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INFERENCE WHEN A NUISANCE PARAMETER IS NOT
IDENTIFIED UNDER THE NULL HYPOTHESIS

BY BrUCE E. HANSEN!

Many econometric testing problems involve nuisance parameters which are not identi-
fied under the null hypotheses. This paper studies the asymptotic distribution theory for
such tests. The asymptotic distributions of standard test statistics are described as
functionals of chi-square processes. In general, the distributions depend upon a large
number of unknown parameters. We show that a transformation based upon a conditional
probability measure yields an asymptotic distribution free of nuisance parameters, and we
show that this transformation can be easily approximated via simulation. The theory is
applied to threshold models, with special attention given to the so-called self-exciting
threshold autoregressive model. Monte Carlo methods are used to assess the finite sample
distributions. The tests are applied to U.S. GNP growth rates, and we find that Potter’s
(1995) threshold effect in this series can be possibly explained by sampling variation.

KEYWORDS: Asymptotic theory, nonlinear models, thresholds, identification, p-values,
hypothesis testing.

1. INTRODUCTION

THIS PAPER STUDIES THE PROBLEM of inference in the presence of nuisance
parameters which are not identified under the null hypothesis. The models
considered take the form of additive nonlinearity, allowing for stochastic regres-
sors and weak dependence. The asymptotic distributions of standard tests are
nonstandard and nonsimilar, which means (among other things) that tabulation
of critical values is impossible. This paper proposes a conditional transformation
which is analogous to an asymptotic p-value, and has an asymptotic uniform
distribution under the null hypothesis. The transformation is not directly calcu-
lable, but can be approximated using simple simulation techniques.

There are many econometric hypotheses of interest with unidentified nui-
sance parameters. Some examples include: (i) common (canceling) ARMA roots;
(ii) no ARCH effect in a GARCH or ARCH-M model; (iii) constancy of a
regression coefficient with the alternative that it follows an AR(1) process; (iv) a
single regime or state against the alternative of multiple regimes. For brevity,
this paper does not explicitly examine these cases, although the methods of this
paper can be extended to handle these cases as well.

"This research was funded by a research grant from the National Science Foundation and a
research fellowship from the Alfred P. Sloan Foundation. I gratefully acknowledge helpful conversa-
tions with Donald Andrews, Adrian Pagan, Simon Potter, and Halbert White. Insightful comments
on earlier drafts by the co-editor and two referees led to a substantial rewriting of the paper.

) ’An earlier version of this paper (Hansen (1991)) used a more general notational framework
which included nonlinear maximum likelihood estimation.
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This paper concentrates on regression models with additive nonlinearity,
which take the form y,=x,a+h(z,y)' 0+ ¢, Here, the null hypothesis of
interest is whether the nonlinear term h(z,,y) enters the regression. When
6 = 0 the parameter vy is not identified. Specific examples of additive nonlinear-
ity include the following. (i) Box-Cox transformations: h(z,,y) = (27 —1)/; (ii)
structural change: A(z,,y) ={t/n < y}z, where {-} is the indicator function; (iii)
threshold models: h(z,,y) ={z, < y}z,; (iv) Bieren’s (1990) consistent tests of
functional form: h(z,,y) = exp(y’z,); (v) White’s (1989) neural network tests of
functional form: h(z,,y) = ¢(y'z,), where (-) is the logistic function.

There have been several recent papers on the subject of unidentified nuisance
parameters which examine related issues. Andrews (1993b) analyzed tests for
structural change. Andrews and Ploberger (1994) explore optimal testing but do
not discuss methods to obtain critical values in practice. Andrews (1993a)
discusses a range of econometric examples which suffer from the problem of
unidentified nuisance parameters. King and Shively (1991) discuss the merits
and difficulties of reparameterization as a means to handle the problem.
Stinchcombe and White (1993) examine White’s neural network tests. All of
these papers investigate different aspects of the problem and should be viewed
as complementary to the results of this paper.

In the next section, we introduce additive nonlinear regression and discuss
pointwise and global test statistics. Section 3 introduces the conditional p-value
transformation. Section 4 examines threshold regression, including the self-excit-
ing threshold autoregressive (SETAR) model of Tong (1983). A Monte Carlo
study is reported in Section 5. We find that the LM-based tests have excellent
size and good power. In Section 6, we apply these tests to Potter’s (1995)
SETAR model of U.S. GNP and find that the apparent “significant” threshold
effect may be explained by sampling error. Section 7 contains a brief conclusion.
Proofs are left to an Appendix. Concerning notation, let | Al = (tr(A4’A))/?
denote the Euclidean norm of a matrix A, let || All, = (E|A|")Y" denote the

"-norm of a random matrix, and let = denote weak convergence with respect
to the uniform metric.

2. FRAMEWORK AND TEST STATISTICS

The data is {w,=(y,x,):t=1,...,n}, which is a draw from some underlying
probability space, and satisfies the regression relationship y, =xj,B; +
h(x,,v) B, + &,, where x;, is a k; X 1 subvector of the k vector x,, and ¢, is a
real-valued martingale difference sequence with respect to some increasing set
of sigma-fields 7, to which &, and x,, , are adapted, and Es? = 0% < . y takes
values in I', a bounded subset of RY, and the function A(-,-) maps R* X I" into
R™. We will typically write h(x,,y) more simply as &,(y). It will be convenient
to write the model in the alternate form

¢)) y=x(y)B+¢
where x,(y) = (x,h,(y)) and B=(B;B;)".
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The question of interest is whether the nonlinear term A,(y) enters the
regression, that is, whether B, = 0. The distributional theory will be facilitated
by a local-to-null reparameterization: B, =c/vVn. The null hypothesis is H,:
¢ = 0 with alternative H, :c # 0. The test is nonstandard since y does not enter
the regression (and therefore is not identified) under H,.

_Under H, the model simplifies to y, =x), B; + &. The OLS estimators are
By =1 x, %1 )" (E{_1xy,y) and G2 =1X] & /(n—k,), where & =y -
x1, By

Under H,, if v were known, then B could be estimated by ordinary least
squares on (1), yielding estimates B(y)= (T 1%(y)x, (y) )N Er x, (y)y,)
residuals 2,(y) =y, — x,(y) B(y), and sample variance GAXy)=Xr_8(v)?/
(n—(k, +m)). When vy is unknown, then its least- -squares estimate can be
found by minimization of 6,’(y) over y€&I', yielding % = argmin 8,”(y) and
B B(y) These are also the MLE when ¢, is idd Gaussian. It will be useful to
define the regression scores s,(y) =x,(y)e, and their estimates under H, and
H,, respectively, §,(y) =x,(y)&,(y) and §(y) =x,(y)&,.

If v were known, then the testing problem would not be complicated.
A heteroskedasticity-robust Wald test takes the form

T,(») =BGy R(RVF(1IR) " R'B(3)
where R 1s the selector matrix R =(01,)’, V*(y) M,(y,y) Wy IM,(y,y) 1,
V.(y)=1¥r 8(y)5(y), and M,(v,, 'yz) 7 x(yDx,(v,). Alternatively, a
Lagrange multiplier statistic is found by settlng Viy) = Lyn 5(y)5(y). Tests
which assume homoskedastic errors can be formed similarly.

If y were known a priori, then under conventional regularity conditions 7,,(y)
would have a “point-optimal” interpretation and an approximate x> null
distribution in large samples. Hence H, can be tested by selecting a “reasona-
ble” value of y a priori. We might expect this test procedure to work well if vy is
known a priori, or if the selected test statistic is not sensitive to the choice of 7.
For many of the examples of interest, however, neither condition holds. The
researcher is left with an unpleasant dilemma. Either y is selected in a
completely arbitrary way (and thereby sacrifices power) or vy is selected in some
data-dependent fashion, in which case the chi-square distributional approxima-
tion will be invalid. In addition, researchers who estimate unrestricted models
will be generating estimates of y. They will be interested in the question: “Does
the unrestricted model fit statistically better than the restricted model?”” which
cannot be answered by a point-optimal test. To avoid these difficulties, we turn
to tests which do not require prior knowledge of 1.

Davies (1977, 1987) suggested testing H,, by sup 7, =sup, c rT,(y), which
equals the LR statistic when T,(y) is the pointwise likelihood ratio statistic.
Andrews and Ploberger (1994) examine tests of H, and argue that superior local
power can be constructed from the statistics aveT, = [-T,(y)dW(y) and
expT, = In(Jrexp(3Z(y)) dW(y)). All three statistics can be written as functions
8(T,,), where g(-) maps functionals on I" to R, and we write T, ={T,(y): y€ I'}
as a random function on I'. Each function g is continuous with respect to the
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uniform metric, monotonic in the sense that if Z,(y)<Z,(y) for all y then
8(Z,) <g(Z,), and has the property that if Z(y) — o for y for some subset of I"
with positive W-measure, then g(Z) — «. We will denote the test statistic as
g, =&(T,) for any choice of g.

Define M(y,,v,) = E(x(y)x(y,)) and X, =sup,, . p|x,(y)l.

ASSUMPTION 1: w, is strictly stationary and absolutely regular with mixing coef-
ficients m(m) =0(m~1) for some A>v/(v—1) and r>v>1; E|x|" <o
Ele,|* <o; and inf, . rdet(M(y,y))> 0.

The absolute regular mixing coefficient n(/, &) between o-fields & and Z is
defined as

1 :
(o, B)==sup Y, |P(4,nB)—P(A4)P(B)I,
G, ped,n)

where A;CA, B; CB, and the supremum is taken over all the finite partitions
(A,); < and (B)); c; respectively o/ and & measurable. Absolute regularity was
first defined by Volkonskii and Rozanov (1959), and is stronger than strong
mixing yet weaker than uniform mixing. Pham and Tran (1985) have shown that
a wide class of linear processes with iid innovations (such as ARMA processes)
are absolutely regular when the innovation has a bounded, continuous density,
and thus these processes satisfy Assumption 1. Define K, (v, y,) =
1y s(yDs(y,), and K(yy,v,) = E(s,(y)s,(y,)"). Under the stated moment
conditions, we see that for all y,y, € I'y, M, (y;,v,) = M(y,,v,) and K,(y;,7,)
— K(y,,7v,) a.s. We will need the stronger requirement of uniform convergence.
At this point we give high-level conditions, supplying primitive conditions in
Section 4.

ASSUMPTION 2: Forsome B <®and A > 0, ||(h,(y) — h(y'Della, <Bly—y'I*

ASSUMPTION 3: M,(y,,7v,) and K,(y,,v,) converge almost surely to M(y,,v,)
and K(vy,, v,), respectively, uniformly over y,,y, € I'.

Let S,(y)=(1/Vn)X"_,s(y), and let S(y) denote a mean zero Gaussian
process with covariance kernel K(y,,y,). This means that for any {y,,..., v} €
r*, {8(y,),...,S(y,)} is multivariate normal with mean zero and covariances
E(S(y)S(y)") = K(y;, 7). Next, let S(y) =R’'M(y,y)~'S(y) which is a mean-
zero Gaussian process with covariance kernel

I?(’Yl,’)’z) =R'M(')’1,'Y1)_1K('Yl, 72)M(72>72)_1R'
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THEOREM 1: Under Assumptions 1-3, S, =S, T, = T¢, and g, = g° =g(T*),
where

T(y) = (S(y)" +c'Q(PIK(y,y) " (5(y) + Q(¥)c)
and Q(y) = R'"M(y,y) *M(y, y,)R, with vy, the true value of vy when c # 0.

Theorem 1 gives the asymptotic distribution of the test statistic sequence T,
and the global test g, under the local alternative 8, =c/ Vn . Thus the asymp-
totic null distribution of T, is T°(y) = S(y)'K(y,y)~'S(y), which has for each
y € I' a marginal chi-square distribution. Hence, we call T° a chi-square process,
and similarly T° a noncentral chi-square process. Since the null distribution of
g% =g(T") depends, in general, upon the covariance function K, critical values
cannot be tabulated except in special cases.®

3. THE P-VALUE TRANSFORMATION

Let F(-) denote the distribution function of g°, and define p, =1 —F°(g,).
Tests based on g, and p, are equivalent since F° is monotonic and continuous.
From Theorem 1 we see that p, = p¢, where p¢=1—F°(g®). In particular, the
null distribution is p° ~ U, the uniform distribution on [0,1]. Thus the asymp-
totic null distribution of p, is free of nuisance parameters. Our test is to reject
H, if p, < . When the exact null distribution of p, is U, then « represents the
size of the test; otherwise « is an asymptotic size, since
) lim P{p, < alc =0} =a.

n— o
We call p, an “asymptotic p-value.”

Strictly speaking, the label “p-value” and “asymptotic size” are correct only if
the convergence in (2) is uniform* over the null hypothesis. Note, however, that
the distributions of T, g,, and p, are invariant to the parameters B, and o>
Thus in the special case in which x, is strictly exogeneous and ¢, is i.i.d. normal,
the distribution of p, is free of nuisance parameters, so H, is simple and the
convergence in (2) is trivially uniform. In the general regression context, uniform
convergence may not hold. This is common in econometric testing problems and
will not be emphasized in this paper.

The asymptotic power function associated with the test is

m,(c) = lim P{p, < alc} =P{F°(g°) >1— alc}.

It is possible to show that as |c| becomes large, g¢ —  almost surely, so p© — 0
a.s. Hence for any a > 0, m,(c) —> 1 as |c| > %, and the test has nontrivial local
power.

3For example, when testing for structural change of unknown timing (Andrews (1993b)) the
asymptotic distribution only depends upon I' and m.
*For a definition see Sweeting (1980).
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The random variable g° can be written as a continuous functional of the
Gaussian process S(vy), which is completely described by its covariance kernel
K(v,,7,). We can construct two estlmates of this kernel, derived by the Wald
and LM principles: K,(y;, vy) = LZ7_5(y)5(y,)' and K, (1, v,) =
Lyn §5(y)3(y,)". One attraction of the estimator K, is that, like an LM
statistic, it only involves estimation under the null hypothesm

Now operate conditionally on the sample w. Denote by S a conditional
mean-zero Gaussian process with covariance kernel K (), by T a conditional
chi-square process with covariance kernel R'M, (yl, 71) 1K (71, v)IM,(y,,

v,) 'R, and let §, = g(T) Let F denote the condltlonal distribution function
of 8,, conditional on the sample w, and set p,=1— F (g,,) Similarly, let S,
denote a conditional mean-zero Gaussian process with covariance kernel K, )
and similarly T g, F,,and p,.

These are not vacuous definitions. S and T can be generated by letting
{v)/_, be iid. N(0,1) random variables, and setting

3) S (y)=—= Y 5(y)y,

and

A A _ A -1 12

@ () =S,V My, ) 'R(RVF(YIR)  R'M,(y,7)" 'S, (x).
Similarly, $, and 7, can be generated by

1

® - =ff(y)u,
and
(6) T,(y)=S,(y)M,((y, «y)‘lR(R'I?n*(y)R)’1 R'M,(y,y)" 'S (y).

THEOREM 2: Under Assumptions 1 and 2, p, =p, +0,(1) and p, =p, + 0,(1).
Hence p, = p° and p, = p¢, and under H, the asymptotic distribution of both p,
and p,, is U.

Theorem 2 shows that p, and p, are asymptotically equivalent to p,, under
both the null hypothesis and local alternative B, =c/Vn. The proof of the
Theorem runs roughly as follows. We show that S, =, S, where “=,” denotes

“weak convergence m probability” as defined by Gine and Zinn (1990) This
implies that g, =, g° and hence E(x) -, F%(x), uniformly in x. Thus p, =
1-F%g,)+o, (1) as stated. The proof has similarities to those used to derive
asymptotic propertles of the bootstrap.

The conditional distribution functions F () and FE(-) are not directly ob-
served, so neither are the random variables p, and p,. We can approximate
either F or F, to any desired degree of accuracy, however, using standard
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simulation techniques. Equations (3)-(6) show that a random draw from either
conditional distribution can be made using a sample of iid N(0,1) variables.
Take, for example, F,. For j=1,...,J, execute the following steps:

() generate {v,}., iid N(0,1) random variables (using a random number
generator);

(ii) set Sj(y) =1/ Vn)Ei_ 5 (yIv,;;

(iii) set T)(y) = Si(y)'M,(y,v)"'R(R'V*(y)R)"'R'M,(y, )~ 'Si(y);

(iv) set g) =g(T)).

This gives a random sample (gl,...,8)) of J observations from the condi-
tional distribution F,. Then compute the percentage of these artificial observa-
tions which exceed the actual test statistic g,:p, = 7L/_,{g] >g,}. By the
Glivenko-Cantelli Theorem, for any sample p; —,1—F,(g,)=p, as J - .
Since J is under the control of the econometrician, p; can be made arbitrarily
close to p, by picking sufficiently large J, and thus can be used as our test
statistic in place of p,. Analogously, we can conmstruct p;, using Si(y)=
1/Vn )Li_1x,(y)&u,; instead in step (ii). To select J in practice, an appeal to
the central limit theorem gives an asymptotic standard error for p! of
Vb7 —p])/J. For example, when p7=0.05, setting J = 1000 yields a stan-
dard error of only 0.007.

When the regression error is conditionally homoskedastic: E(s2l9,_,) = o2
a.s., the asymptotic expressions are significantly simpler. To approximate the
asymptotic p-value using this information, for j=1,...,J, set Si(y)=
a/vn )Z_1x,(y)v,, where v,; are iid N(0,1) draws from a random number
generator,

i) =8,(»)'M,(y, ) RR'M,(y, 9 'R) " R'M, (5,907 8, (v,

and p, =(1/1Z]_{g(T})>g,). The same arguments as before show that
pl -, D, as J>» and p, -, p° as n — , with the null distribution p° ~ U.

If I is a continuous parameter space, calculation of g, and replications g/
might be excessively costly. In this case, it may be reasonable to replace I" by a
discrete approximation Iy =(y,,...,7,). Then the actual test statistic is g,, =
g(T,, I)), where the notation is explicit about the dependence upon the region
I. The simulated draws are g/, =g(T/,I}) and the p-values are pJ,=
(A/NZ]_ {8}, =84,). The null asymptotic theory goes through unaffected.
Specifically, g,, = g(T, I;) =g, say, and p,, =% p4, with p} ~ U. The power
of the test may be adversely affected, however, if the selected approximation I,
is insufficiently dense in I'. Essentially, the function 7,(y) may have a sharp
peak at some vy, € I' which is missed by the set I;. A general solution to this
problem may be impossible, since the appropriate choice of I, will depend
upon the smoothness of T,(vy). If this is the case, several choices of I, could be
used to assess sensitivity. In some' applications, such as the threshold models
- explored in the next section, this is not an issue, as the sample function T,(y)
are naturally step functions with known step-points.
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4. THRESHOLD REGRESSION

A typical threshold regression model takes the form (1) with A(x,,y) ={z, <
v}x,, where {-} denotes the indicator function, z, is an element of x,, x;, =x,,
and I'=[y,, vy ] Threshold models are quite common in applied econometrics,
typically interpreted as sample splits. By formally treating y as an unknown
parameter, the threshold model allows the selection of vy to be made conditional
on the data.

The regression function and all test statistics are functions of z, and y only
through the indicator function {z, < y}. For any monotonic transformation
Z,(): I'> T, we have {z, < y} ={z,, < 7} where z,,=Z,(z,) and 7=Z,(y). An
ideal choice for Z,(-) is the empirical distribution function of z,. One advantage
is that the transformed threshold parameter = is unit-free and lies in the generic
region [0, 1]. The pointwise test statistics are ill-behaved for extreme values of 7,
so T should not include values of 7 too close to 0 or 1. There is no obvious
criteria by which to make this choice, but a similar dilemma appears in the
changepoint literature, where recently Andrews (1993b) suggested 7" =[.15, .85].

Davies (1977) mentioned threshold models as a possible application of his
distributional theory, but did not investigate whether his conditions were satis-
fied. In fact, they are not. Davies assumed that the limit process T(y) has a
derivative, but this is not the case in threshold models. Take the special case
where x, =1 and z,=y,_,. Here, the asymptotic process T(y) is known to be a
normalized squared Brownian bridge (see Chan (1990)), which is nowhere
differentiable and thus has infinite total variation. The bound Davies uses is a
function of the sample total variation, which is finite in any sample yet diverges
to infinity as n — o, rendering an asymptotic size of zero. Table I compares
Davies’ procedure with the test based on the asymptotic critical values, where
the innovations ¢, are iid N(0, 1), and the sample size is varied from 50 to 1000.
The null sets §=0 and the alternative sets §=.5 and y=0. The first five
columns show the rejection frequency under the null, in which case Davies’
suggested procedure is extremely conservative. The cost shows up in the rejec-
tion frequency under the alternative (the final five columns), where the Davies’
procedure yields tests with power less than the nominal 5% rate for samples of
500 or less. As expected from the asymptotic theory, Davies’ bound is not useful
in this context.

TABLE I
S1zE AND POWER OF NOMINAL 5% SizE TESTS FOR SHIFT IN MEAN

Null =0 Alternative = .5
Sample Size 50 100 250 500 1000 50 100 250 500 1000
Davies Procedure .00 .01 .01 .01 .00 .01 .02 .03 .05 .09

Asymptotic Criticals .02 .04 .04 .04 .05 .04 .08 12 19 34
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Instead, we can apply the conditional transformation of Section 3 to obtain
appropriate asymptotic critical values. The following theorem shows that this
procedure is justified.

THEOREM 3: Assume that Assumption 1 holds with r > v, and z, has density
function f(z) such that sup,_ pf(x)=f<o. Then Assumptions 2 and 3 are
satisfied, and hence Theorems 1 and 2 hold.

The threshold model assumes that the threshold variable z, is known a priori.
This is not always the case. In many examples, all that is known is that z, is
some element of x,,, some k, X 1 subvector of x,. In this case, we can write
z,=x,,d), the dth element of x,, In this notation, we can think of d as a
parameter, taking values in the discrete set D ={1,2,...,k,}. The standard
threshold model emerges as the special case in which d is known a priori. In the
threshold selection model d is unknown and must be estimated along with the
other parameters.

For fixed (1, d), the model is linear in (a, 6) so can be estimated by ordinary
least squares. The global estimates of the parameters can be found by minimiza-
tion of the resulting least squares variance estimate over (y,d) e (I'X D).
Under the null hypothesis both the parameters y and d are not identified, so
the pair (v, d) is treated as we had treated vy in the earlier sections. Thus, the
pointwise test statistics 7,(y, d) may be found for each (1, d), and the transfor-
mations g,, p,, and p; found as before, replacing the argument y by (y, d).

It is not hard to see that the asymptotic theory is essentially unaffected. Since
D is a finite set, all convergence results are uniform over d € D.

COROLLARY 1: If z, =x,(d), assume that Assumption 1 holds with r > v, and
Xy, has density function f(x) such that sup, ¢ gs, f(x) = f < . Then Assumptions 2
and 3 are satisfied, and hence Theorems 1 and 2 hold for the threshold selection
model.

A special example of a threshold regression is the so-called self-exciting
threshold autoregressive model (SETAR), which has received considerable recent
attention in the nonlinear time series literature. The model takes the form

(M Vi=agtay, o tayy,,
+(0p+ 6,y + - 0,5 ) y_a<v}+g

with {&,#} a MDS. The model (7) falls in the class of threshold selection
models by setting x,=(1 y,_, -+ y,_,} and z,(d) =y, ,, and is largely due to
Tong (1983). Chan (1990) proved an analog of Theorem 1 under the assumption
that d is known and &, is iid Gaussian. Chan (1991) approximated the tail of the
asymptotic distribution for general p (but still fixed and known d). General
results, allowing arbitrary distribution functions for &,, general functionals on I’
such as the Andrews-Ploberger optimal transformations, and treating d as an
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unknown parameter, have not been treated before. Our theory easily handles
these generalizations.

COROLLARY 2: Suppose that {y,} is generated by (7) with &, independent and
identically distributed, all the roots of the characteristic equation zP — o zP~!
— -+ —a, =0 lie strictly within the unit circle, E |s,|4' < o« for some r > 1, and the
density of &, is bounded and continuous. Then under H,:6,= -+ =6,=0,
p,=Uandp,= U.

The assumptions of Corollary 2 imply that y, is strictly stationary and
absolutely regular with exponentially declining mixing coefficients (see Pham
and Tran (1985)), establishing Assumption 1. It also implies that y, has a
. bounded density, completing the requirements for Corollary 1. The only reason
why we technically restrict attention to the null hypothesis is because it has not
been investigated whether or not SETAR processes are absolutely regular.
Similarly, the restriction that &, is iid is made only to guarantee absolute
regularity. It is quite likely that this condition is not necessary and could be
replaced by a martingale difference condition. Hence while the assumptions
include homoskedasticity, we do not think that it is prudent to impose this
condition when constructing test statistics.

5. FINITE SAMPLE DISTRIBUTION

To assess the usefulness of the testing methodology, finite sample distribu-
tional results are reported in a simple Monte Carlo simulation study. We use the
threshold-selection SETAR model (7) with p=1,2,and 3, @; = .3, ay = a, = a3
=0, & iid N(0,1) and two sample sizes, n = 100 and n = 200. When p > 1, both
the threshold lag d and the threshold y were estimated by least squares. The
experiments were done for tests of size 10%, 5%, and 1%, but only those for
size 5% are reported since no differences were observed.

The test statistics functions 7,(y,d) were calculated using four different
covariance matrices: (i) standard Wald (W); (ii) standard Lagrange multiplier
(LM); (iii) MacKinnon-White (1985) “jackknife” heteroskedasticity-consistent
Wals (W"); (iv) Eicker-White heteroskedasticity-consistent Lagrange multiplier
(LM™). From each of these test statistic functions, two functionals were used:
the supremum (sup), and average (ave) (see Section 2) to generate the test
statistics g, and the simulated p-values p;]. Due to the large computational
requirements of the simulation design, the number of internal simulation
replications was set at J =500 and the region T° for the calculation of the test
statistics (see Section 4) was set at 7' =1[.2,.8]. A ninth test statistic, included for
comparison, is the S, test of Luukkonen, Saikkonen, and Terasvirta (1988),
which is an LM-type test for a smooth transition autoregressive (STAR) model.
The simulation study reported in Luukkonen, et al., showed that the S; test has
good power.
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TABLE II
FINITE SAMPLE SIZE OF ASYMPTOTIC 5% TESTS

n=100 n =200
AR order p=1 p=2 p=3 p=1 p=2 p=3
SupW .07 .07 .07 .05 .05 .08
AveW .05 .05 .04 04 .04 .06
SupLM .05 .04 03 .04 .04 .05
AveLM .05 .04 .03 .04 .04 .06
Supw? 14 21 32 .09 13 .19
AveW" .07 .09 .10 .05 .06 .07
SupLM" 04 .02 .03 .05 04 .02
AveLM!" .04 .04 .03 .04 .04 .05
STAR .05 .04 .03 .04 04 04

We report in Table II the actual size (setting 6, = 6, = 0). For samples of size
100, reported in the first three columns, 2000 simulated samples were drawn.
For samples of size 200, reported in the final three columns, 1000 simulated
samples were used for p=1 and p =2, and 500 for p =3. We find that the
asymptotic approximation is excellent for the “standard” tests (without the
heteroskedasticity correction). The heteroskedasticity-consistent LM tests are
slightly conservative for large p, and the heteroskedasticity-consistent Wald
statistic supW" is excessively liberal, especially at n =100. Based on these
results, our recommendation is to avoid the supW" statistic unless the sample
size is very large.

To assess power, we consider two specifications, using first an intercept shift
(6, # 0) and second a slope shift (6, # 0). In both specifications, vy is selected so
that it is approximately the median of y,_,. (Since there is no closed-form
expression for the distribution or density of y,, the median was calculated by
simulation.) For each simulation design with p <2, 1000 replications were
made, and 500 replications were made when p = 3. Finite sample 5% critical
values for the test statistics were calculated from the .05 percentile of the
empirical distribution of the tests calculated under the null. For each p and
each n, the power of the Wald and LM tests were nearly identical, so we only
report in Table III the results of the LM-based tests.

As expected, power is increasing in |6,| or |6,], increasing in n, and decreasing
with p. Indeed, the effect of the estimated model order (p) is quite strong,
indicating that the cost of over-fitting is high. The theory of Andrews-Ploberger
(1994) suggests that aveLM should be optimal against local alternatives, yet this
is not supported by the simulation evidence. Instead, we find that for shifts in
the intercept supLM has the best power, yet for shifts in the slope aveLM
dominates. It is also interesting to compare the power of our tests with the
STAR test of Luukkonen, et al. The STAR test does remarkably well against the
shift in slope, although less well against the shift in the intercept. It also does
better against local alternatives than distant alternatives, which is expected since
it was derived using a local power argument. It is also possible to see a slight
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TABLE III
FINITE SAMPLE POWER OF 5% SIZE TESTS

n=100 n =200
(2} 60, (2} 0,
=.75 —-1.25 —-.6 -1.0 -.75 —-1.25 - .6 -1.0

p=1

SupLM 29 70 25 69 .63 99 55 98

SupLM" 28 65 22 62 61 98 52 96

AveLM 21 .50 38 84 .39 86 67 99

AveLM" 20 47 36 .80 35 83 63 98

STAR 18 42 31 73 34 72 58 97
p=2

SupLM 22 61 18 60 29 70 25 .69

SupLM" 20 .55 .16 52 28 65 22 62

AvelM 13 27 25 67 21 50 38 84

AveLM" 12 26 21 61 20 47 35 80

STAR 14 30 .19 56 .18 42 31 73
p=3

supLM 15 48 18 52 15 48 18 52

SupLM" 15 44 .18 48 15 44 18 48

AveLM .08 17 .19 54 .08 17 .19 54

AveLM" 07 16 18 - 47 07 .16 18 47

STAR .10 21 15 43 .10 21 15 43

deterioration in power from the use of the heteroskedasticity-consistent test
statistics, rather than the tests which assume homoskedasticity. The power loss is
fairly mild, however. In sum, the simulation evidence strongly favors using our
new tests.

6. APPLICATION TO U.S. GNP

We now apply this testing methodology to Potter’s (1995) model of U.S. GNP.
He used a SETAR in growth rates with a first, second, and fifth autoregressive
lag. To select the threshold and delay parameters, he used informal graphical
methods. While not an optimal estimation method, this is still conditional on the
data, and hence invalidates the use of conventional test statistics and critical
values. Our tests, on the other hand, allow a direct assessment of the statistical
significance of his model.

The data is real GNP (seasonally adjusted) from Citibase for the period
1947-1990 and transformed into annualized quarterly growth rates. We esti-
mated the model by least squares, allowing the threshold variable y to vary from
the 15th to the 85th percentile of the empirical distribution of x,, and the delay
parameter d over 1, 2, and 5. Our estimates are d =2, ¥ =0.01, and:

Regime 1—x,_, < 0.01: '

x,=-321+ 51x%_,— 93x,_,— 38x,_.+8&, O6f=235;
A1 T Gy Qs
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TABLE IV
TEsTs FOR THRESHOLD EFFECT IN U.S. GNP: 1947-1990

SupLM ExpLM AveLM SupLM" ExpLM" AveLM"
8n 18.2 4.8 4.6 14.1 4.0 4.7
)24 0.04 0.09 0.29 0.17 0.17 0.27

Regime 2—x,_, > 0.01:

x, =214 + 30x,_,+ 18 x, ,— .16 x,_s+ &, &F—12.1.
77 (10) (.10) .07

Heteroskedastic-consistent standard errors are given in parenthesis.

The LM-based tests for the hypothesis of a single regime (no threshold effect)
are reported in Table IV, with mixed results. If the homoskedasticity hypothesis
is maintained, then supLM is marginally significant at the asymptotic 5% level,
while aveLM is far from the rejection region. The point estimates for the error
variance in the two regimes suggest that there may indeed be error het-
eroskedasticity. The test statistics which are robust to heteroskedasticity, how-
ever, are all far from standard rejection regions. Should we believe the “rejec-
tion” implied by supLM or the caution implied by the other statistics? The
marginally significant supLM statistic could possibly be due to heteroskedastic-
ity, yet the insignificant supLM" statistic could possibly be due to its lower
power. Our simulation evidence, however, suggested that the power loss is small.
No definitive answer is possible, but it is fair to conclude that the apparent
significance of the threshold model is consistent with sampling variation.

7. CONCLUSION

Many econometric models contain unidentified parameters under interesting
parametric restrictions. Tests concerning these restrictions cannot use conven-
tional statistical theory to assess significance. This paper extends the literature
by developing a simple simulation technique which produces p-value statistics
with an asymptotic uniform distribution under the null hypothesis.

Dept. of Economics, Boston College, Chestnut Hill, MA 02167, U.S.A.
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APPENDIX: MATHEMATICAL PROOFS

PROOF OF THEOREM 1: We start by showing that S, = S. Note that for each y& I, s(y)=
x(y)e, is a square integrable stationary martingale difference, to which the pointwise central limit
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theorem applies. Furthermore, note that the covariance kernel for S,(y) is
1 n
E(S,(v))S,(y,)) = - Y EGs,(y)s, (7)) = K(y,, v,).
t=1

The multivariate central limit theorem establishes the finite dimensional distributional convergence.

To establish stochastic equicontinuity, we appeal to Theorem 1, Application 5, of Doukhan,
Massart, and Rio (1994). Our data, and hence the summands s,(y), satisfy the necessary absolute
regularity mixing decay rate, and the envelope function is sup, |s,(y)l =%,|g,|, which is L** bounded
under Assumption 1. Finally, we need to show that the log of the L2’ bracketing numbers is
integrable. Since I'C RY, one can always find a set I’y and constant G < < so that for all v there is
some vy, € I'y satisfying

(8) ly— vl <GN~1/4,
Set N(8) = G7B9/%89/*, Using Assumption 2 and (8), for all y€ I,
(©)] s, (y) = sCyllzo = A, (y) — B (v D &2,

<Bly— v/ <BG)N"*/1=3,

Thus N(8) satisty the definition of the L?” bracketing numbers. Since

fl‘/log(N(B)) d8<\qlog(GB'Y) + ['\fiog(579/%) ds <=
0 0

the conditions of Doukhan, Massart, and Rio are met, establishing that S, is stochastically
equicontinuous, and hence that S, = S.
Standard algebra and Assumptions 1-3 show that

10) VAR B(y) =R'M,(y,7) "' S,(y) + R'"M,(y,7) "' M,(y, y,)Re
='R’M(y,y)7IS(y)+R’M(y,7)71M(7,70)Rc=§(7)+§(7)c.

It is not hard to show that 17,,()/) — K(vy,v) as., uniformly over y. Hence

an RVX(Y)R-R'M(y,y) ' K(y,y)M(y,y) "R=K(y, ).

The continuous mapping theorem (CMT) applied to (10) and (11) show that T, = T, and hence

g, =8¢ by the CMT. Q.E.D.

PROOF OF THEOREM 2: Let s (y) =s,(y)v, and S*(y)=(1/Vn )L s*(y). We first show that
Sy =, S. Let W denote the set of samples w for which

] n
(12) limsup — Y %262 < oo,

n—x t=1
K, (y1,72) = K(vy,7,), uniformly over y, and v,.

Under Assumptions 1-3, P(W) = 1. Take any w € W. For the remainder of the proof, we will be
operating conditionally on w, so all of the randomness appears in the iid N(0, 1) variables v,. Set
E,X=E(X|w).

Note that s7(y) are independent mean-zero normal random vectors, and S} is a mean-zero
Gaussian process with covariance function

1 n
E (ST (y)Si(y)) = o 2 EW(s,(y)s,(v,)'02)

t=1
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1 n
==Y s (s (v) =K, (v1, 7).
n,

Since K,(y,,7v,) — K(y,,7v,) by (12), the finite dimensional distribution of S¥* converge to those
of S.
Next, the envelope of s,(y) is L*integrable:

1 1
limsup — Z E,, sup |s,(y)|* = limsup — Zx,e, < oo,
n—o t=1 yel n—® nt 1

by (12). Define the norms

pu(Y172) = (E, IS*(y,) — S* (y,)I)"*
1/2
( E(s,m —s,m»)
t=1

and p(y,,¥,) = lls,(y1) — 5,(¥,)ll2. Observe that

: 1/2
1 n
Paly1572) = [tf{; Y Gy = s,(v2)) (s, () —st(vz))’}}
=1

= [tr{ K, vy, 1) + K, (25 v2) = K (v2, 71) — Kn(yy, v2)2
> [t{K(y1,7) +K (v, 72) = K(y2,71) = K(y1, v )12 = p(y1,v2)

uniformly over y; and y, under (12).
For any integer N, let I}y be the set satisfying (8), and for any 8 > 0 set N(8) = GIB/%49/*, By
the monotonicity of the L”-norms and (9), we have

p(79 'Yk) < ||S,(Y) _SI(Yk)||ZU < 69

establishing that N(8) are the L? bracketing numbers, and have an exponential decay rate. Pollard
(1990, Theorem 10.6) showed that ¥ is stochastically equicontinuous under these conditions. Hence
(for the particular w we selected), SW = S. Since P(W) =1, S = S, as desired.

Second, we wish to show that S =, S. Note that S, ('y) SE(y) +Si(y), where S;(y)=
a/ \/_)Z" 1% (yX&(¥) — &)v,. We have

sup Vn ( B(y) — Byl

yel

(13) sup [S}(y)| < sup |— Zx,(y)x,(y)'v,

yerl' yerl

Using the same arguments as before, we can see that conditional on w, (1 /1%, (Px,(y) v, =0
a.s. Thus (13) converges weakly in probability to zero, and S =, .
This allows us to find under Assumptions 1-3 and the CMT that

T,(1) =8,(») My, ) ' RRVFIR) ™ R'M,(y, )" $,(v)
=, S()'K(y, )7 8(y) =Ty).

Thus g, =g(%,) =, g(T°) =g°, which implies that £,(x) -, FO(x), uniformly in x. We conclude
that

b =1-F(g,)=1-Fg,) +0,(1) =p, +0,(1),

as stated. The proof for p,, is similar. Q.E.D.
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The proof of Theorem 3 relies on the following uniform strong law.

LemMA 1: If {w,} is strictly stationary and ergodic, E|¢(w,)| <, and w, has a continuous
distribution, then

14) sup 2¢(w,){w, <y} —E(ew)w, <yD|-0 as.

YER

PrOOF OF LEMMA 1: Pollard (1984, Theorem I1.2) established (14) when for each &> 0 there
exists a class of approximating functions {f*,(w,), f. ,(w):k=1,...,K,}, K, <, which have the
property that for each v, there exists some k such that f! k(w,) < ¢(w,){w, < y} <f¥ww,) and
Elf#w) - f! (W)l < &. We can construct a qualifying set of approximating functions as follows.
Set K, = 2E|¢(w,)l/e and select {yy,..., yx,} so that for all k

1s5) E(l¢w)lly <w, < yee D) <e/2.
(This is possible since w, has a continuous distribution.) Then set

fe k(wt) = ¢(wl){wt ')’k+1}{¢(wz) 20} + o(w){w, < veHo(w,) <0}

and
FLew) = dw)w, < v How,) = 0} + ¢(w, )W, < v,  Hep(w,) <0}.

By construction, for all v, there is some k such that y, <y < y,,; and f! (W) < ¢w)w, < v} <
f&(w,). Hence,

Elf ) = £} kW)l < 2El(w ){w, < i 1} = (W, < %D
= 2E(|¢(W,)|{Yk <W; < Yis 1}) <e,

where the final inequality is (15). Q.E.D.
PROOF OF THEOREM 3: When vy’ < vy, by Holder’s inequality and the boundedness of f,

ICh,(y) =R (y Nellzn =llx, ey’ <z, < y}20

<llx, &l ly" <z, < yYl2rv icr-0y
v (r—v)/2rv
"nA
< ||x,||4,||e,||4,( / ,f(x)dx) <Bly-vl
Y

where B =||x,lls,ll&lla,f"~7/2"" and A= (r—v)/2r. The same inequality holds for y < y’,
establishing Assumption 2.
Note that

1 n
— Ex,x', — Ex x{z, < v,}
n

M, (yy,7,) = - M(y,7,)

12 1
— Zx,x {z,< v} Zx, {z, <min(y;, v,)}

t 1
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and
12 12
; thxtstz ; Zx,xte,z{z, <7,}
=1 =1
Kn(71’72)= 1 n _’K('Yl:')’z)
- Y o xxeHz, <y} — Y x,x,eMz, <min(y,, v,)}
t=1 t=1

a.s., uniformly in vy, and y, by Lemma 1, and the assumption that z, has a continuous distribution.
This establishes Assumption 3. Q.E.D.
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