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‘This paper obtains conditions under which GARCH(l, 1) processes satisfy near epoch dependence without imposing strict 

statlonarity. This substantially generalizes the conditions under which weak and strong laws of large numbers, central limit 

theorems and invariance principles hold for GARCH processes. 

1. Introduction 

Since the introduction of ARCH and GARCH by Engle (1982) and Bollerslev (1986), many 
applied economists have used ARCH to model conditional variances. See Bollerslev et al (1990) for a 
review. Despite the explosion of empirical applications, theoretical knowledge of the behavior of 
ARCH and GARCH processes is quite limited. All existing asymptotic proofs rely heavily upon the 
assumption that the driving innovations are independent and identically distributed (iid) so that the 
resulting process is strictly stationary. Asymptotic results for heterogeneous (non-stationary) non-lin- 
ear processes typically require mixing or near epoch dependent (NED) conditions. In fact, many 
applications appeal to theorems which have been demonstrated only under a weak dependence 
condition such as mixing. It is not known, however, under what conditions GARCH processes are 
mixing. A proof has never been attempted, and it is not even intuitively obvious that the result need 
be true. It is known, for example, that simple autoregressive processes with iid innovations need not 
be mixing; see, for example, the counter-example given by Andrews (1984). Proofs that linear 
processes are mixing are tedious and difficult. See, for example, Gorodetski (1977) and Withers 
(1981). 

Many theorems which can be demonstrated for mixing processes can also be shown under the 
assumption of near epoch dependence. Also called ‘functions of mixing processes’, near epoch 
dependence was introduced by Ibragimov (1962), and used by Billingsley (1968) McLeish (1975), 
Gallant and White (1988) Wooldridge and White (1988), and Andrews (1988), among others. Near 
epoch dependence is a simpler condition than mixing to verify, although somewhat harder to use in 
applications. 

Section 2 shows that certain GARCH(l, 1) processes are near epoch dependent, allowing for a 
moderate degree of heterogeneity, and not requiring strict stationarity. Section 3 applies this result to 
demonstrate weak and strong laws of large numbers, a central limit theorem, and an invariance 
principle for GARCH processes. The appendix contains the proof of the theorem. 
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2. Main theorem 

Consider some sequence of martingale differences {x1}. Define the natural filtration 9, = 
e(..., X,-i> xt) and the conditional variance a,* = E(xf [9,_,). Assu me that the conditional variance 
follows a GARCH process: 

Assumption I. 0,’ < 00 a.s. and a,* = w + j?u,?i + ax:-,. 

Define the renormalized variable e, = x,/u,, and the following filtrations on e,: eJ = u(e,, . . , e,), 
and S,=u(..., e,). By construction, {e,, T} is a martingale difference sequence with E(ef 1 .9_,) 
= 1 (as.). 

It is conventional in the theoretical ARCH literature to assume that the variable {e,} is iid, and 
thus a,’ is strictly stationary. We relax this unusually strict assumption by allowing {e,} to be strong 
mixing. The a-mixing coefficients for {e,} are: 

am = sup sup lP(GnF)-P(G)P(F)I. 
J (FE.FL__,Gt$~,,) 

Rewriting a,* as a function of {e,} by repeated back-substitution, we find 

ae:_,) = w + 0 fJ Z,(k), (1) 
k-1 i=l k=l 

where Z,(k) =nF=,(p+ aef_,) =nf=i~,~,, and u,= (p+ M:). We see that a,‘, and hence x,, 
depends upon the infinite history of the innovations {e,}. This is true for ARCH(l) processes 
(/3 = 0) as well as for general GARCH processes. It seems reasonable, however, that if we consider 
the m-dependent variable ~2, = o + wCp=iZ,(k) for sufficiently large m, that IIJ~, - a,* 1 can be 
made arbitrarily small. This is essentially the idea behind near epoch dependence. The following 
definition was introduced by Andrews (1988). 

Definition 1. { y } is L’-near epoch dependence (L’-NED) with respect to {e,} if {e,} is a-mixing 
and there exist non-negative constants {d, : t 2 l} and {u, :mk-0) such that v,JO as rntco and 

II r, - WY, I T;i_+Z> II r 5 4vw 

We will require the following conditional moment bound 

(E[(S+ae~)rI~_,])“5~~<I a.s.forall t, (2) 

which reduces to supI >, 11 /? + ae,* 11 r < 1 when {e,} is iid. 

Theorem 1. If (2) holds then {a,*, x,} is L’ - NED with respect to { e, }_ In addition, d, = 2oc/(l - c) 

for all t and v,,, = cm. 

Note that the decay rate given for the NED numbers is exponential. 
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3. Applications 

This section illustrates the usefulness of the Theorem by proving a weak law of large numbers 
(WLLN), strong law of large numbers (SLLN), central limit theorem (CLT) and invariance principle 
(IP) for GARCH(l, 1) processes. Set S, = X:=,x,. 

Our first result applies Theorem 1 of Andrews (1988) and the fact that Lq-bounded (4 > 1) 
L’-NED sequences are L’-mixingales. Note that setting r = 1, (2) holds if /I + OL < 1. 

limsup n-l F lIx,Ilq< cc. 
r=l 

(3) 

Corollary I (WLLN). If j3 + cx < 1, LY, JO, and (3) holds for some q > 1, then n-‘S,, jP 0. 

Our next result applies Theorem 2 of Hansen (1990). 

Corollary 2 (SLLN). If (2) holds f or some r > 1, (3) holds for some q > r, and Cz= ,c&” < cc), then 

II- ‘S, +_ 0. 

How restrictive is (2) with r > l? Note that 

(4) 

If { e, } is iid, (4) equals p + (Y 11 e, 112”,_ Since the L’-norm is continuous in r, for any 6 > 0 we can find 
some r close to but greater than unity such that 

II e, ll2’, < II e, 1112 + 6 = 1 + 6, 

which implies that {e,} iid and j? + (Y < 1 is sufficient for (2). If {e,} is not iid, then by (4), a 
sufficient condition for (2) is the existence of some r > 1 such that 

(E(e?I%-1))“5 < 1 + 6 a.s. for all t, 

and p + a(1 + S) < 1. 
We now turn to the central limit theorem and invariance principle. The following two results are 

direct consequences of Corollary 3.1 of Wooldridge and White (1988). Here we need (2) to hold for 
r = 2. This is equivalent to 

p2 + 24 + a’~~ < 1 as. for all t, (5) 

where K, = E( ep 1 zpl) is the conditional kurtosis. If {e,} is iid, then K, is simply the unconditional 
kurtosis. In many applications, the distribution of e, is assumed to be N(0, l), in which case K = 3. 
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Fig. 1. Trade-offs under normality. 
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The region for (a, p) which satisfies (5) in this case is plotted in fig. 1. 

n-1 $ Ex&72>0, (6) 
r=l 

Corollary 3. If (5) and (6) hold, for some q > 2, sup, >, )I x, 11 4 < co, and {a,,,} are of size 
- q/( q - 2), then n -l”Sn jd N(0, a2). 

Now define the process 

where [ -1 denotes ‘integer part’. Let ‘ - ’ denote weak convergence in the sense of Billingsley (1968) 
and W(s) denote a continuous time process distributed as a standard Brownian motion. 

Corollary 4. Under the conditions of Corollary 3, W,(s) * W(s). 

Corollaries 1 through 4 show that the assumption of conditional heteroskedasticity of the 
GARCH form need not preclude the application of standard asymptotic theory, if appropriate 
regularity conditions are satisfied. The conditions, however, are quite strict, and may preclude 
estimated GARCH processes, since in applications the estimates frequently fall near the region of 
integration (cy + p = 1). This poses questions which cannot be addressed in the current study, but will 
remain of interest to empirical users of GARCH models. 
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Appendix 

Proof of Theorem I. We first prove that { ur2} is NED. Note that Z,(k) is measurable with respect 
to .%6;t+mm for k I m. For k > m, Z,(k) = Z,(m)(nf= m+ Iu,). Thus by Minkowski’s inequality 

k=m+l II i=m+l r=m+l III , i- z,(m);I k 
u,-Z,(m)E n u,\%:+~~ 

(A.11 

where 

By repeated conditional expectations and (2), we find that 

5 c”E( fizd;-,R,, j I CrmE(R’,k). 

By Minkowski’s inequality and Blackwell’s theorem 

(A.21 

(A.31 
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where the final inequality uses the same argument as in (A.2). Putting (A.l), (A.2) and (A.3) together 
we find 

02 

12w c CmC(k-m~l) _ - dv,, 
k=m+l 

where d = 2oc/(l - c) and v, = cm. Thus {u,‘} is L’-NED with respect to {e,}. 
Noting that g(x) = x1j2 satisfies the Lips&k condition, a, = (IJ,~)‘/~ is L2’-NED with respect to 

{e,} by Theorem 4.2 of Gallant and White (1988). Finally, x, = u,e, is L’-NED with respect to {e,} 
by Corollary 4.3.b of Gallant and White (1988). 0 
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