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The Risk of James–Stein and Lasso Shrinkage

Bruce E. Hansen
Department of Economics, University of Wisconsin, Madison, Wisconsin, USA

This article compares the mean-squared error (or �2 risk) of ordinary least squares
(OLS), James–Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage
estimators in simple linear regression where the number of regressors is smaller than the
sample size. We compare and contrast the known risk bounds for these estimators, which
shows that neither James–Stein nor Lasso uniformly dominates the other. We investigate
the finite sample risk using a simple simulation experiment. We find that the risk of Lasso
estimation is particularly sensitive to coefficient parameterization, and for a significant
portion of the parameter space Lasso has higher mean-squared error than OLS. This
investigation suggests that there are potential pitfalls arising with Lasso estimation, and
simulation studies need to be more attentive to careful exploration of the parameter space.

Keywords James-Stein; Lasso; Least-squares; Shrinkage.

JEL Classification C13.

1. INTRODUCTION

Two important and quite distinct shrinkage estimators are the James–Stein estimator
(James and Stein, 1961) and the least absolute shrinkage and selection operator (Lasso)
(Tibshirani, 1996). The Lasso in particular has become quite popular in the recent
literature, supported in part by oracle results concerning its ability to nearly achieve
the risk (mean-squared-error) of infeasible optimal selection in canonical regression. This
article explores and compares the finite sample risk of these two estimators.

The idea of James–Stein shrinkage dates back to the seminal article of Stein (1956)
which showed that Gaussian estimators are inadmissible when the dimension exceeds
two. James and Stein (1961) provided a constructive shrinkage estimator which dominates
the conventional estimator, and Baranchick (1964) shows that positive part trimming
further reduces the risk. The theoretical foundation for risk calculations was provided
by Stein (1981) and is carefully explored in Chapter 5 of Lehmann and Casella (1998).
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The theory of efficient high-dimensional shrinkage was developed by Pinsker (1980),
and the connection to the James–Stein estimator is succinctly explained in Chapter 7 of
Wasserman (2006).

The Lasso (Tibshirani, 1996) minimizes the sum of squared errors subject to an �1

penalty. Related estimators include the non-negative garotte (Breiman, 1995), Smoothly
clipped absolute deviation (SCAD) (Fan and Li, 2001), elastic net (Zou and Hastie, 2005),
adaptive Lasso (Zou, 2006), and ordinary least squares (OLS) post-Lasso (Belloni and
Chernozhukov, 2013). In this article, we decided to focus on just two of these estimators:
the Lasso, and OLS post- Lasso. This is partially so as there is a well-developed oracle
inequality for the risk of these estimators in the canonical regression model (Donoho and
Johnstone, 1994), partially because there is a widely-accepted method for selection of the
penalty parameter (5-fold cross-validation), and partially as Belloni and Chernozhukov
(2013) have made a strong case for OLS post-Lasso as a method to reduce the bias of
Lasso and thus possibly its risk.

An important property of the Lasso is that it can be applied even when the number
of regressors p exceeds the number of observations n� This is not the case for OLS and
James–Stein shrinkage, both of which require p < n� Since our goal is to compare these
two shrinkage methods, our focus is exclusively on the case p < n�

This article points to some limitations of the Lasso method. Other articles that have
also pointed out limitations concerning inference using Lasso estimation include Pötscher
and Leeb (2008, 2009) and Pötscher and Schneider (2009). Another related work is
Cattaneo et al. (2012), which explores inference in regression models with p proportional
to n�

This article does not contribute to the theory of shrinkage estimation. Instead, it
reviews what is known concerning the finite sample risk of the shrinkage estimators, and
then carefully explores the mean-squared error in a simple simulation experiment.

The organization of the article is as follows. Section 2 describes four key estimators
(OLS, James–Stein shrinkage, Lasso, and OLS post-Lasso). Section 3 presents bounds
on the finite sample risk of the shrinkage estimators in the canonical regression model.
Section 4 is the main contribution: a simulation study on the finite sample risk.

The R code which creates the simulation results is available on the author’s website1.

2. SHRINKAGE ESTIMATORS

Consider the linear regression

yi = x′
0i�0 +

p∑
j=1

xji�j + ei, (1)

1www.ssc.wisc.edu/∼bhansen/

http://www.ssc.wisc.edu/$\sim ${}bhansen/
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i = 1, � � � , n, where x0i is k0 × 1 and xji is scalar for j ≥ 1� Assume p ≥ 3 and p +
k0 ≤ n, so that all estimators described below exist. Define � = (�′

0, �1, � � � , �p)′, xi =
(x′

0i, x1i, � � � , xpi)
′, and define the matrices X0, X, and Y by stacking observations.

The OLS estimate of � is �̂ = (X′X)−1 X′Y �

Now consider estimates of � which treat the coefficients �1, � � � , �p as possibly small.
One choice is the constrained least-squares estimate subject to the constraint �1 = �2 =
· · · = 0, which is

�̃ =
( (

X′
0X0

)−1
X′

0Y
0

)
�

Alternatively, consider a shrinkage estimator which shrinks the unconstrained
estimator �̂ towards �̃. The (positive-part) James–Stein estimator is

�̂JS = �̃ +
(
�̂ − �̃

) ⎛⎜⎝1 − (p − 2) �̂2(
�̂ − �̃

)′
X′X

(
�̂ − �̃

)
⎞⎟⎠

+

where (a)+ = max[a, 0] is the positive-part operator and �̂2 =
(n − k0 − p)−1 ∑n

i=1

(
yi − x′

i�̂
)2

is the standard estimate of �2 = Ee2
i . The James–Stein

estimator �̂JS is a weighted average of the unconstrained and constrained least-squares
estimators, with the weight on the unconstrained estimator an increasing function of

the distance measure Dn =
(
�̂ − �̃

)′
X′X

(
�̂ − �̃

)
/�̂2. The James–Stein estimator can

be viewed as a smoothed version of a pre-test estimator which selects the unrestricted
estimator �̂ when the statistic Dn is large and the restricted estimator �̃ otherwise.

The Lasso estimator which shrinks �̂ towards �̃ solves

�̂L = argmin
�

1
2n

n∑
i=1

(
yi − x′

i�
)2 + �

p∑
j=1

∣∣�j

∣∣
for some � > 0� In practice, the estimator requires selection of the penalty parameter ��

A common choice is to pick � to minimize 5-fold cross-validation.
In the definitions �̂JS and �̂L the coefficients on the regressors x0i are not shrunk (and

thus these regressors are always retained. Typical applications set x0i = 1 (including the
default setting in the R package glmnet), but any choice is feasible. For example, if x0i is
set to null, then �̃ is the zero vector and the Lasso �̂L shrinks all coefficients symmetrically,
including the intercept.

One feature of the Lasso estimator �̂L is that it simultaneously performs selection and
shrinkage. That is, some of the individual coefficient estimates may equal zero, so that
�̂L

j = 0 is possible for some j. Let Ŝ be a selector matrix which selects the coefficients
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not set to zero, so that XŜ are the regressors “selected” by the Lasso. The OLS post-
Lasso estimator of Belloni and Chernozhukov (2013) is least-squares performed on these
variables and can be written as

�̂P = (̂
S′X′XŜ

)−1
Ŝ′X′Y �

3. CANONICAL MODEL

Let us study the simplified setting of full shrinkage, orthogonal regressors, and normal
errors with known variance. That is, k0 = 0 (no x0i), ei ∼ N (0, �2), and n−1X′X = Ip� In
this setting, the James–Stein estimator equals

�̂JS = �̂

⎛⎜⎝1 − (p − 2) �2
n(

�̂ − �̃
)′ (

�̂ − �̃
)
⎞⎟⎠

+

where �2
n = �2/n. (Notice that in this context the estimator is a function of the known

variance �2 rather than the estimator �̂2.)
The Lasso estimator equals

�̂L =
(

t(�̂1), t(�̂2), � � � , t(�̂p)
)′

,

where t(x) = sign(x) (
∣x∣ − �)+ , and is also known as soft-thresholding estimator. See

Tibshirani (1996, Eq. (3)), Fan and Li (2001, Eq. (2.6)), and van der Geer and Bühlmann
(2011, p. 10). Note that orthogonality is essential for this simplification.

Similarly, the OLS post-Lasso estimator equals

�̂P =
(

s(�̂1), s(�̂2), � � � , s(�̂p)
)′

,

where s(x) = x1 (
∣x∣

> �) , and is also called the hard-thresholding estimator.
For any estimator �̄ of �, we define the (normalized) mean-squared error or �2 risk as

R
(
�̄, �

) = E
(
�̄ − �

)′ (
�̄ − �

)
p�2

n

� (2)

We have normalized by p�2
n so that the risk of the OLS estimator is unity. Indeed,

R
(
�̂, �

)
= E

(
(e′X) (X′X)−1 (X′X)−1 (X′e)

)
p�2

n

= E tr ((X′e) (e′X))

np�2
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= tr
(
Ip

)
p

= 1�

Given the simplified setting, there are well-known bounds for the risk of the shrinkage
estimators described above.

Take the James–Stein estimator. Its risk satisfies the bound

R
(
�̂JS , �

)
≤ 2

p
+ cJS

n (�)

1 + cn(�)
, (3)

where

cJS
n (�) = 1

p

p∑
j=1

�2
j

�2
n

�

(See, for example, Wasserman, 2006, Theorem 7.42.)
When p is large, we can see that the risk (3) is effectively bounded by cJS

n (�)/(1 +
cJS

n (�)), which is strictly smaller than the risk of the least-squares estimator. The gains are
highest (the relative risk smallest) when cJS

n (�) is small; equivalently when the normalized
coefficients �1/�n, � � � , �p/�n are small.

Since cJS
n (�)/(1 + cJS

n (�)) is the Pinkser minimax bound for �2 risk, the bound (3)
shows that the James–Stein estimator is near minimax optimal when p is large, as
discussed in Chapter 7 of Wasserman (2006). It is optimal in the sense that its worst-case
risk over any ball in � centered at the the origin equals the minimax bound over the same
region.

Next, take the Lasso estimator. For � = �n

√
2 ln p, its risk satisfies the bound

R
(
�̂L, �

)
≤ (1 + 2 ln p)

(
1
p

+ cL
n (�)

)
, (4)

where

cL
n (�) = 1

p

p∑
j=1

min

(
�2

j

�2
n

, 1

)
�

(Donoho and Johnstone, 1994, Theorem 2; see also Wasserman, 2006, Theorem 9.34.)
The OLS post-Lasso estimator also satisfies (4) for � close to �n

√
2 ln p, as established

by Donoho and Johnstone (1994, Theorem 4).
The bound (4) is typically interpreted as showing that the risk of the Lasso estimator

is close to cL
n (�)� The latter is the risk of the infeasible “kill-it-or-keep-it” estimator which

performs least-squares on the regressors whose coefficients satisfy �2
j /�2

n ≥ 1� Thus the
bound (4) has been interpreted as an oracle result, as it shows that the risk of the Lasso
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estimator is close to the risk of this infeasible estimator. This interpretation is a bit
strained, however, not just because of the obvious 2 ln p factor, but more importantly
because the infeasible “kill-it-or-keep-it” estimator is itself neither oracle nor optimal. For
example, the feasible James–Stein estimator has smaller risk than cL

n (�) when �2
1 = · · · =

�2
p, and thus cL

n (�) is not optimal, nor an efficiency bound.
A comparison of the bounds (3) and (4) shows that neither one uniformly dominates

the other. Thus there are regions of the parameter space where the James–Stein estimator
has lower risk, and regions of the parameter space where the Lasso estimator has lower
risk. We can use these bounds to help us understand the regions where one estimator or
the other has lower risk.

We can observe that cL
n (�) ≤ cJS

n (�), with equality only in the special case that �2
j ≤ �2

n

for all j (the setting that all coefficients are small). Suppose that this special case holds;
then (3) is smaller than (4). Next, consider the other extreme, where �2

j ≥ �2
n for all j (the

setting that all coefficients are large). In this case, cL
n (�) = 1, and again, we can see that (3)

is smaller than (4). So, to roughly generalize, if all the coefficients are small in magnitude
or all the coefficients are large, then the James–Stein estimator will have smaller risk than
the Lasso estimator.

The case where (4) is smaller is when some coefficients are nonzero and some are zero
(a sparse regression). In particular, suppose that k < p coefficients satisfy �2

j ≥ �2
n and the

remaining equal zero. Then cL
n (�) = k/p so the bound in (4) is

(1 + 2 ln p)

(
1 + k

p

)
�

which approaches zero as p → ∞ with k fixed. In contrast, (3) can be arbitrarily close to
one if the nonzero coefficients are large. In this context, (4) can be much smaller than (3).

The theory shows that there is no reason to expect either the James–Stein estimator nor
the Lasso estimator to strictly dominate one another. The James–Stein estimator will have
lower risk when the coefficients are roughly comparable in magnitude, while the Lasso
estimator will have lower risk when a few coefficients are large in magnitude and the
remainder are quite small. In mixed cases, it is more difficult to make an a priori ranking.
Furthermore, these calculations are all for the case of orthogonal regressors, which is not
generically relevant for empirical practice. To obtain a better picture in the next section,
we turn to simulation estimates of the finite-sample risk.

4. SIMULATION EVIDENCE

4.1. Canonical Model

We calculate and compare the exact risk of estimates of model (1) in a finite sample
simulation. We set x0i = 1, the remaining regressors are mutually independent N (0, 1),
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and the error ei is also independently distributed N (0, 1)� We set �0 = 0 and n = 100�

Four “large” coefficients �j are set equal to a common value b� The remaining p − 4
“small” coefficients �j are set equal to a common value c which ranges from 0 to b. The
value of b is selected to target the population R2 when c = 0, with R2 varied between
0�05, 0�20 and 0�80. We view R2 = 0�20 as a typical signal/noise ratio. The number of
coefficients is varied between p = 10, 20, 40, and 60. The case c = 0 corresponds to a pure
“sparse” design, while the case c = b is the opposite extreme of equality of all coefficients.
The intermediate case 0 < c < b is in between sparse and non-sparse designs, and is the
interesting case where the relative rankings of James–Stein and Lasso estimation is a
priori unclear.

To calculate the finite sample risk (2) of the estimators, we perform a simulation in R.
We use 10,000 simulation replications and a 40-point grid for c� We compare the mean
squared error (MSE) of four estimators: OLS, Lasso, OLS post-Lasso, and James–Stein.
To implement the Lasso, we used the popular R package glmnet using all default settings,
including orthogonalization of the regressors and nonshrinkage of the intercept. To select
�, we used 5-fold cross-validation as implemented in the companion package cv.glmnet.
For the OLS post-Lasso estimator, we separately selected � by 5-fold cross-validation.
For each estimator, we calculated the MSE, scaled by the MSE of the OLS estimator,
so that values of relative MSE less than one indicate performance superior to OLS, and
values above one indicating inferior performance to OLS.

Figure 1 displays the results for the case R2 = 0�20. Each panel is for a distinct value
of p, and the relative MSE graphed as a function of c�

Figure 1 shows that for p = 10 and p = 20, Lasso has considerably higher MSE
than the simple James–Stein estimator, and that for many values of c, Lasso has even
higher MSE than OLS. For larger values of p, Lasso has smaller MSE than James–Stein
for small values of c, but the reverse holds for large values of c. Furthermore, Fig. 1
shows that OLS post-Lasso estimator does not generally have lower MSE than the Lasso
estimator.

What Fig. 1 shows is that the enthusiastic embrace of Lasso estimation needs to be
moderated. The methods works well in some contexts, but its accuracy is highly sensitive
to the parameterization. The theory discussed in the previous section suggests that the
Lasso is expected to work well in sparse settings (when many parameters are zero).
However, we can see in Fig. 1 that for mild departures from spareness (when c is small
but positive) that Lasso can have higher MSE than the OLS estimator. The relative
performance of Lasso estimation improves considerably as p increases. For example,
when p = 60 the James–Stein and Lasso estimators have similar MSE performance, but
the MSE of Lasso estimation is more sensitive to the value of c�
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FIGURE 1 Canonical case, R2 = 0�2.

4.2. Strong and Weak Signals

We next explore the consequence of the stronger signal-noise ratio R2 = 0�8� Otherwise,
the simulation experiment is the same as previously. We report the results in Fig. 2.

The comparisons are numerically different but qualitatively similar. Again, we find that
the MSE of the Lasso estimator is highly sensitive to the value of c� It has low MSE
when the design is sparse (c is small), but for most values of c has higher MSE than the
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FIGURE 2 Canonical case, R2 = 0�8.

OLS estimator. The James–Stein estimator uniformly dominates OLS, but only achieves
a modest reduction in MSE.

Furthermore, in this setting the MSE of OLS post-Lasso is quite sensitive to the value
of c� At c = 0, it has the smallest MSE (for all values of p), but for moderate values of c
its MSE is considerably higher than the others. This is similar to the MSE performance
of classical pre-test estimators.
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We next explore the consequence of the weak signal-noise ratio R2 = 0�05� Otherwise,
the simulation experiment is the same as previously. We report the results in Fig. 3. The
results are qualitatively similar with Fig. 1.

Together, Figs. 1–3 show that the MSE of Lasso estimation is quite sensitive to the
values of the parameters. Since it is a priori unknown if the true parameters are sparse
or not, this is an undesirable property.

FIGURE 3 Canonical regression, R2 = 0�05.
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4.3. Correlated Regressors

We next explore the consequence of regressor correlation. For this experiment, the
random variables in the regressor vector satisfy xi ∼ N (0, �) with �jj = 1 and �jk = 1/2
for j �= k. This is known as an “equi-correlated” regressor design. Setting b so that R2 =
0�20, the results are displayed in Fig. 4.

FIGURE 4 Equi-correlated regressors, R2 = 0�2.
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FIGURE 5 Equi-correlated regressors with alternating coefficient signs, R2 = 0�2.

We find a reversal. In this experiment, the Lasso estimator has the smallest MSE,
followed by OLS post-Lasso and then James–Stein. All estimators have considerably
lower MSE than OLS.
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FIGURE 6 Equi-correlated regressors, alternating coefficient signs, R2 = 0�8.

It may be tempting to infer that Lasso has low MSE when the regressors are highly
correlated. To show that this inference is fragile, we alter the coefficients so that one-half
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of them are positive and the other half negative. Thus we set⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1

�2

�3

�4

�5

�6
���

�p−1

�p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
−b
b

−b
c

−c
���
c

−c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (5)

Otherwise, the experiment is the same as in Fig. 4. The results are presented in Fig. 5.
The rankings are reversed relative to Fig. 4, and are qualitatitively similar to the results

from Fig. 1. For most parameter values, the James–Stein estimator has the smallest MSE,
though for p = 60 the James–Stein and Lasso estimators have similar MSE.

Next, we explore the consequence of increasing the signal to R2 = 0�80 in this setting.
We report the results in Fig. 6.

The plots in Fig. 6 are similar to those of Fig. 2. Lasso has low MSE for small values
of c, but has MSE higher than OLS for larger values of c� For most parameter values,
the James–Stein estimator has the smallest MSE.

The results for the correlated regressor model shown in Figs. 4–6 complement our
results for the canonical model. The relative performance of the Lasso estimator is quite
sensitive to coefficient parameterization. For some parameterizations, it has low MSE,
but for other parameterizations, it has higher MSE than OLS.

5. SUMMARY

The recent literature has devoted considerable attention and enthusiasm to Lasso
estimation. It has many desirable properties, including the ability to handle cases where
the number of regressors greatly exceeds the sample size. But what much of this literature
has missed is that the performance of Lasso estimation depends critically upon the values
of the coefficients. When the true coefficients satisfy a strong sparsity condition (there
are many coefficients truly equal to zero), then Lasso estimation can have low MSE. But
in other contexts the estimator need not have low MSE and can actually perform worse
than simple OLS. Amid the hype, caution and skepticism appear warranted.
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