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AVERAGING ESTIMATORS FOR
REGRESSIONS WITH A POSSIBLE

STRUCTURAL BREAK

BRUCE E. HANSEN
University of Wisconsin

This paper investigates selection and averaging of linear regressions with a possible
structural break. Our main contribution is the construction of a Mallows criterion
for the structural break model. We show that the correct penalty term is nonstandard
and depends on unknown parameters, but it can be approximated by an average of
limiting cases to yield a feasible penalty with good performance. Following Hansen
(2007, Econometrica 75, 1175–1189) we recommend averaging the structural break
estimates with the no-break estimates where the weight is selected to minimize the
Mallows criterion. This estimator is simple to compute, as the weights are a simple
function of the ratio of the penalty to the Andrews SupF test statistic.

To assess performance we focus on asymptotic mean-squared error (AMSE) in a
local asymptotic framework. We show that the AMSE of the estimators depends ex-
clusively on the parameter variation function. Numerical comparisons show that the
unrestricted least-squares and pretest estimators have very large AMSE for certain
regions of the parameter space, whereas our averaging estimator has AMSE close to
the infeasible optimum.

1. INTRODUCTION

Structural change is an important issue in time series econometrics. Applied
economists routinely test their models for the presence of structural change, typ-
ically using the Andrews (1993) and Andrews and Ploberger (1994) tests. Some-
times, when the evidence supports it, a structure break model is estimated. The
breakdate may be estimated formally (as recommended by Bai, 1997) or may be
selected informally, but the practical effects are rather similar. This means that ap-
plied econometricians may be de facto using a pretest estimator: using a restricted
estimator (linear regression) when the structural change test is insignificant and
using the unrestricted estimator (the structural change estimator) when the test is
significant.

This practice is unfortunate because it is well known that pretest estimators
generally have poor sampling properties. The squared error of pretest estimators
is parameter-dependent and can be quite high relative to unrestricted estimation.
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This paper investigates the asymptotic performance of estimates of structural
change regressions when a structural break is uncertain. We consider unrestricted
least-squares estimation (as in Bai, 1997), estimation imposing the restriction of
no-break, pretest estimation, selection estimators, and averaging estimators. Al-
though the model to be estimated imposes a single structural break, we allow the
truth to include general parameter variation (which includes a single structural
break as a special case). We also assume that the magnitude of the parameter vari-
ation is inversely proportional to the square root of the sample size, so that the
asymptotic distribution of the parameter estimates is continuous in the unknown
functions. We assess the performance of the various estimators by asymptotic
mean-squared error (AMSE) loss and focus on the estimate of the difference in
regression slopes (the magnitude of structural change) as the leading parameter of
interest.

In this framework, we find that both the unrestricted least-squares estimator
and the pretest estimator can have quite large AMSE. The unrestricted estimator
has large AMSE when the parameter variation magnitude is small, whereas the
pretest estimator has large AMSE when the parameter magnitude is of moderate
size.

Following Hansen (2007), we propose an averaging estimator with the weight
selected to minimize a Mallows information criterion (Mallows, 1973). Averaging
puts a weight w on the unrestricted estimator (Bai’s least-squares estimator) and
a weight 1−w on the restricted estimator (the no-break regression). The Mallows
criterion is constructed to be an approximately unbiased estimate of the in-sample
fit. We show that in the structural break model the Mallows penalty takes a non-
standard form. Although the correct penalty depends on unknown parameters and
is therefore infeasible, we show that approximating the penalty by an average of
its limiting values (which are known) yields a feasible penalty with good perfor-
mance. We recommend selecting the weight that minimizes the Mallows criterion,
which in this case is a simple function of the sum of squared errors, the Andrews
SupF test statistic, and the penalty term. The averaging estimator obtained using
this weight is the Mallows model averaging (MMA) estimator.

We investigate the performance of the MMA estimator numerically, as the
AMSE depends on the form of parameter variation. We show that when the true
parameter variation is either a single structural break or a smooth structural break,
the AMSE of the MMA estimator is very close to that of the infeasible optimal
weighted average estimator. Based on the criterion of maximum regret, the MMA
estimator has dramatically better performance than any of the other estimators
considered.

The remainder of the paper is organized as follows. Section 2 introduces the
structural change model and estimation methods. Section 3 presents the asymp-
totic distribution theory under the assumption of general parameter variation.
Section 4 presents the Mallows criterion for the structural change model. Section 5
proposes selection and averaging estimators using the Mallows criterion. Sec-
tion 6 presents formulas for the AMSE of the estimators. Section 7 numerically
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calculates these formulas and compares the estimators. Proofs of the theorems are
presented in the Appendix.

2. MODEL AND ESTIMATION

The model to be estimated is a linear time-series regression with a possible struc-
tural break. The observations are ( yt ,xt ) for t = 1, . . . ,n, where yt is scalar and
xt is an m vector that may contain lagged values of yt . The model for estimation
is

yt = x′
tβ11(t < k)+x′

tβ21(t ≥ k)+ et , (1)

E(et | xt ) = 0,

E
(

e2
t | xt

)
= σ 2,

which has parameters (β1,β2,k,σ 2). The breakdate k is constrained to satisfy
the restriction k1 ≤ k ≤ k2. A parameter of interest is the difference in regression
slopes θ = β2 −β1.

If there is no break in the slope coefficients then β1 = β2, and the model
simplifies to

yt = x′
tβ+ et , (2)

where β = β1 = β2 and the breakdate k drops out.
When a structural break is uncertain it is common in applications to employ a

two-step procedure where the first step is to test for the presence of a structural
break and the second step is to estimate the model selected by the test. Let us
describe this procedure in detail.

Estimation of (1) is easiest by concentration. First, fix k. Then equation (1) is
estimated by least squares, which we write as

yt = x′
t β̂1(k)1(t < k)+x′

t β̂2(k)1(t ≥ k)+ êt (k) (3)

and set θ̂(k) = β̂2(k)− β̂1(k).
Let ê(k) denote the n ×1 residuals from (3). The concentrated sum of squared

errors given k is ê(k)′ê(k). The least-squares estimate of k is found by numeri-
cally minimizing this criterion:

k̂ = argmin
k1≤k≤k2

ê(k)′ê(k).

The remaining estimates are obtained using k̂:

β̂1 = β̂1(k̂),

β̂2 = β̂2(k̂),

θ̂= β̂2 − β̂1.
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We write the fitted model as

yt = x′
t β̂11(t < k̂)+x′

t β̂21(t ≥ k̂)+ êt . (4)

Let ê= ê(k̂) denote the vector of fitted residuals.
The no-break model (2) is also estimated by least squares, which we write as

yt = x′
t β̃+ ẽt . (5)

As an estimator of the parameters in (1), we set β̃1 = β̃2 = β̃ and θ̃ = 0. Let
ẽ denote the n ×1 vector of residuals from (5).

The standard test of model (2) against model (1) is the SupF test of Andrews
(1993). The test statistic is the standard F-test

Fn =
(
ẽ′ẽ− ê′ê)

s2 , (6)

where

s2 = 1

n −2m
ê′ê (7)

is the bias-corrected estimator of the error variance from the full model (4).
Let π = k/n denote the breakdate fraction, π1 = k1/n, and π2 = k2/n. Under

the hypothesis β1 = β2,

Fn →d SupF = sup
π1≤π≤π2

J0(π), (8)

where

J0(π) = W
∗(π)′W∗(π)

π (1−π)
(9)

andW∗(π) is an m-dimensional standard Brownian bridge. An α% asymptotic
test rejects (2) in favor of (1) if Fn > cα where cα is the (1−α)% upper quantile
of the distribution of SupF. Critical values are tabulated in Andrews (2003) and
depend on m and

λ = π2(1−π1)/(1−π2)π1. (10)

For example, if m = 1, π1 = 0.15, and π2 = 0.85, then c.05 = 8.68.
As we mentioned previously, a conventional estimator of the model is to use

the unrestricted estimator (4) when Fn is significant and otherwise to use the
restricted estimator (5). We will call this the pretest estimator, and it can be
written as

θ̂ p = θ̂1(Fn ≥ cα)+ θ̃1(Fn < cα)

= θ̂1(Fn ≥ cα) .
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The motivation for the pretest estimator is fairly straightforward. A reasonable
presumption is that unless there is evidence to the contrary we should use a stan-
dard linear regression model. We should use a breakdate estimator only if there
is evidence of a structural break. As the most compelling evidence is a statistical
test, this leads to two-step (or pretest) estimation.

3. ASYMPTOTIC DISTRIBUTION UNDER GENERAL
PARAMETER VARIATION

In this section we review the asymptotic distribution theory for the parameter
estimates allowing for general parameter variation (thus allowing for the possi-
bility that the single structural break assumption in (1) is misspecified). We also
assume that the parameter variation is of small magnitude so that the asymptotic
distributions are asymptotically continuous. We believe that this is the appropriate
framework in which to study model selection.

To be specific, we assume that the data satisfy the regression

yt = x′
tβt + et , (11)

E(et | xt ) = 0,

E
(

e2
t | xt

)
= σ 2,

βt = β+n−1/2η(t/n)δσ,

where η(·) is a boundedRm-valued Riemann integrable function on [0,1] and δ is
a scalar indexing the magnitude of parameter variation. This general specification
includes single and multiple structural change as special cases.

Andrews (1993) derived the asymptotic distribution of the parameter esti-
mates and test statistics under these assumptions. DefineM = E

(
xtx

′
t

)
and the

functions

η̄1(π) = 1

π

∫ π

0
η(s)ds,

η̄2(π) = 1

1−π

∫ 1

π
η(s)ds,

g(π) =M1/2 (η̄2(π)− η̄1(π)) . (12)

THEOREM 1 (Andrews, 1993). Under model (11), as n → ∞
√

n

σ

(
β̂1 (nπ)−β

)
d−→M−1/2π−1W(π)+ η̄1(π)δ,

√
n

σ

(
β̂2 (nπ)−β

)
d−→M−1/2 (1−π)−1 (W(1)−W(π))+ η̄2(π)δ,

√
n

σ
θ̂(nπ)

d−→M−1/2Sδ(π),
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k̂

n
d−→ ξδ = argmax

π1≤π≤π2
Jδ(π), (13)

Fn
d−→ SupFδ = sup

π1≤π≤π2

Jδ(π), (14)

where

Jδ(π) = π(1−π)Sδ(π)′Sδ(π), (15)

Sδ(π) = − W
∗(π)

π(1−π)
+g(π)δ, (16)

W∗(π) =W(π)−πW(1), andW(π) is an m-dimensional standard Brownian
motion.

Under the general parameter variation assumption (11) there is not necessarily
a true “structural break,” but we can define the pseudo-true breakdate. Let

π0 = argmax
π1≤π≤π2

π (1−π)g(π)′g(π), (17)

which we assume is unique. We call π0 the pseudo-true breakdate fraction and
[nπ0] the pseudo-true breakdate. These correspond to the true breakdate when
(11) equals the structural change model (1). Given π0 we can define the pseudo-
true value for θ:

θ0 = n−1/2M−1/2g(π0)δσ.

This is the best fitting value of θ for the structural change model (1) when the true
parameter variation takes the form (11).

The limiting distribution of the breakdate estimator ξδ defined in (13) is random
even in large samples. However, as the degree of parameter variation becomes
stronger, the distribution of ξδ collapses to a point mass.

THEOREM 2. Under model (11), if π0 defined in (17) is unique then

plim
δ→∞

ξδ ≡ ξ∞ = π0. (18)

4. MALLOWS CRITERION

In this section we develop Mallows criteria appropriate for the regressions (3) and
(4). The Mallows criterion is a penalized sum of squared residuals designed to be
approximately unbiased for the in-sample fit. The general approach is as follows.
Write the model (11) in vector notation as y = μ+ e where μ is the regres-
sion function. Let μ̂= Py be an estimator of μ with residual vector ê = y− μ̂.
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A measure of in-sample fit is
(
μ− μ̂)′ (μ− μ̂), and the goal is to estimate this

quantity by the sum of squared errors ê′ê plus a penalty. By expanding the square,

ê′ê= (e+μ− μ̂)′ (e+μ− μ̂)

= (μ− μ̂)′ (μ− μ̂)+e′e+2e′
(
μ− μ̂)

= (μ− μ̂)′ (μ− μ̂)+e′e+2e′ (I−P)μ−2e′Pe.

Thus the sum of squared residuals ê′ê equals the in-sample fit
(
μ− μ̂)′ (μ− μ̂)

plus three terms. The first term e′e is independent of the estimation method and
therefore does not matter. The second term 2e′ (I−P)μ has an approximate
mean of zero and is therefore also ignored. The final term 2e′Pe has a nonzero
mean that is the traditional focus of attention. The Mallows criterion takes the
general form

C = ê′ê+2s2 p,

where the penalty p is an estimate of the expectation of the asymptotic distribution
of σ−2e′Pe and s2 defined in (7) is an estimator of σ 2.

In the case of the restricted least-squares estimator (5) for model (2), P =
X
(
X′X
)−1
X′ where X is the regressor matrix. Under the conditions of

Theorem 1, σ−2e′Pe→d χ2
m and E

(
χ2

m

)= m. It follows that the Mallows crite-
rion for this model takes the classic form

C̃ = ẽ′ẽ+2s2m. (19)

If the breakdate k were known then a similar argument could be applied to the
estimates (3), and we would obtain the Mallows criterion

Ĉ(k) = ê(k)′ê(k)+4s2m.

However the case with unknown breakdate is nonstandard. For fixed k we can
write μ̂(k) =P(k)y whereP(k) is the projection matrix onto the space of regres-
sors xt 1(t < k) and xt 1(t ≥ k). With estimated k̂ we have μ̂= μ̂(k̂) =P(k̂)y, and
thus the desired penalty is twice the expectation of the asymptotic distribution of
σ−2e′P(k̂)e.

We calculate the asymptotic distribution of σ−2e′P(k̂)e when the parameter
variation takes the form (11). This is our main result.

THEOREM 3. Under model (11), as n → ∞,

σ−2e′P(k̂)e
d−→ χ2

m + J0(ξδ), (20)

where J0(·) and ξδ are defined in (9) and (13).
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The theorem shows that correct Mallows penalty is 2σ 2 times E
(
χ2

m + J0(ξδ)
)

= m + pδ where pδ = E(J0(ξδ)) depends on unknowns. However, in the limiting
cases δ = 0 and δ → ∞ it simplifies. When δ = 0, J0(ξ0) = SupF as defined in
(8), and so

p0 = E(J0(ξ0)) = E(SupF),

which is a function only of m and λ. As δ →∞, Theorem 3 implies that J0(ξδ) →d

J0(ξ∞) = J0(π0) ∼ χ2
m , and so

p∞ = E(J0(ξ∞)) = m.

As a practical solution, we recommend approximating pδ by an average of these
limiting cases:

p̄ = 1

2
(p0 + p∞) = 1

2
(E(SupF)+m). (21)

Using this approximation we obtain a practical Mallows criterion for the structural
change model.

PROPOSITION 1. A Mallows criterion for the structural change model is

Ĉ = ê′ê+2s2 (m + pδ) ,

where pδ = E(J0(ξδ)), which is infeasible. An approximate Mallows criterion is

Ĉ∗ = ê′ê+2s2 (m + p̄) , (22)

where p̄ defined in (21) depends only on m and λ.

The penalty coefficients p̄ are displayed in Table 1 as a function of m and the
trimming parameter π1.

5. SELECTION AND AVERAGING

Model selection based on the Mallows criterion (22) picks the structural change
estimates (4) if Ĉ∗ < C̃ (equivalently if Fn ≥ 2 p̄) and picks the restricted estimates
(5) if C̃ < Ĉ∗ (equivalently if Fn < 2 p̄). This is similar to the pretest estimator
but replaces the critical value cα from Andrews’s table with the value 2 p̄. The
Mallow selection estimator for θ is thus

θ̂m = θ̂1(Fn ≥ 2 p̄)+ θ̃1(Fn < 2 p̄)

= θ̂1(Fn ≥ 2 p̄) .

In a recent paper, Hansen (2007) has argued for averaging based on Mallows
weights rather than selection. Averaging assigns a weight of w to model (1) and
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TABLE 1. Penalty coefficients p̄

π1 = 1−π2

m 0.01 0.05 0.10 0.15 0.20 0.25
1 3.28 2.90 2.67 2.49 2.33 2.19
2 5.01 4.56 4.27 4.05 3.85 3.66
3 6.56 6.05 5.73 5.47 5.24 5.01
4 8.00 7.45 7.09 6.80 6.55 6.29
5 9.38 8.78 8.40 8.09 7.82 7.55
6 10.7 10.1 9.68 9.36 9.06 8.77
7 12.0 11.4 10.9 10.6 10.3 9.96
8 13.3 12.6 12.2 11.8 11.5 11.2
9 14.6 13.9 13.4 13.0 12.7 12.4

10 15.8 15.1 14.6 14.2 13.9 13.5
11 17.1 16.3 15.8 15.4 15.0 14.7
12 18.3 17.5 17.0 16.6 16.2 15.8
13 19.6 18.8 18.2 17.8 17.4 17.0
14 20.8 19.9 19.4 18.9 18.5 18.1
15 21.9 21.1 20.5 20.0 19.6 19.2
16 23.2 22.3 21.7 21.2 20.8 20.4
17 24.3 23.5 22.8 22.4 21.9 21.5
18 25.5 24.6 24.0 23.5 23.1 22.6
19 26.7 25.8 25.1 24.6 24.2 23.7
20 27.9 26.9 26.3 25.8 25.3 24.8

Note: λ = (1 − π1)2/π2
1 . The coefficients were calculated by simulation, approximating the distribution of

SupF in (8) taking the average of 200,000 random Gaussian samples of size 10,000.

a weight of 1 − w to model (2). An averaging estimator of θ given the weight
w is

θ̂w = wθ̂+ (1−w) θ̃ = wθ̂. (23)

The Mallows criterion for the weighted average is

C(w) = (êw + ẽ(1−w)
)′ (
êw + ẽ(1−w)

)+2s2 (m + p̄w).

The Mallows weight is the value in [0,1] that minimizes C(w). The solution is

ŵ =
⎧⎨
⎩

0 if Fn < p̄

1− p̄

Fn
if Fn ≥ p̄.

(24)

Viewed as a function of the test statistic Fn, the weight ŵ is a smoothed version
of the Mallows selection criterion.

Hansen’s MMA estimates of the model parameters are the weighted averages
using the weight ŵ:

θ̂MMA = θ̂
(

1− p̄

Fn

)
1(Fn ≥ p̄) .
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6. ASYMPTOTIC MEAN-SQUARED ERROR

We investigate the performance of the different estimates of θ by focusing on the
AMSE. For an estimator θ∗ of θ0, we define the AMSE as

AMSE(θ∗) = lim
n→∞

n

σ 2 Etr
((
θ∗ −θ0

)(
θ∗ −θ0

)′
M
)

, (25)

whereM = E(xtx
′
t ) is used as a weighting matrix to reduce the dependence on

nuisance parameters. Set gδ(π) = g(π)δ and gδ = gδ(π0).

THEOREM 4. In model (11), the AMSE of the restricted, unrestricted, pretest,
Mallows selection, and Mallows averaging estimators θ̃, θ̂, θ̂ p, θ̂m, and θ̂MMA

are

AMSE(θ̃) = g′
δgδ,

AMSE(θ̂) = E
(
(Sδ (ξδ)−gδ)

′ (Sδ (ξδ)−gδ)
)
,

AMSE
(
θ̂ p
)

= E
((
S

p
δ −gδ

)′ (
S

p
δ −gδ

))
,

AMSE(θ̂m) = E
((
Sm

δ −gδ

)′ (
Sm

δ −gδ

))
,

AMSE(θ̂MMA) = E

((
SMMA

δ −gδ

)′(
SMMA

δ −gδ

))
,

where ξδ and Sδ (·) are defined in (13) and (16),

S
p
δ = Sδ (ξδ) ·1

(
SupFδ > cα

)
,

Sm
δ = Sδ (ξδ) ·1

(
SupFδ > 2 p̄

)
,

SMMA
δ = Sδ (ξδ) ·1

(
SupFδ > p̄

)(
1− p̄

SupFδ

)
,

and SupFδ is defined in (14).

One useful feature of these representations is that they are free of dependence
on unknowns other than the function gδ (·) . (Recall that the pseudo-true breakdate
fraction π0 and the distribution of ξδ are determined by gδ.)

Another useful feature is that we can compare the AMSE with that of the in-
feasible optimal weighted average.

THEOREM 5. The AMSE of the optimal weighted average estimator θ̂w (eqn.
(23)) of θ is

AMSE(θ̂w) = g′
δgδ −g′

δESδ (ξδ)
(
E
(
Sδ (ξδ)

′Sδ (ξδ)
))−1 ESδ (ξδ)

′gδ. (26)
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The AMSE given in (26) is infeasible but gives a lower bound on the AMSE
for estimators that take the weighted average form (which includes pretest and
selection estimators).

7. NUMERICAL COMPARISON

We now illustrate the asymptotic efficiency gains achievable by Mallows aver-
aging through numerical calculation of the AMSE. We compare the unrestricted,
pretest, Mallows selection, Mallows averaging, and infeasible optimal averaging
estimators of θ using the formula1 from Theorems 4 and 5 of the previous sec-
tion. NormalizingM= Im the AMSE is completely determined by the parameter
variation function g(·) defined in (12).

We first consider the case of single structural change. We set

η(π) =ψ1(π ≥ π0)

so that the (scaled) parameter vector jumps by the magnitude ψ at the break frac-
tion π0.

The asymptotic AMSEs of our estimators are fully determined by m (the num-
ber of regressors), π0, and ψ = ‖ψ‖. We plot the AMSE in Figures 1, 2, and 3 for
m = 1, 5, and 10, respectively. Each figure has four plots, for π0 = 0.2, 0.3, 0.4,
and 0.5. (The results are symmetric for π0 > 0.5.) In each plot, ψ is varied on the
x-axis and AMSE (eqn. (25)) shown on the y-axis. The AMSE of the unrestricted

FIGURE 1. Pure structural break, m = 1.
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FIGURE 2. Pure structural break, m = 5.

FIGURE 3. Pure structural break, m = 10.
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TABLE 2. Maximum regret

m Unrestricted LS Pretest Mallows selection Mallows averaging
A. Pure structural change

1 21.1 17.6 9.9 5.3
5 60.2 30.8 27.9 7.5

10 99.4 46.2 47.6 8.4
B. Smooth structural change

1 21.1 16.7 10.5 5.2
5 60.1 31.2 29.1 7.5

10 99.5 47.9 48.7 8.4

least-squares estimator is shown with the long dashes, the pretest estimator with
the short dashes, the Mallows selection estimator with the closely spaced dots, the
MMA estimator with the solid line, and the infeasible optimal weighted average
estimator with the lowest dotted line.

Looking across the plots, we can see that the least-squares and pretest estima-
tors have very large values of AMSE for certain values of the parameters. The
least-squares estimator has high AMSE for small ψ, whereas the pretest estima-
tor has high AMSE for moderate values of ψ . For m = 1 the Mallows selection
estimator is less severely affected by the parameters than the pretest estimator, but

FIGURE 4. Smooth structural break, m = 1.
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FIGURE 5. Smooth structural break, m = 5.

FIGURE 6. Smooth structural break, m = 10.
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they are nearly equivalent for m = 5 and m = 10. The MMA estimator, however,
has moderate AMSE for all values of ψ and π0, and its AMSE closely tracks
the optimal AMSE. This is especially the case for large m, where the AMSE of
MMA is proportionately very close to the infeasible optimal AMSE. Furthermore,
among the four feasible estimators, MMA either achieves the smallest AMSE or
has AMSE close to the minimum for all parameter values. No other estimator be-
haves similarly. Again the comparison is most striking for large m, where MMA
has the lowest AMSE for nearly all parameter values, the only exception occur-
ring at the smallest values of ψ.

As a summary comparison of the estimators, we report the maximum regret of
the estimators in Table 2A as a function of m. The regret is the difference between
the AMSE of the estimator and the AMSE of the infeasible optimum. The max-
imum regret is the largest value of the regret across the parameter values (in this
case, ψ and π0). Table 2A shows that the estimators other than MMA can have
extremely large regret.

Next, we allow for misspecification by allowing the true process to be smooth
structural change. We set

η(π) =ψGτ (π −π0),

where Gτ (u) = G(uτ), G(u) is the logistic distribution, and τ = 20. (Similar
results are found using different smoothing parameters τ.). In this specification,
the parameter vector smoothly changes by the magnitude ψ over a substantial
period of observations. In this model (as discussed in Section 3) we are estimating
the pseudo-true value of the parameter θ. The AMSE of the estimators is fully
determined by π0 and ψ = ‖ψ‖. The AMSE plots are shown in Figures 4, 5,
and 6 for m = 1, 5, and 10, and the maximum regret is reported in Table 2B. The
results are very similar to the case of pure structural change. Again we find that
the MMA estimator is the preferred estimator based on asymptotic mean-square
loss.

8. CONCLUSION

Common empirical practice is to test time series regressions for the presence of
a structural break, and then if a break is detected account for this by allowing
for structural change in estimation. This practice corresponds to a pretest esti-
mator, and this estimator has poor sampling properties. An estimator with much
better risk is the weighted average of the no-break and break estimates, where
the weight is selected by minimizing a modified Mallows criterion. The latter is a
simple function of the sum of squared errors, the Andrews SupF test statistic, and
a penalty term.

A referee has suggested that it would be useful to extend the method to allow
for two (or more) structural breaks, to allow weighted averages of the no-break,
one-break, and two-break model estimates. I believe that this would be a dif-
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ficult extension. One challenge is that the one-break and two-break models are
nonnested (unless one of the breaks is held constant across models), a condition
for which the MMA has not yet been developed. Furthermore, development of an
appropriate penalty term for a two-break model would be a nontrivial generaliza-
tion of the work presented in this paper. This would certainly be a challenging yet
rewarding topic for future research.

NOTE

1. The AMSE was approximated by simulation, averaging across 50,000 random samples of size
1,000.
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APPENDIX: Proofs of Theorems

Proof of Theorem 2. Let ḡ(π) = π(1 −π)g(π)′g(π) and note that for Jδ(π) defined
in (15), δ−1 Jδ(π) = ḡ(π)+ R(π) where

R(π) = −2

δ
g(π)′W∗(π)+ 1

δ2
W∗(π)′W∗(π)

π(1−π)
.

Because g(π) is bounded on [π1,π2] and supπ1≤π≤π2

∣∣W∗(π)
∣∣= Op(1), it follows that

as δ → ∞,

sup
π1≤π≤π2

|R(π)| →p 0,

and so

sup
π1≤π≤π2

∣∣∣δ−1 Jδ(π)− ḡ(π)
∣∣∣→p 0.

Because ḡ(π) is continuous and is uniquely maximized at π0, it follows that as δ → ∞,

ξδ = argmax
π1≤π≤π2

δ−1 Jδ(π) →p π0. �
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Proof of Theorem 3. LetX(k) be the matrix of stacked regressors xt 1(t < k) . Define

P=X(X′X
)−1
X′,

X∗(k) =X(k)−PX(k)

=X(k)−X(X′X
)−1
X′X(k)

=X(k)−X(X′X
)−1
X(k)′X(k),

andP∗(k) =X∗(k)
(
X∗(k)′X∗(k)

)−1
X∗(k)′. By standard projection arguments,P(k) =

P+P∗(k), so that

e′P(k)e= e′Pe+e′P∗(k)e.

Under the conditions of the theorem, e′Pe→d σ 2χ2
m , and it is not hard to see that

e′P∗(nπ)e
d−→ σ 2 J0(π). Combined with Theorem 1, (20) follows. n

Proof of Theorem 4. We deduce from Theorem 1 that

M1/2
√

n

σ
θ̂

d−→ Sδ (ξδ) . (A.1)

Recalling that Fn
d−→ SupFδ, it follows that

M1/2
√

n

σ
θ̂ p d−→ Sδ (ξδ)1

(
SupFδ > cα

)
,

M1/2
√

n

σ
θ̂m d−→ Sδ (ξδ)1

(
SupFδ > 2 p̄

)
,

M1/2
√

n

σ
θ̂MMA d−→ Sδ (ξδ)1

(
SupFδ > p̄

)(
1− p̄

SupFδ

)
.

From the definition of θ0 we have

M1/2
√

n

σ
θ0 = gδ.

The AMSE expressions follow conventionally. n

Proof of Theorem 5. For fixed w, (A.1) shows that for θ̂w = wθ̂,

M1/2
√

n

σ
θ̂w d−→ wSδ (ξδ) .

Thus by the calculations of Theorem 3,

AMSE(θ̂w) = E
(
(wSδ (ξδ)−gδ)′ (wSδ (ξδ)−gδ)

)

= w2E
(
Sδ (ξδ)

′Sδ (ξδ)
)−2wESδ (ξδ)

′gδ +Eg′
δgδ.

This is minimized by setting

w = E
(
Sδ (ξδ)

′Sδ (ξδ)
)−1 ESδ (ξδ)

′gδ
and has minimized value (26). n


