q < q1
φ∗

p(q), q1 ≤ q ≤ q2
2(p −2), q > q2.

The minimized risk is

Rp(ψ) = R0
p (ψ)+ Dp(ψ,φ∗∗

p )

= p −
∫ ∞

0
φ∗

p(q)2q−1 fp(q)dq +
∫ ∞

0

(
φ∗∗

p (q)−φ∗
p(q)

)2
q−1 fp(q)dq

= p −
∫ ∞

q1

φ∗
p(q)2q−1 fp(q)dq

+
∫ ∞

q2

(
2(p −2)−φ∗

p(q)
)2

q−1 fp(q)dq
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= p −
∫ q2

q1

φ∗
p(q)2q−1 fp(q)dq +4(p −2)2

∫ ∞
q2

q−1 fp(q)dq

−4(p −2)

∫ ∞
q2

φ∗
p(q)q−1 fp(q)dq

= p −
∫ q2

q1

φ∗
p(q)2q−1 fp(q)dq

+4(p −2)

(
(p −2)

∫ ∞
q2

q−1 fp(q)dq +ψ

∫ ∞
q2

q−1 fp+2(q)dq −
∫ ∞

q2

fp(q)dq

)
.

Using (A.1), it is straightforward to check that

d

dq
fp(q,ψ) = −1

2
fp(q,ψ)+

(
p −2

2

)
q−1 fp(q,ψ)+ ψ

2
q−1 fp+2(q,ψ).

Integrating from q2 to ∞ and multiplying by 2, it follows that

(p −2)

∫ ∞
q2

q−1 fp(q)dq +ψ

∫ ∞
q2

q−1 fp+2(q)dq −
∫ ∞

q2

fp(q)dq = −2 fp(q2,ψ).

Substituting, we obtain

Rp(ψ) = p −
∫ q2

q1

φ∗
p(q)2q−1 fp(q,ψ)dq −8(p −2) fp(q2,ψ)

as stated. n

NUMERICAL APPENDIX

The risk of the estimators of James and Stein (1961), Baranchik (1964), Li and Kuo (1982),
Guo and Pal (1992) and Shao and Strawderman (1994), and the Trimmed Linear estimator
of Section 6 can be expressed as linear functions of moments of the χ2

k (ψ) distribution,
and the latter can be written as convergent series using Lemma 4. For example,

Rp

(
ψ,δ J S

)
= p − (p −2)2

∫ ∞
0

q−1 fp(q,ψ)dq

= p − (p −2)2e−ψ/22−1
∞∑

j=0

(ψ/2) j

j!



( p

2
−1+ j

)



( p

2
+ j

) .

To numerically calculate their risk, we used these formulas, truncating the series upon
convergence. For the James–Stein estimator an alternative method would have been to use
the moment expressions deduced from the finite-sample density derived by Phillips (1984).

The risk of the remaining estimators is not available in closed form. In these cases we
computed the risk by numerical integration using expression (7). The integral was approx-
imated using 20,000 equally spaced grid points between 0 and an upper bound set to ex-
ceed the 99.99% quantile of the χ2

p+2(ψ) distribution. Similarly, to compute the efficiency
bound Rp(ψ) the integral in (12) was calculated numerically using 20,000 equally spaced
grid points between q1(ψ) and q2(ψ).
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The MaxRegret of the estimators was approximated by taking the maximum of the Re-
gret computed for each ψ on a grid of 2,000 equally spaced values between 0 and 20p. (For
δT L we used a 4,000 grid points up to 40p as the Regret function is much flatter in ψ .)
The optimal parameters reported in Table 1 were calculated by minimizing the MaxRegret
over a grid of values. The resolution of the grid is indicated by the number of reported
digits. The parameters reported in Table 3 for the Trimmed Linear estimator were obtained
by minimizing the MaxRegret using a constrained BFGS algorithm.


