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UNIFORM CONVERGENCE RATES
FOR KERNEL ESTIMATION WITH
DEPENDENT DATA

BrRUCE E. HANSEN
University of Wisconsin

This paper presents a set of rate of uniform consistency results for kernel estima-
tors of density functions and regressions functions. We generalize the existing
literature by allowing for stationary strong mixing multivariate data with infinite
support, kernels with unbounded support, and general bandwidth sequences. These
results are useful for semiparametric estimation based on a first-stage nonpara-
metric estimator.

1. INTRODUCTION

This paper presents a set of rate of uniform consistency results for kernel
estimators of density functions and regressions functions. We generalize the
existing literature by allowing for stationary strong mixing multivariate data
with infinite support, kernels with unbounded support, and general bandwidth
sequences.

Kernel estimators were first introduced by Rosenblatt (1956) for density esti-
mation and by Nadaraya (1964) and Watson (1964) for regression estimation.
The local linear estimator was introduced by Stone (1977) and came into prom-
inence through the work of Fan (1992, 1993).

Uniform convergence for kernel averages has been previously considered in
a number of papers, including Peligrad (1991), Newey (1994), Andrews (1995),
Liebscher (1996), Masry (1996), Bosq (1998), Fan and Yao (2003), and Ango
Nze and Doukhan (2004).

In this paper we provide a general set of results with broad applicability. Our
main results are the weak and strong uniform convergence of a sample average
functional. The conditions imposed on the functional are general. The data are
assumed to be a stationary strong mixing time series. The support for the data
is allowed to be infinite, and our convergence is uniform over compact sets,
expanding sets, or unrestricted euclidean space. We do not require the regres-
sion function or its derivatives to be bounded, and we allow for kernels with
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unbounded support. The rate of decay for the bandwidth is flexible and includes
the optimal convergence rate as a special case. Our applications include esti-
mation of multivariate densities and their derivatives, Nadaraya—Watson regres-
sion estimates, and local linear regression estimates. We do not consider local
polynomial regression, although our main results could be applied to this appli-
cation also.

These features are useful generalizations of the existing literature. Most papers
assume that the kernel function has truncated support, which excludes the pop-
ular Gaussian kernel. It is also typical to demonstrate uniform convergence only
over fixed compact sets, which is sufficient for many estimation purposes but
is insufficient for many semiparametric applications. Some papers assume that
the regression function, or certain derivatives of the regression function, is
bounded. This may appear innocent when convergence is limited to fixed com-
pact sets but is unsatisfactory when convergence is extended to expanding or
unbounded sets. Some papers only present convergence rates using optimal band-
width rates. This is inappropriate for many semiparametric applications where
the bandwidth sequences may not satisfy these conditions. Our paper avoids
these deficiencies.

Our proof method is a generalization of those in Liebscher (1996) and Bosq
(1998).

Section 2 presents results for a general class of functions, including a vari-
ance bound, weak uniform convergence, strong uniform convergence, and con-
vergence over unbounded sets. Section 3 presents applications to density
estimation, Nadaraya—Watson regression, and local linear regression. The proofs
are in the Appendix.

Regarding notation, for x = (xy,...,x,;) € R we set | x| = max(|x,],
ey |xd | )

2. GENERAL RESULTS

2.1. Kernel Averages and a Variance Bound

Let {Y;,X;} € R X R? be a sequence of random vectors. The vector X; may

include lagged values of Y;, e.g., X; = (Y;_y,...,Y;_4). Consider averages of
the form
B(x) = — Sy k(- ud 1
x)=— : ,
and 20 P ®

where & = o(1) is a bandwidth and K(u):R? — R is a kernel-like function.
Most kernel-based nonparametric estimators can be written as functions of aver-
ages of this form. By suitable choice of K(u) and Y; this includes kernel esti-
mators of density functions, Nadaraya—Watson estimators of the regression
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function, local polynomial estimators, and estimators of derivatives of density
and regression functions.
We require that the function K (u) is bounded and integrable:

Assumption 1. |K(u)| = K < oo and [re|K(u)|du = p < oo.

We assume that {Y;, X;} is weakly dependent. We require the following reg-
ularity conditions.

Assumption 2. The sequence {Y;, X;} is strictly stationary and strong mixing
with mixing coefficients «,, that satisfy

&, = Am™P, )

where A < oo and for some s > 2

E[Y[|* < oo 3
and
2s —2
B> . 4)
s—2

Furthermore, X; has marginal density f(x) such that

sup f(x) = By < o0 )]

and

sup E(|Y,[*| X, = x)f(x) =B, < co. (6)

Also, there is some j* < oo such that for all j = j*

sup E(|YOYjHX0:'XO’Xj:xj)fj(-xo’xj)sB2<Oo’ (7)

X0, X
where f;(xo, x;) denotes the joint density of {Xo, X;}.

Assumption 2 specifies that the serial dependence in the data is strong mix-
ing, and equations (2)—(4) specify a required decay rate. Condition (5) speci-
fies that the density f(x) is bounded, and (6) controls the tail behavior of the
conditional expectation E(|Y,]*| X, = x). The latter can increase to infinity in
the tails but not faster than f(x)~'. Condition (7) places a similar bound on
the joint density and conditional expectation. If the data are independent or
m-dependent, then (7) is immediately satisfied under (6) with B, = B}.

In many applications (such as density estimation) ¥; is bounded. In this case
we can take s = oo, (4) simplifies to 8 > 2, (6) is redundant with (5), and (7) is
equivalent to f;(xo,x;) = B, for all j = j*
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The bound (7) requires that {X,, X;} have a bounded joint density f;(xo, x;)
for sufficient large j, but the joint density does not need to exist for small j.
This distinction allows X; to consist of multiple lags of Y;. For example, if X; =
(Yi—1,Yis,...,Y,—,) for d = 2 then f;(x, x;) is unbounded for j < d because
the components of X, and X; overlap.

THEOREM 1. Under Assumptions 1 and 2 there is a ® < oo such that for n
sufficiently large

. (C]
Var(W(x)) = - 6]

An expression for © is given in equation (A.5) in the Appendix.

Although Theorem 1 is elementary for independent observations, it is non-
trivial for dependent data because of the presence of nonzero covariances. Our
proof builds on the strategy of Fan and Yao (2003, pp. 262-263) by separately
bounding covariances of short, medium, and long lag lengths.

2.2. Weak Uniform Convergence

Theorem 1 implies that |W(x) — E¥(x)| = 0,((nh9)~"/?) pointwise in x € R%
We are now interested in uniform rates. We start by considering uniformity
over values of x in expanding sets of the form {x: |x| = ¢,} for sequences c,
that are either bounded or diverging slowly to infinity. To establish uniform
convergence, we need the function K(u) to be smooth. We require that K either
has truncated support and is Lipschitz or that it has a bounded derivative with
an integrable tail.

Assumption 3. For some A; < oo and L < oo, either K(u) = 0 for |u| > L
and for all u,u’ € R

[K(u) = K@) = Ay Ju—u'l, )

or K (u) is differentiable, |(9/0u)K (u)] = A,, and for some v > 1, |(3/0u) K (u)| =
Ayllul™ for [ul > L.

Assumption 3 allows for most commonly used kernels, including the poly-
nomial kernel class ¢, (1 — x2)?, the higher order polynomial kernels of Miiller
(1984) and Granovsky and Miiller (1991), the normal kernel, and the higher
order Gaussian kernels of Wand and Schucany (1990) and Marron and Wand
(1992). Assumption 3 excludes, however, the uniform kernel. It is unlikely that
this is a necessary exclusion, as Tran (1994) established uniform convergence
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of a histogram density estimator. Assumption 3 also excludes the Dirichlet ker-
nel K(x) = sin(x)/(7x).

THEOREM 2. Suppose that Assumptions 1-3 hold and for some q > 0 the
mixing exponent [3 satisfies

d
1+(S—1)<1+—+d>
B> — (10)

and for

d
Bol=d= = (4B

O BT —d- (B an

the bandwidth satisfies

Inn
o =o(1). (12)
Then for
¢, = O((Inn)"4p'/24) 13)
and
Inn\"/?

a, = <%> , (14)

5P [¥(x) = E¥(x)| = 0,(a,). (15)

Theorem 2 establishes the rate for uniform convergence in probability. Using
(10) and (11) we can calculate that & € (0,1] and thus (12) is a strengthening
of the conventional requirement that nh¢ — co. Also note that (10) is a strict
strengthening of (4). If ¥; is bounded, we can take s = oo, and then (10) and
(11) simplify to 8> 1+ (d/q) +dand 0 = (B —1 —d — (d/q))/(B + 3 — d).
If ¢ = oo and d = 1 then this simplifies further to 8 > 2 and 0 = (B — 2)/
(B + 2), which is weaker than the conditions of Fan and Yao (2003, Lem. 6.1).
If the mixing coefficients have geometric decay (8 = oo) then # = 1 and (15)
holds for all g.

It is also constructive to compare Theorem 2 with Lemma B.1 of Newey
(1994). Newey’s convergence rate is identical to (15), but his result is restricted
to independent observations, kernel functions K with bounded support, and
bounded c,,.
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2.3. Almost Sure Uniform Convergence

In this section we strengthen the result of the previous section to almost sure
convergence.

THEOREM 3. Define ¢, = (InInn)?In n. Suppose that Assumptions 1-3 hold
and for some q > 0 the mixing exponent 3 satisfies

d
2+s<3+—+d>

q
B> — (16)
and for
o
Bl1l——-)———-3—-—--d
s s q
o= (17)
B+3—d

the bandwidth satisfies

b;
W = 0(1). (18)
Then for
c, = 0(¢,/n'?), (19)
sup |¥(x) — E¥(x)| = O(a,) (20)
[xl=c,

almost surely, where a,, is defined in (14).

The primary difference between Theorems 2 and 3 is the condition on the
strong mixing coefficients.

2.4. Uniform Convergence over Unbounded Sets

The previous sections considered uniform convergence over bounded or slowly
expanding sets. We now consider uniform convergence over unrestricted euclid-
ean space. This requires additional moment bounds on the conditioning vari-
ables and polynomial tail decay for the function K (u).

THEOREM 4. Suppose the assumptions of Theorem 2 hold with h = O(1)
and g = d. Furthermore,
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sup[ x[7E([ %[ Xy = x)f(x) = B; < o0, 2D

and for |u|| = L
|K(u)| = Ajluf™ (22)
for some A, < oco. Then

supl|‘i’(x) —E¥(%)| = 0,(a,).

XER

THEOREM 5. Suppose the assumptions of Theorem 3 hold with h = O(1)
and q = d. Furthermore, (21), (22), and E|X,|*¢ < oo hold. Then

sup [¥(x) = E¥(x)] = O(a,)

XER
almost surely.

Theorems 4 and 5 show that the extension to uniformity over unrestricted
euclidean space can be made with minimal additional assumptions. Equa-
tion (21) is a mild tail restriction on the conditional mean and density function.
The kernel tail restriction (22) is satisfied by the kernels discussed in Sec-
tion 2.2 for all g > 0.

3. APPLICATIONS
3.1. Density Estimation

Let X; € R? be a strictly stationary time series with density f(x). Consider the
estimation of f(x) and its derivatives ) (x). Let k(«) : RY — R denote a multi-
variate pth-order kernel function for which k" (u) satisfies Assumption 1 and
Jlu|P*"|k(u)|du < co. The Rosenblatt (1956) estimator of the rth derivative

£ (x) is
S ko) (x _Xi>,
1

nhd+r = h

f(r) (x) =

where & is a bandwidth.
We first consider uniform convergence in probability.

THEOREM 6. Suppose that for some g > 0, the strong mixing coefficients
satisfy (2) with

d
B>1+-+4d (23)
q
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h = o0(1), and (12) holds with

d
B-1--—d
q

6= m (24)

Suppose that sup, f(x) < oo and there is some j* < co such that for all j = j*
Sup,,. ., f;(xo, x;) < 0o where fi(xo,x;) denotes the joint density of {Xo, X;}.
Assume that the pth derivative of f ") (x) is uniformly continuous. Then for any
sequence c, satisfying (13),

Inn \V2
sup | £ (x) = f(x)| =0 ((;;;:;) *‘h”>~ (25)

Ixl=ec,

The optimal convergence rate (by selecting the bandwidth h optimally) can be
obtained when

d d d
B>1+d+—+ 2+ — (26)
q p+tr 2q
and is
Inn p/(d+2p+2r)
H SFP |fOx) = (x)] = ((7) ) (27)

Furthermore, if in addition sup, | x|9f(x) < oo and |k (u)| = A, u|~9 for |u]
large, then the supremum in (25) or (27) may be taken over x € R

Take the simple case of estimation of the density (r = 0), second-order ker-
nel (p = 2), and bounded c, (¢ = o). In this case the requirements state that
B > 1 + d is sufficient for (25) and 8 > 1 + 2d is sufficient for the optimal
convergence rate (27). This is an improvement upon the work of Fan and Yao
(2003, Thm. 5.3), who (for d = 1) require 8 > 3 and 8 > % for these two
results.

An alternative uniform weak convergence rate has been provided by Andrews
(1995, Thm. 1(a)). His result is more general in allowing for near-epoch-
dependent arrays, but he obtains a slower rate of convergence.

We now consider uniform almost sure convergence.

THEOREM 7. Under the assumptions of Theorem 6, if B > 3 + (d/q) + d
and (18) and (19) hold with

d
B-3--—d
q

>

B+3—d
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then

- Inn \/2
s 17000l = o (5 ) )
nhe ="

Ixll=ec,

almost surely. The optimal convergence rate when

d d d
B>3+d+ -+ 3+ —

q p+tr 2q
is

R Inn p/(d+2p+2r)
sup [f7(x) = f ()] = 0((—) ) (28)
n

Ixl=ec,

almost surely.

Alternative results for strong uniform convergence for kernel density esti-
mates have been provided by Peligrad (1991), Liebscher (1996, Thms. 4.2 and
4.3), Bosq (1998, Thm. 2.2 and Cor. 2.2), and Ango Nze and Doukhan (2004).
Theorem 6 contains Liebscher’s result as the special case r = 0 and ¢ = oo, and
he restricts attention to kernels with bounded support. Peligrad imposes p-mixing
and bounded c,. Bosq restricts attention to geometric strong mixing.

3.2. Nadaraya-Watson Regression
Consider the estimation of the conditional mean

m(x) = E(Y;|X; = x).

Let k(u): R?Y — R denote a multivariate symmetric kernel function that satis-
fies Assumptions 1 and 3 and let [|u|?|k(u)|du < oo. The Nadaraya—Watson
estimator of m(x) is

where h is a bandwidth.

THEOREM 8. Suppose that Assumption 2 and equations (10)—(13) hold and
the second derivatives of f(x) and f(x)m(x) are uniformly continuous and
bounded. If
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8, = inf f(x)>0,

lx|=c,

h=o0(1), and 8" a* — 0 where

. (10gn>1/2 e 9)
=\ nd '
then

sup |/ (x) —m(x)| = 0,(8, " a}). (30)
|x|=c,

The optimal convergence rate when 3 is sufficiently large is

1 2/(d+4)
sup |n(x) — m(x)| = o,,(a;l(%) ) 31)

[x[=c,

THEOREM 9. Suppose that the assumptions of Theorem 8 hold and equa-
tions (16)—(19) hold instead of (10)—(13). Then (30) and (31) can be strength-
ened to almost sure convergence.

If ¢, is a constant then the convergence rate is a,, and the optimal rate is
(n~'1nn)? @t which is the Stone (1982) optimal rate for independent and
identically distributed (i.i.d.) data. Theorems 8 and 9 show that the uniform
convergence rate is not penalized for dependent data under the strong mixing
assumption.

For semiparametric applications, it is frequently useful to require ¢, — oo so
that the entire function m(x) is consistently estimated. From (30) we see that
this induces the additional penalty term &, '.

Alternative results for the uniform rate of convergence for the Nadaraya—
Watson estimator have been provided by Andrews (1995, Thm. 1(b)) and Bosq
(1998, Thms. 3.2 and 3.3). Andrews allows for near-epoch-dependent arrays but
obtains a slower rate of convergence. Bosq requires geometric strong mixing, a
much stronger moment bound, and a specific choice for the bandwidth parameter.

3.3. Local Linear Regression

The local linear estimator of m(x) = E(Y;|X; = x) and its derivative m"(x) are
obtained from a weighted regression of Y; on X; — x;. Letting k; = k((x — X;)/h)
and &; = X; — x, the local linear estimator can be written as

(o) -
mM(x))

n -1 n

Dk D&k 2 kY

i=1 i=1 i=1

2§lkl 2§l§l/kl Efllel
i=1

i=1 i=1
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Let k() be a multivariate symmetric kernel function for which [ u|*|k(u)|du <
oo and the functions k(u), uk(u), and uu'k(u) satisfy Assumptions 1 and 3.

THEOREM 10. Under the conditions of Theorem 8 and 8, *a’; — O where
a; is defined in (29) then

sup | (x) — m(x)| = 0,(8,%ay).

[x[=c,

THEOREM 11. Under the conditions of Theorem 9 and 8, *a* — 0 where
a; is defined in (29) then

sup | (x) —m(x)| = O(8,*a’

|x|=c,
almost surely.

These are the same rates as for the Nadaraya—Watson estimator, except the
penalty term for expanding c, has been strengthened to &, 2. When ¢, is fixed
the convergence rate is Stone’s optimal rate.

Alternative uniform convergence results for pth-order local polynomial esti-
mators with fixed ¢, have been provided by Masry (1996) and Fan and Yao
(2003, Thm. 6.5). Fan and Yao restrict attention to d = 1. Masry allows d = 1
but assumes that (p + 1) derivatives of m(x) are uniformly bounded (second
derivatives in the case of local linear estimation). Instead, we assume that the
second derivatives of the product f(x)m(x) are uniformly bounded, which is
less restrictive for the case of local linear estimation.
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APPENDIX

Proof of Theorem 1. We start with some preliminary bounds. First note that Assump-
tion 1 implies that for any r = s,

f |K(u)|"du = K" 'u =K 'u. (A1)
Rd

Second, assuming without loss of generality that By = 1 and B; = 1, note that the L"
inequality, (5), and (6) imply that for any 1 = r < s

E(|Yol"[Xo = ) f(x) = (E(| Y |*| Xo = x))"*f(x)
= (E(‘YOP ‘XO _ x)f(x))r/xf(x)(x,r)/j
= Blr/sB(()sfr)/s
—h (A.2)

Third, for fixed x and & let

<x—X,->
Z,=K|——|v.
h
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Then for any 1 = r = s, by iterated expectations, (A.2), a change of variables, and (A.1)

—d r —d x—Xo '
h™“E|Zy|"=h“E|E| |K Y Yol |1Xo

= hidfq K(:_u> rE(‘YOHXo:“)f(M)d”

= f{l|K(u)\’E(|Y0\’|XO =x—hu)f(x — hu) du

= [ 1K@ dus, 5,
Rd

IA
=

*~'uB, By
< o0. (A.3)

Il
=

Finally, for j = j* by iterated expectations, (7), two changes of variables, and Assump-

)

E(|YOYjHX0 = ”mx_j = u.,')

tion 1,

x =Xy x—=X;
E|Z,Z;| =E|E| | K h K ; Y,
X—u X—u
=ff K °>K !
RIJRY h h

X fi(ug,u;) duy du;

= [ ] K YY1 =~ g X, = x— )
Rd Rd

X fi(x — hug, x — hu;) dug du,

= hzdf f |K(uo)K(u;)|dug du; B,
R(’ Rd
= h2u2B,. (A4)

Define the covariances
C,=E((Z,—EZ))(Z,— EZ))).
Assume that n is sufficiently large so that h~¢ = j* We now bound the C; separately for
j=j%j*<j=h4andh ¢ +1<j< oo

First, for j =< j*, by the Cauchy—Schwarz inequality and (A.3) with r = 2,

|C.| =E(Z,— EZ,)? =BZ2 = ah".
j 0 0 0
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Second, for j* < j = h~? (A.4) and (A.3) for r = 1 combine to yield
|G| = E|Z,Z;| + (E|Zo])* = (wBy + @?) >
Third, for j > h~< + 1, using Davydov’s lemma, (2), and (A.3) with r = s we obtain
|G| = 6a) 2 (E|Z,])
= 6AjPU—2(hd)2s
= ARSI p2dls

where the final inequality uses (4).
Using these three bounds, we calculate that

nh?Var (¥ (x)) = ! E(E Z, - EZi>
n

i=1

h™
<Co+2Z\C|+2 E IGl+2 E IGl

J
J=i"+1 j=h"+1

hl
= +2/)ph'+2 X (u’B, + @*)h*

Jj=jt+1
+2 S AR epahs
j=h"4+1
o
12457

=1 +2j")@h?+2(u?B, + g*)h? + ——— h<,
(s —=2)/s

where the final inequality uses the fact that for 6 > 1 and k = 1

o) =9 1-6
2= j x %dx= ¢ )
Jj=k+1 k (5*1)

We have shown that (8) holds with

12A%"s
=), (A.5)

= <(1+2j*)ﬁ+2(M232+ﬂ2)+ 5
T

completing the proof. |

Before giving the proof of Theorem 2 we restate Theorem 2.1 of Liebscher (1996)
for stationary processes, which is derived from Theorem 5 of Rio (1995).

LEMMA (Liebscher/Rio). Let Z; be a stationary zero-mean real-valued process such
that | Z;| = b, with strong mixing coefficients a,,. Then for each positive integer m < n
and & such that m < eb/4
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" n
EZ,-‘>8>S4exp - | t4— 0,
m

i=1

where o2 = E(Z1,Z,)°.

Proof of Theorem 2. We first note that (10) implies that 6 defined in (11) satisfies
6 > 0, so that (12) allows h = o(1) as required.

The proof is organized as follows. First, we show that we can replace Y; with the
truncated process Y;1(|Y;| = 7,) where 7, = a;'/ =1 Second, we replace the the supre-
mum in (15) with a maximization over a finite N-point grid. Third, we use the exponen-
tial inequality of the lemma to bound the remainder. The second and third steps are a
modification of the strategy of Liebscher (1996, proof of Thm. 4.2).

The first step is to truncate Y;. Define

N 1 2 x—X;
R,(x) =¥(x) = —5 EY,K<T> 1y, =7,)

i=1

1 - X,
=—EY5K<%>1(Y,-I>T”)- (A.6)

nh i=1

Then by a change of variables, using the region of integration, (6), and Assumption 1

_ lf xX—u _
ER,(01 = 15 | |K( = ) BRI K] > 7)1 = nf) du
= [ KGR 115, > 7)1 = x — hafx = ha

< [ IKGIBAY, 7 18 > 7)1 X = = b e — ) d
Rd

n

<o 0 [ RO X = )= ) d
Rd

. (A7)
By Markov’s inequality and the definition of 7,
R,(x) = ER,(x)| = 0,(7, ") = 0,(a,),

and therefore replacing ¥; with ¥;1(|Y;| = 7,) results in an error of order O,(a,). For
the remainder of the proof we simply assume that |Y;| < 7,.

For the second step we create a grid using regions of the form A; = {x: [x — x;| =
a,h}. By selecting x; to lay on a grid, the region {x: ||x| = ¢,} can be covered with N =
cdh~?a, ¥ such regions A;. Assumption 3 implies that for all [x; — x| =8 <L,

|K(x;) = K(x))| = K™ (x)), (A.8)
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where K*(u) satisfies Assumption 1. Indeed, if K(u) has compact support and is
Lipschitz then K*(u) = A;1(Jul = 2L). On the other hand, if K(u) satisfies the differ-
entiability conditions of Assumption 3, then K*(«) = A \(1(Ju| = 2L) + |u — L|™"
1(Ju] > 2L)). In both cases K*(u) is bounded and integrable and therefore satisfies
Assumption 1.

Note that for any x € A, then ||x — x;[|/h = a,, and equation (A.8) implies that if n is
large enough so thata, = L,

x—X; X —X; x;—X;
K - K =a,K” .
h h h

Now define

~ - X,
P(x) = — E K* < ; > (A.9)
which is a version of ¥(x) with K (i) replaced with K*(u). Note that
E|¥(x)| = B, Bof K*(u) du < oo.
Rd

Then

Sggl@(X) —E¥(x)| = [¥(x;) — E¥(x))| + a,[|¥(x))] + E|¥(x)]
= ‘\i'(x,) - E\i’(x])‘ + an|q,(xj) - E{p(x]” + 2a,lE|\f'(xj)|
= \\if(xj) — E\if(xj)\ + |\T’(xj) — E\Tf(xj)| +2a,M,

the final inequality because a,, = 1 for n sufficiently large and for any M > E|¥(x)].
We find that

P< sup |¥(x) — E¥(x)| > 3Ma,,>

IxlI=c,

= N max P(supmf(x) EV(x)| > 3Ma,l)

1=j=N xE
=N max P(|¥(x;) — E¥(x,)| > M) (A.10)
1=j=N )
+ N max P(|¥(x;) — E¥(x;)| > M). (A.11)

1=j=N

We now bound (A.10) and (A.11) using the same argument, as both K(u) and K*(u)
satisfy Assumption 1, and this is the only property we will use.

Let Z;(x) = Y;K((x — X;)/h) — EY;K((x — X;)/h). Because |Y;| = 7, and
|[K((x — X;)/h)| = K it follows that |Z;(x)| = 27,K = b,. Also from Theorem 1
we have (for n sufficiently large) the bound
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m

supE ( > Z,-(x)) = Omh<.

i=1

Setm = a;, "7, " and note that m < n and m < eb,, /4 for e = Ma,nh? for n sufficiently
large. Then by the lemma, for any x, and n sufficiently large,

P(|¥(x) — E¥(x)| > Ma,) =P< > Z.(x) >Ma,,nhd>
i=1
M?a’n?n*? n
S4exp( —— > 4—-a,
640nh + 6KMnh¢ m
M?Inn
=dexp| —————=— | +44Anm P
640 + 6KM

= 4 MIGAHOK) 4 4Apg ! TP 1B

the second inequality using (2) and (14) and the last inequality taking M > ©. Recalling
that N < c?h~“a;“, it follows from this and (A.10)—(A.11) that

P< sup |¥(x) — E¥(x)| > 3Ma,,> =0(T,) + O(Ty,), (A.12)
Ixl=e,

where

T, = C(llh—da;dnfM/(M%l?) (A.13)
and

Ty, = ch~na) Bz 1+5, (A.14)

Recall that 7, = a,/“"" and ¢, = O((Inn)"4n'/29). Equation (12) implies that
(Inn)h~9 = o(n?) and thus c?h~¢ = o(n¥?7%%), Also

a, = (Inn)h~4n~")V2 = o(n~0-0/2),
Thus
d/2q+0+d(1-0)/2-M/64+6K)) = (1)

T,,=o(n

for sufficiently large M and

T,, = o(n¥/2a+6+1-(1=0)[1+p=d=(14+8)/=11/2) = 4(])
n

by (11). Thus (A.12) is o(1), which is sufficient for (15). |

Proof of Theorem 3. We first note that (16) implies that 6 defined in (17) satisfies
0 > 0, so that (18) allows & = o(1) as required.
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The proof is a modification of the proof of Theorem 2. Borrowing an argument from

Mack and Silverman (1982), we first show that R,(x) defined in (A.6) is O(a,) when
we set 7, = (n¢, ). Indeed, by (A.7) and s > 2,

|ER,(x)| =7, VuB, =n"“"V"uB, = 0(a,),

and because
> Py, >71,)= X 7 BV, <EY|* X (hd,) " <o,
n=1 n=1 n=1

using the fact that >~ (n¢,) ' < oo, then for sufficiently large n, |Y,| =< 7, with prob-
ability one. Hence for sufficiently large n and all i < n, |Y;| = 7,, and thus R, (x) = 0
with probability one. We have shown that

IR,(x) — ER,(x)| = O(a,)

almost surely. Thus, as in the proof of Theorem 2 we can assume that |Y;| = 7,,.
Equations (A.12)—(A.14) hold with 7, = (n¢,)'”* and ¢, = O(¢p“n'/29). Employing

h=?=0(¢,?n’) and r, = o(p, ?n"17972) we find

_ dyp—d,.—d, —M/64+6K)
Tln - (’nh r, n

=o(¢, 1, d/2q+0+d(1 —0)/2—M/(64+61?))

=o((ng,)™")
for sufficiently large M and
T, = clh~dna}*F=d 1P

— 0(¢;1*(1+B*d)/2+(l+[3)/xnd/24+9+l*(l —0)(1+B—d)/2+(1 +,B)/s)

= 0((n,)"")

by (17) and the fact that (1 + B)/s < (1 + B8 — d)/2 is implied by (16). Thus

E (Tln + TZn) < oo.

n=1
It follows from this and (A.12) that

[}

> P( sup |¥(x) — E¥(x)| > 3Man> < oo,

n=1 Ixl=c,

and (20) follows by the Borel-Cantelli lemma. u
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Proof of Theorem 4. Define ¢, = n'/27 and
- 1z x—X;
V(x)=— D V,K(— |1(X|=c,). (A.15)
nh i=1 h

Observe that ¢, ? = O(a,). Using the region of integration, a change of variables, (21),

and Assumption 1,
x— X,
k(=) |10 > )

K<X_Tu> ‘f(u)du

X—Uu
K(T) f(u)du

= et [ b= B8 1% = = = ) |K )
Rd

[E(¥(x) - ()| = h_dE<|Yo

—nt | EGRIX =
[ul>c,

<ntes [l E(RI1% = 0
.

=¢,'Byu
= 0(a,). (A.16)
By Markov’s inequality

sup| ¥ (x) — E¥(x)| = sup|¥(x) — E¥(x)| + 0,(a,). (A.17)

This shows that the error in replacing W (x) with ¥(x) is 0,(a,).
Suppose that ¢, > L, ||x| > 2¢,, and | X;| = c,. Then | x — X;| = ¢,, and (22) and
g = d imply that

x—X; x—X; || ¢
K =A, =A,hic; 9= Ay hdc .
h n n
Therefore
- 1 2 x—X;
sup [T(w)| = — D |v| sup [K|—— || 1(X;]|=¢c,)
Ixl>2e, nh® =51 |xl>2e, h
1 n
=- XY c, 7
n =1
= 0(a,)
and
sup |¥(x) — E¥(x)| = O(a,) (A.18)

lx[>2¢,
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almost surely. Theorem 2 implies that

sup |¥(x) —E¥(x)| = 0,(a,). (A.19)
lxl=2c,
Equations (A.17)—(A.19) together establish the result. u

Proof of Theorem 5. Let ¢, = (n¢,)"/*? and let ¥(x) be defined as in (A.15). Because
E|X;|?? < o, by the same argument as at the beginning of the proof of Theorem 3, for
n sufficiently large W(x) = ¥(x) with probability one. This and (A.16) imply that the
error in replacing W(x) with ¥(x) is O(c,?) = O(a,).

Furthermore, equation (A.18) holds. Theorem 3 applies because 1/2¢g = 1/d implies
¢, = 0(¢)*n'/29), Thus

sup| ¥(x) — E¥(x)| = O(a,)

almost surely. Together, this completes the proof. n

Proof of Theorem 6. In the notation of Section 2, f(x) = h ¥ (x) with K(x) =
k) (x) and ¥; = 1. Assumptions 1-3 are satisfied with s = oo; thus by Theorem 2

sup |f(x) —EfV(x)| = h ™" sup [¥(x) — EW(x)|

Ixl=e, xl=e,

logn\!/2
~o( (5%
nh*

logn \?

-o(() )
nhd+2r

By integration by parts and a change of variables,

e ()

fk(u)f(’)(x — hu) du

=f(x) + O(h?),

where the final equality is by a pth-order Taylor series expansion and using the assumed
properties of the kernel and f(x). Together we obtain (25). Equation (27) is obtained by
setting & = (Inn/n)/(@*2r*2) "which is allowed when 6 = d/(d + 2p + 2r). |
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Proof of Theorem 7. The argument is the same as for Theorem 6, except that Theo-
rem 3 is used so that the convergence holds almost surely. n

Proof of Theorem 8. Set g(x) = m(x)f(x), g(x) = (nh?) ' 27, Y;k((x — X;)/h),
and f(x) = (nh®) " 3", k((x — X;)/h). We can write

60 W
m = 0= 0 A.20
W =50 " Form (420

We examine the numerator and denominator separately.
First, Theorem 6 shows that

sup | f(x) = f(x)| = O,(a;)

Ixl=ec,
and therefore

) —f(x)
f(x)

f

1’ B 0,(ay)
£(x) - ufrspcn

B mf f(x)

|x <cn

= 0,,(5;1 ay).

Ix H<('n
Second, an application of Theorem 2 yields

18(x) —~ B§()| = 0 ((k’g")m)
sup |g(x) —Eg(x)| = .
Ixl=c, A\ nh?

We calculate that

1 - X
Eg(x):hd (E(Y0|Xo)k< h >>

1
Y]

X—u
dk<T>m(u)f(u) du

fdk(u)g(x — hu) du

=g(x) +0(n?)

and thus

sup [£(x) = g(x)| = O, (ay).

Ixl=e,
This and g(x) = m(x)f(x) imply that

‘ 0,(a,)
—mx)| = ——— = 0p(5n_1a::). (A.21)
1nf f(x)

[x|=c,

8(x)
f(x)

\xH<ln
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Together, (A.20) and (A.21) imply that uniformly over || x| = ¢,

o 8/f(x)  m(x) + 0,(5,"ax) - .
m(x) = feo/fx) 1+ 0,(5, " a5) =m(x) +0,(5," a})

as claimed.
The optimal rate is obtained by setting & = (Inn/n)"/“*¥  which is allowed when
0 = d/(d + 4), which is implied by (11) for sufficiently large 3. u

Proof of Theorem 9. The argument is the same as for Theorem 8, except that Theo-
rems 3 and 7 are used so that the convergence holds almost surely. n

Proof of Theorem 10. We can write

§(x) = S(x)'M(x)"'N(x)

) = R S M@) S
where

1 2 (x—X x—X;
S(X):ﬁ[g( n >k< i )

1 2 (x=X\/x—X;\ [(x—X,
Mm:ﬁ%( n )( h >k< n )

1 2 /(x—X; x—X;
v 25 )

Defining Q = [p«uu'k(u) du, Theorem 2 and standard calculations imply that uni-
formly over | x| = c,,

$(x) = hQf V' (x) + 0,(a;),
M(x) = Qf(x) + O,(ay),
N(x) = hQg"(x) + 0,(a}).
Therefore because £V (x) and g (x) are bounded, uniformly over | x| = c,,
F)7'S(x) = 0,(8, ' (h + ay)),
) M(x) = 0+ 0,(8, " ay),

f)TIN(x) = 0,8, (h + ay)),
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and so

SWM S _ ) (57200 + a2)?) = 0,(6,2a3)
f(x)

and

S(x)'M(x)"'N(x)
— = =0,(6%a’).
£ o)
Therefore

$(x) = S(x)'M(x)"'N(x)

) = I8 ) N
ii(x) = 700 —SM@) S0 m(x) + 0,(8,ay)

f(x)
uniformly over |x| = c,. .

Proof of Theorem 11. The argument is the same as for Theorem 10, except that
Theorems 3 and 7 are used so that the convergence holds almost surely. n



