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REGRESSION WITH NONSTATIONARY VOLATILITY

By BrUCE E. HANSEN!

A new asymptotic theory of regression is introduced for possibly nonstationary time
series. The regressors are assumed to be generated by a linear process with martingale
difference innovations. The conditional variances of these martingale differences are
specified as autoregressive stochastic volatility processes, with autoregressive roots which
are local to unity.

We find conditions under which the least squares estimates are consistent and
asymptotically normal. A simple adaptive estimator is proposed which achieves the same
asymptotic distribution as the generalized least squares estimator, without requiring
parametric assumptions for the stochastic volatility process.

Keyworps: Conditional heteroskedasticity, stochastic volatility, adaptive estimation,
integrated processes, stochastic integrals.

1. INTRODUCTION

MANY ECONOMETRICIANS ARE BEGINNING TO SERIOUSLY ENTERTAIN the notion
that some economic series might violate the assumption of covariance stationar-
ity. Covariance stationarity is a very strong assumption, requiring time invari-
ance of unconditional variances and autocovariances. Casual examination of
plots of recursive and rolling estimates of variances for many series, however,
suggests nonconstancy. Recent papers which formally discuss this phenomenon
include DeLong and Summers (1986), Pagan and Schwert (1990a, 1990b), and
Phillips and Loretan (1990).

The finding of covariance nonstationarity has implications for both economic
and econometric theory. This paper is concerned exclusively with the second
topic. Virtually all econometric theory (with the exception of the literature on
unit roots and cointegration) assumes that the data are draws from stationary
distributions (or asymptotically stationary distributions, such as mixing pro-
cesses). The implicit assumption is that if the data are approximately stationary,
then the use of the theory for stationary random variables is still useful. This
view seems reasonable, if the departures from stationarity are minor. On the
other hand, if the departures from stationarity are substantial then it seems
clear that we need a new theory, and it is currently unknown what constitutes a
“minor” or a “substantial” departure. This paper attempts to break new ground
by developing a large-sample distribution theory for random variables with
possible nonstationarity in the variance.

To handle the difficult concept of nonstationary variances, we work with a
class of autoregressive stochastic volatility processes. In these models, the
“variance” is a nonlinear transformation of a latent autoregressive process. This

!A preliminary version of this research was circulated as “Regression Theory When Variances
Are Non-Stationary,” RCER Working Paper No. 226. I thank two referees and the co-editor for
helpful comments and suggestions and the NSF for research support.
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is an increasingly popular class of models for time-varying conditional het-
eroskedasticity. Financial economists (see, e.g., Hull and White (1987), Wiggins
(1987), and Andersen (1993)) have developed models with stochastic volatility,
and recently Nelson (1990) and Nelson and Foster (1994) have shown that
near-integrated GARCH models provide a good approximation to stochastic
volatility processes, suggesting one explanation for the empirical success of
GARCH models.

We allow for nonstationarity by letting the autoregressive root of the stochas-
tic volatility process to be close to one. Technically, this allows for “nearly
nonstationary” volatility processes as well as strictly nonstationary processes, but
we will retain the nomenclature of nonstationarity for simplicity. Nonstationary
(or near nonstationary) volatility seems a reasonable characterization in prac-
tice. Indeed, most of the theoretical literature has assumed that the stochastic
volatility autoregressive root is unity, and most of the applied literature finds
estimated values close to one.

Our question concerns the behavior of ordinary least squares (OLS), general-
ized least squares (GLS), and adaptive least squares (ALS) estimation of linear
regression models. While a stochastic volatility structure could be used to
compute quasi-MLE or GMM estimates, this would require a complete specifi-
cation of the model. In contrast, our adaptive estimation procedure does not
require knowledge of any functional forms other than the regression equation.
The volatility is treated as a nuisance in the estimation of the regression
parameters.

A large sample theory of inference is derived. We demonstrate consistency
and asymptotic mixture normality, which is sufficient to justify construction of
conventional confidence intervals and test statistics. We show that the feasible
ALS estimator is asymptotically equivalent to the theoretical GLS estimator.

This paper may be seen as contributing to the econometric literature on
estimation with nonergodic data. Early work included Robinson (1978) and
Anderson and Taylor (1979), who considered linear estimation with nonconstant
variances. More recently, Harvey and Robinson (1988) considered GLS estima-
tion in the presence of deterministic nonstationary variances, and Wooldridge
and White (1988) and Davidson (1992) studied central limit theory for processes
with nonstationary, yet asymptotically constant, variances.

Section 2 introduces the model and assumptions. Section 3 examines linear
estimation. Section 4 examines adaptive estimation. Section 5 contains a brief
conclusion, and the Appendix contains the proofs of the theorems.

Throughout the paper |-| refers to the Euclidean norm |A|= (tr(A4'A))"/?,
Il to the L -norm || All, = (E|A|”)/?, and [] to integer part. The symbol =
denotes weak convergence with respect to the uniform metric on [0, 1]. All limits
are taken as the sample size, n, diverges to positive infinity. For brevity,
stochastic integrals such as [} X(r) dB(r) will be written as [ XdB and integrals
with respect to Lebesgue measure [y X(r)Z(r) dr will be written as [; XZ.
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2. MODEL AND ASSUMPTIONS
2.1. Regression Equation

Let {y,;, x,;: 1 <i <n + 1} be a random array, where y,; and x,; are real-val-

1]
ued. The regression model of interest is the following linear relationship

(1 Yni=m+Bx, 1 tu,.

For some increasing array of sigma-fields {3 ,;: i <n} to which y,; and x,; are
adapted, we assume that u,; is a martingale difference array (MDA):

E(um’lsn,,’_l) =0 as.

and x,; is a linear process with martingale difference innovations:

e}

(2) xni=/""x+ Zakvn,i—k’ E(Um'lsn,i—l)=0 a.s.
k=0

where a, = 1.

2.2. Conditional Variances

Define

ol =EWll3, . 1) as.

P
and

i1 =EWHIS, i) as.

Note that {g;2, 12} are the conditional variances of {u,;,v,,} with respect to the

n

array {3 ,;}. When these variances are unobservable (not functions of the past
history of y,; and x,; alone) they are typically called volatility processes.
Define the normalized errors

Eni = Upi/ Oy i1
and
i = Uni/ V,i-1-

By construction, {s,;, J,;} and {¢,;, 3,;} are martingale differences with unit
conditional variances.

We assume that the model satisfies the following standard moment and decay
conditions:

ASSUMPTION 1: For somep >2,r>2, and a <,

6)) E(le,*18, 1) <0, <® a.s;
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(i) E|&, 1" <Q, <;
(iii) la,,| <am™.

We assume that the volatilities are functions of first-order autoregressive
processes.

2

ASSUMPTION 2: The volatility processes o, and v’ are generated by

0 =hy(@; + 7,18,1),
Vi = hy (@3 + 7,5 8,2,
where hi(-) > b >0 and h,(-) > b > 0 are real continuous functions, and
Sn1i = Pm1Sn1,i-1 T Znis
Sn2i = Pn2Sn2,i-1 1 Zn2i-

Setting z,; = (2,155 Zy2i)s (2ni» 3.} is a uniformly square integrable martingale
difference array with conditional covariance matrix E(z,;z,,|S, ;) =1, a.s.,
where (2, is normalized to have unit elements on the diagonal. The system is
initialized by setting S,,,o = S,,0 = 0. The coefficients t,,, 7,5, p,1, and p,, are given

by
(3) To1 = 771/\[’?’ Tha = 772/‘/'7’
4) Pu=1—ci/n, and p,=1-c,/n,

for finite constants m,,7,, ¢, C;.

Stochastic volatility models as in Assumption 2 with A(-) = exp(-) have been
proposed in the finance literature as discrete-time versions of continuous-time
asset pricing models. See, e.g., Hull and White (1987), Wiggins (1987), Chesney
and Scott (1989), and Andersen (1993). There have been several recent attempts
to empirically estimate stochastic volatility models, including Melino and Turn-
bull (1990), Shephard (1994), Harvey, Ruiz, and Shephard (1994). Most of these
papers either impose a unit root in the variance equation (p,; =p,, =1) or
estimate a value which is close to one. This motivates our local-to-unity
parameterization (4). It allows for unit roots (¢; = ¢, = 0) or for roots close to
unity (including mildly explosive roots).

The assumption that the autoregressive stochastic volatility processes are
first-order is not essential to the analysis. Indeed, higher-level dynamics could be
allowed, but the first-order case is consistent with the stochastic volatility
literature and illustrates the main points of the paper without needless general-
ity.

The specification of the variance equation coefficients given in (3) and (4)
have been selected to be able to derive a useful approximation to the finite
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sample distributions of relevant test statistics. The local-to-unity specification (4)
has been found to provide good approximations for the finite sample distribu-
tions of test statistics constructed from time series with autoregressive roots
close to unity. This formulation allows the distribution theory to be continuous
as an autoregressive root approaches unity, rather than discontinuous. One
interpretation of the local-to-unity specification (3) is that the stochastic compo-
nent of volatility is small relative to the deterministic part. Another is that it is
the only practical way to generate a sensible distribution theory. As we show in
the Appendix, Assumption 2 implies that

(%) n[ns] = hy(w, + W (s))

where W (s) is a diffusion process. Finding a weak distributional limit for the
variance process turns out to be an essential part of our regression theory. Are
there any practical alternatives to the array framework of (3)-(4)? When h,(-)
takes the power form h,(x) =|x|* for some a >0 (Andersen (1993) calls this

“polynomial stochastic autoregressive volatility””), one could set 7,, =7, (a
constant) and then normalize o2 by n~!/2% In this event,

_ — _ [+3
(6) n~12eg2 =In"V 2w, + 07V 278, 1 = ST ()]

Note in contrast that our approximation (5) would be |w; + n,W{(s)|® which is
superior to (6), as the latter essentially ignores the intercept w;. The situation is
even more problematic when A, does not take a power form (for example, when
hy(-) = exp(-) as more commonly assumed in the stochastic volatility literature)
for there is no normalization which generates a nondegenerate asymptotic
theory.

3. LINEAR ESTIMATION
3.1. Weighted Least Squares

We consider weighted least squares (WLS) estimates of equation (1). For
some array of weights {w?}, define the WLS estimator

n -1/ n
— 2 %k
- E wmxmxm Z WiiXniYn,i+1

i=1 i=1

i,
B.
where x*,=(1 x,,Y. We focus on the slope coefficient B,. The class of WLS
estimators is useful for it contains ordinary least squares (OLS), generalized
least squares (GLS), and feasible generalized least squares (FGLS) as special
cases, settmg w? equal to 1, g;;%, and G, respectively, where G,; is some
estimate of o2 We will denote the OLS estimator by ( &, B,,)'

ASSUMPTION 3: (i) w2 is adapted to 3 ,;; (i) for all n,i,0 <w?; < H < «; (iii)
n[n 3 => w2(s), where w*(-) has continuous sample paths with probability one; (iv)
aw?>0 a.s.
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We now give the first main result of the paper.

THEOREM 1: Under Assumptions 1-3,
- [dw?ov dW,
(7) \/;(Bn_ﬁ): AfOIWZVZ )
where
A’ = ) at,
k=0

(10) Awy(s) = —c,Wi(s) +dW(s),
(1D AWz (s) = —c,W5(s) +dW,(s),

and W(s) = (Wy(s), W(s),W,(s)) is a vector Brownian motion with covariance
matrix

12 EWOWQY) = ( Loy )

K z

In (12), k = A" 'T5%_ya, Ky, where

n
K= lim — ZE(Zn,i+1§n,i—k8n,i+l)'
n=e Ry

Theorem 1 shows that the asymptotic distribution of the WLS estimator has a
stochastic integral representation. The form of the limiting theory resembles
that found in the “unit root” and cointegration literature, e.g. Park and Phillips
(1988). By itself, the limiting distribution (7) is not very informative, other than
yielding the implication that § is consistent for B at the rate Vn .

3.2. Ordinary Least Squares
The first major implication of Theorem 1 concerns the OLS estimator, which
obtains by setting w7 = 1.

COROLLARY 1: Under Assumptions 1-2, then

fola'vdW0

\/;l_(én_B)'—"’ Afole
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It is illustrative to point out that conventional asymptotic theory emerges as a
special case:

COROLLARY 2: Under Assumptions 1-2, if 7, =1, =0, then

x/ﬁ(,é,,—ﬁ)=N(0 o’ )

© A2
where a* =h(w,) and v? = h,(w,).

Corollary 1 gives the asymptotic distribution theory for OLS applied to
traditional time series models, where the conditional variances are either
constant or approximately so.

The covariance k plays an important role in the distribution theory for the
OLS estimator, as the Brownian motion W, is independent of W, and W, when
(and only when) k= 0. This occurs when «, =0 for all k> 1. This moment is
indeed zero when the innovations are symmetrically distributed. It also occurs
when E(s,;z,;|S, ;_1) = m,,; is nonrandom, for then

E( §n,i—k3nizni) =E( §n,i—kE(8ntzni|3n,i—1)) = E( En,ivk M)
=E( fn,i—k):u'ni =0.

The latter condition trivially holds when the martingale differences are indepen-
dent over time. We state these observations formally.

ASSUMPTION 4: One of the following conditions holds: () {&, ;_,, &, z,} is
jointly symmetrically distributed; or (i) E(e,;z,,|3, ;_1) = p,; a.s., where p,; <

ni“ni

is nonrandom; or (i) {£,;, €,;» z,,;} is independently distributed across i.

LEMMA 1: If Assumption 4 holds, then k = 0.

Under Assumption 4, the covariance matrix (12) is block diagonal, so the
Brownian motion W, is independent of W, and W,, and hence of o2(s) and
v2(s). It is well known that in this case the stochastic integral (7) has a variance

mixture of normals distribution.

COROLLARY 3: Under Assumptions 1-2 and 4,
13)  Vn(B,-B)=[NQO,V)aP(),

where P is the probability measure of th: random variance

f10.2y2
a4 v=—.
AX([v?)
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Without knowing the distribution function P, (13) does not give a complete
characterization of the asymptotic distribution of B,,, only showing that it is a
variance mixture of normals. Even so, this simple result is quite useful as we can
conclude that the large sample distribution of B, is symmetric about B and
unimodal. The most important point is that knowledge of P is not necessary for
inference about B. This is because test statistics will have standard asymptotic
distributions (either normal or chi-square depending on the form of the statistic).
See Basawa and Scott (1983), Park and Phillips (1988), and Phillips (1991) for
discussions of mixtures of normals distributions.

It is not difficult to see that the random covariance matrix given by (14) will
(in general) not be properly estimated by the standard OLS covariance matrix.
Instead, an appropriate estimator will take the Eicker-White form (see, e.g.,
Eicker (1963) and White (1980)). A notable exception arises when the limiting
variance of the regression error is constant, that is, o 2(s) = o2 In this case, the
random variance simplifies and the standard OLS covariance matrix will be
appropriate for inferential purposes.

3.3. Generalized Least Squares

It is well known that when the regression error is conditionally heteroskedas-
tic, ordinary least squares is not efficient. A more efficient estimator will utilize
the information in the conditional variance. The generalized least squares (GLS)
estimator, for example, weights the data in inverse proportion to the square root
of the conditional variance by setting w’ = a;2. Since g, >b >0, we see that
0,;><b™! <o so the conditions of Assumptlon 3 hold with H=b"' and

ng =

w?(s) = o %(s). Let B* denote this GLS estimator of B.

COROLLARY 4: Under Assumptions 1-3,

Jod dW,

(15) \/;(;é:—ﬁ)=>A—f1$2—,
0

where ¢(s) = v(s)/a(s).

Corollary 4 shows that as a general rule, the GLS estimator does not
necessarily possess a normal or mixture normal asymptotic distribution. It will,
however, in two important special cases. The first is when the asymptotic
random variances o *(s) and v*(s) are proportional. (One may loosely think of
this as “cointegration in the variance,” although it is quite distinct from the
co-persistence idea of Bollerslev and Engle (1993).) In this case the ratio
¢(s) = v(s)/a(s) is constant and the distribution of (15) simplifies to a standard
normal.
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COROLLARY 5: Under Assumptions 1-3, if v*(s) = w’0c*(s) a.s. for some
w? >0, then

Vi (B = B) =4 N(0,(024?) 7).

Another case in which the asymptotic distribution of the GLS estimator is a
variance mixture of normals is under the symmetry/independence condition of
Assumption 4.

COROLLARY 6: Under Assumptions 1-4,
Vn (B —B)= [NO,V)dP(V)

where P is the probability measure of the random variance V = (A? [} ¢2) 1.

4. ADAPTIVE ESTIMATION

The GLS estimator of the previous section is not feasible, since it requires the
use of the unobservable volatility process a2 It is useful to see whether we can
construct a feasible estimator which achieves the same asymptotic distribution
as the GLS estimator. Such an estimator is called adaptive.

One approach would be to assume parametric forms for the variance func-
tions &, and h,, and the distributions of the errors. Then quasi-maximum-likeli-
hood estimation could be performed using the Kalman filter. This approach has
been proposed and pursued by other authors. The advantages are efficient
estimation, under the assumption that the parametric forms are correct. A main
disadvantage is the need for the parametric assumptions. In this section I discuss
a nonparametric method, only requiring that o (s) be continuous almost surely
(as implied by Assumption 2).

4.1. Nonparametric Variance Estimation

Let 4, =y, — fy =X, ;1 B, be the OLS residual. Our idea is to estimate g}

by averaging the squared OLS residuals 42 ;_ ; for small j. Specifically, we use a

nonparametric kernel of the form

N
Y k(Gi/N)G2,
62=12" i>N,

ni N
Y k(j/N)
j=0

and

AZ_AZ .
Oni = Oy > i<N,

where k(): [0,1] > [0,1] is a standard kernel function satisfying [k(x)dx > 0.
For example, the rectangular, Bartlett, and Parzen kernels all satisfy these
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conditions. The integer N is a bandwidth number, controlling the degree of
local smoothing.

ASSUMPTION 5: For p > 2 defined in Assumption 1, () Ele,|** <Q,, < %; (ii)
N = BnY for some 0 <B < and <2 /p,1).

The bandwidth N is required to grow at a rate slower than sample size, but
not too slowly. If p is not much greater than 2, then ¢ needs to be close to 1.
As p increases, i can be smaller. Intuitively, a smaller ¢ implies less smooth-
ing, and an attempt to estimate the variance array ;2 at a higher resolution.
This is more difficult without the presence of higher moments in which case
more smoothing is required (and hence a larger ) to estimate the variance
array uniformly.

It is important in practice that the estimated variance sequence be bounded

away from zero. To ensure this we suggest a trimmed estimator:
~2 _ A2
(16) g,; =max(3g,;,b*),

where 0 < b* <b.
We have our second main result:

THEOREM 2: Under Assumptions 1-3 and 5, 6,7, = o *(s).

Theorem 2 shows that consistent estimation in C[0,1] (in the sense of weak
convergence) of the asymptotic variance process is possible by a simple nonpara-
metric kernel technique. This result is a consequence of the assumption that
a*(s) is almost surely continuous, so local averaging reveals the underlying
variance process.

In principle, the trimming recommended in (16) is not necessary, for as n — o
we find for any ¢ >0

P(inf52<b—z) 0.
I<n
In practice, however, sampling variation may produce values of 6,2 which are
sufficiently small to distort B,. Trimming is inherently conservative, as it reduces
the impact of observations where G2 is unusually small. To implement (16)
properly, prior knowledge of b is necessary. Since b is typically unknown, a
feasible approach is to set b* equal to some prespecified fraction of the full
sample average, i€., b* =2, where ¢%=(1/n)L}_ 4%, and q is some num-
ber between 0 and 1, for example 0.1. A particular choice is unfortunately ad
hoc, and it is hard to see any convincing argument for one choice over another.

4.2. Adaptive Least Squares

The estimated array 6,2 is adapted to ,; (for i > N), so the conditions for

Theorem 1 are applicable if we set w,; = ,;°. We now define an adaptive least
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squares (ALS) estimator
n -1 n
Qa ~—2 % %/ ~—2. %
Bn - Z O " XpiXyni ( Z O, xm’yn,i+1)'
i i

THEOREM 3: Under Assumptions 1-3 and 5,

_ [ssdW,
Afyd®

Theorem 3 shows that the ALS estimator achieves the same asymptotic
distribution as the GLS estimator. It follows as well that asymptotic mixture
normality of the ALS estimator holds under the conditions given in Corollaries 5
and 6.

5. CONCLUSIONS

It is probably the case that most applied time series analysts pay insufficient
attention to the long-run properties of the second moments of their data. Some
attempt to reduce the extent of residual heteroskedasticity by data transforma-
tion, but few pay any attention to the second moment properties of their
regressors. The implicit assumption, of course, has been that such properties do
not really matter. As the distributional theory of this paper shows, the long-run
properties of the second moment properties of both the regression error and the
regressors can matter for the large sample distribution of estimators. Under the
regularity conditions of Assumption 4, we have shown that the asymptotic
distributions are variance mixtures of normals, so standard testing procedures
can be used. Unfortunately, it is unclear how one might attempt to verify the
conditions of Assumption 4.

When the regression error has a conditional variance which displays long-run
nonstationarity, OLS estimation is not efficient. Feasible GLS techniques are
available, one of which is outlined here. The ALS estimator we propose is very
simple to implement, does not require any parametric assumptions, and achieves
the same asymptotic distribution as the theoretical GLS estimator. In the
presence of nonstationary volatility, the use of the ALS estimator can lead to
major gains in estimation efficiency over OLS.

Dept. of Economics, Boston College, Chestnut Hill, MA 02167-3806, U.S.A.

Manuscript received October, 1992; final revision received October, 1994.
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APPENDIX

Since the analysis of the paper focuses on the slope coefficient B, and the regression (1) contains
an intercept, we can without loss of generality set u, = 0, which we shall do throughout this section.
The proofs of the main theorems rely on a set of intermediate results which we now present. Our
first two results show that stochastic processes which are asymptotically continuous have uniformly
small increments.

LEMMA A.1: If X, = X(s), and X has continuous sample paths almost surely, and N <Bn®
where B<® and 0 < a <1, then

max |X, ;.;—X,l—,0.
i<n,j<N

ProoF: Since X(s) lies in C[0,1], X,, converges weakly in the uniform metric, and therefore must
be tight in that metric. This implies that for all £ >0 and 1> 0, there exists a > 0 and an integer
ng such that for all n > n,,

P( max |X,,),-+j—X,,,.|>a)5n.
i<n, j<[8n]

See, for example, Billingsley (1968, p. 55). For any 0 < & < 1, however, we can find a n, sufficiently
large such that for all n>n;, N <Bn®<[8n] (since a <1). Thus for all n > max(ngy,n,),

max |X, ;- X,ls  max X, - Xl

isn,jsN i<n,j<[én]
and thus
P max 1%, .- X,l> o) sP( max X, ., — X,|> s) <.
i<n,j<N isn,j<[8n]
Since ¢ and 7 are arbitrary, the proof is complete. Q.E.D.

The following is a direct implication of Lemma A.1, taking N=1 and X, =g(Z,).

LemMMA A2: If Z,,,= Z(s), and Z has continuous sample paths almost surely, then for any
continuous function g("),

max|g(Z,)) ~g(Z, ;- |-, 0.
I1<n

Our next result derives asymptotic representations for the conditional variances ;2 and 12, as

well as the partial sums of the product processes £, ;4 &, ;4 1-

LEMMA A.3: Under Assumptions 1-3,

a7 Ttns) = 0 2(5),
(18) Vnz[ns] = 2(s),
and for all k > 0,
[ns]
(19) W!; & i—kn,iv1= Bi(s),

where o2(s) and v*(s) are defined by (8)—(11) in the statement of Theorem 1, and the {B,} are
mutually independent standard Brownian motions. Setting Wo=A"1T3_oa, B, and W= (W, W, W),
then (12) holds.
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PRroOF: Since the innovations z,; are uniformly square integrable martingale differences, under
the local-to-umty structure of Assumptlon 3, it is well known that (1/Vn)S,(,s = Wi(s) and
/vn 1 )S,o1ns) = W5 (s), where WY and Wy are defined by (10)-(11). By the continuous mapping
theorem,

)
Un%ns] =h1( o + T’:snl[n:]) = hl("’l + "th(S)) = 0'2(5)9

establishing (17). Equation (18) follows similarly. Next, note that the product innovation &, ;4 &, ;11
is a martingale difference with unit conditional variance. Furthermore, by the law of iterated
expectations and Assumption 1,

Elgn,i—k£n,i+1|p =E[|§n,i—k|pE(|€n,i+llpl'%ni)] SEIfn,i—klpgs < Q{Qs <,

SO &, ik &n,i+1 is uniformly square integrable. (19) follows by the invariance principle for martin-
gale difference arrays. To see that the Brownian motions B, are mutually independent, it is
sufficient to note that §, ;_, &, ;,, is uncorrelated with &, ;_;e, ;. for j #k.

To establish (12), first note that the covariance matrix of (W’ W}) is the same as z,;, which is £,.
Second, note that

#((3) ) e (i)

it 1
Z lim _ZE(Zn1+1 n,i— ksn r+1) A~ lzakkk_'(

“nomn i=1 k=0

Finally, EW} =A"2%;_gai=1. Q.E.D.

The next two results give large sample representations for the first two weighted sample moments
of the regressor x,,;.

LEMMA A.4: Under Assumptions 1-3,

2
Z WpiXpi —>p 0.

l—l

PrOOF: Note that
oo oo
(20) Xpi = Z GV ick—1nick= Vi ni + Z a (Vo1 — Vm')fn,i—k
k=0 k=0
where &% =X} _oa, &, ;4. Since as m — o,

SUp EIECEXIS, i) < Y laglsupEl£,] -0,

n,i k=m n,i

and w ins)Vaing] = W 2(s)v*(s) which is almost surely continuous, an application of Theorem 3.3 of
Hansen (1942) yields

1
@1 - Z wl v,
nisa
Next, set £5* = Tt oklay £, ;| which is uniformly integrable, so (1/n)Zr w2 &X* = O,(1). Thus

(22 Z Zak(vn,i—k—l )§n1 k S—Z Wai m maxlv,,, 1 l/,”-|"*p0
k=0 i

=1 nio1

by Lemma A.2. Equations (20), (21), and (22) together establish the result. Q.E.D.
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LEMMA A.S: UnderAssumptions 1-3,

w2x2 = A2 f w?
i= 1
ProoF: Expanding (2) we find the standard decomposition

—Zw! _—Z mfm+ Z mgnl’

(23)
l—l 1—1 1—1
where
o
- 2
fm_ Zak ni—k»
k=0
and

© o
8ni = Z Zajaj+kvn,i—jvn,i—k—j'
j=0

We examine each sum on the right-hand-side of (23) in turn
A few algebraic manipulations yield the equality

422 2 b
fui =A%+ v fai+ fui + fui

(24)
where
= 2 ai(&l, - D),
k=0
fm Zak( Vni-k-1"" m)
and
= Z ai(ynz,i—k—l - vnzi)(fnz,i—k -D.
=0
First, (18), Assumption 3, and the continuous mapping theorem yield
1 n
(25) = Y wi AW} =>A2/1w2u2.
/ (i
Second,
sup ElE(foIS, ;)| =supE| Y a2(£2,_,—D|<2 ) a} >0

n,i n,i k=m k=m
as m — =, and so by Theorem 3.3 of Hansen (1992)
(26) Z v 0.

1—1
Third, by the triangle inequality, the facts that (1/n)L 0,(1) and T _oka? < , and Lemma
12 it
27 Zwmfm =;ZW,Z k(nl k—l_ynzi)
nica i=1 k=0
1 & ) it
S_z:wm‘Zkalzcrn"‘u(lunzi 'll ll_’ 0.
i1 k=0 isn

i
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Fourth, letting e,; = T;_kat|£2;_, — 1| which is uniformly integrable and thus (1/n)Z}_ w2e,,; =
0,(1), hence

(28)

Z w'llf'll

i=1
by Lemma A.2. Equations (24), (25), (26), (27), and (28) yield

S— Zwmemmaxlym 2,1'—1'_)p0
miz1

(29) -Zw,fm=Aszv

i=1

Next, we turn to g,;. Algebraic manipulations show that

— 12 o8 b c d
8ni = Vni8ni t Vni8ni t Vni8ni t &nis

where
o
gh= Zajaj+k§n,i—j§n,i—k—j9
k=1j=0
oo oo
b _
8ni = Z Za;‘a;‘+k("n,i—k—j—1 - Vni)fn,i—jfn,i—k—j’
k=1j=0
w
&ni= Z Z k(” i-j-1" i)§n,i—j§n,i—k—j,
k=1j=0
and
oo oo
d _
8ni = Z Ea, 1+k( nyi—j—1 Vni)(yn,i—k—j—l_Vni)gn,i—jgn,i—k—j'
k=1j=0
First,

sup E| E(g21S, i m)] < 2 la| Z la;lQ, — 0

n,i k=1 j=m

as m — o by Theorem 3.3 of Hansen (1992) we find
Z a8
Second, letting Ay =Xk 1Z7 0 jla-aj+ k &n,i=j&n,i—k -l which is uniformly integrable, we find

Z V80

1—1

5— Zw V,,,)«,,,maxlv v2il=, 0.
nis

Similarly, the sums over g¢; and g are also asymptotically negligible. Together, we have shown that

(30) Z‘, W2i&ni =, 0.
i=1
Equations (23), (29), and (30) together establish the result. Q.E.D.

Our final preliminary result is probably the most important. It gives a stochastic integral
asymptotic representation for the “numerator” of the WLS estimator.

LEMMA A.6: Under Assumptions 1-3,

n

1
Zw Xl ,-+1=>Af wlov dW,.
im 0
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ProOF: Set

1 n
__ - 2
= Z Upi—kUn,i+1= T Zwnivn,i—k—lo'nign,i—ksn,i+1‘
v oi-q

t—l

Under (17), (18), and (19), by Theorem 2.1 of Hansen (1992) (which is a special case of Theorem 4.6
of Kurtz and Protter (1991)), for any k > 0,

31 Ny = fl_wzva dB, = N,.
0

Set N, =(N,, N,y,...) and N = (Ny, Ny,...), both of which are elements of R”.

We want to show that N, = N. This follows from the finite dimensional convergence implied by
(31), if the sequence of probability measures is tight in R” (see, for example, Theorem 6.2 and the
preceding discussion in Billingsley (1968)). For e € R”, define the metric d(e) = Xj_ ok~ "le;l. For
any £> 0, set K, to be a compact real interval so that P{N,, €K} >1—ek™" /L;_ k™" forall n
sufficiently large, which is possible under (31). Set K=K, X K, -+, which can be shown to be a
compact subset of R”. Thus for n sufficiently large,

©

P{N,,<£K)=P{ U {N,,kesz}} < Y PN, eK)< Y ek | Y k7 =¢,
k=0 k=0

k=0 k=0

from which it follows that the probability measures of the sequence N, are tight, and hence N, = N.
From the continuous mapping theorem it follows that f(N ) = f(N) for any d-continuous f.

Take the functlon fle)=X%_ 09keu, To show that it is d-continuous, take any £>0 and any
e! € R” and e? € R” such that d(e! —e?)=L3_ok~"le} —eZ| < . Set §=ae. Then

=]
< Y ak'lel —efl=ad(e' —e?) < 8,
k=0

o
Y a (el —e?

k=0

[f(e)) —fleD)| =

as required for continuity. We therefore conclude with the desired result:

n © © o
Z Wiknithnis1= L &Nu= L aNe= [wo Y o, dB, = A [ 'whvo dW,.
i= k=0 k=0 0 k=0 0

Q.E.D.

ProoF oF THEOREM 1: Note that

—Zw =>fw >0 as.

1—1

by Assumption 4 and the continuous mapping theorem. Note as well that since h,(x)> b, then
v2(s) < b, and

1 1
f wzvzzbzf w2>0 as.
0 0 :

Thus

-1
\/’T(B'n _B)= ( anlxnl+0 (l)) (‘/— Zwmxmun i+1 +0 (1)

i=1 i=1

-1
122 112
=>('](;wv) A '/;wavdWo

by Lemmas A.3, A4, A.S, and A.6. Q.E.D.



REGRESSION WITH NONSTATIONARY VOLATILITY

PROOF OF THEOREM 2: Since ,7,,)= o *(s), it is sufficient to show that

(32) max |62 —0‘2|—>p0
N<i<n

and

(33) max |62 _le__) 0.
1<i<N

Let
_ (]'/ )
Zk(,/N)

so that for i > N,

N
= Z ]/N)ﬁnx—;
j=0

Note that
N
(34) Y k(i/N)=1
and
1 N . 2
N N LK e e
(35) NY kGi/N) = ’N - 0 =K<
= 1
N /T
We start with (32). Note that
(36) 82— g2=R%+a2RS + RS+ RY,

where

N
= Y kG/NX)o2 ;o1 — D),

j=0

N
= Y kG/NXe2;_j—- 1),

R;i= Tc(j/N)(o;xz,i—j—l_Unzi)(gr%,i—j_1)’

L=

j=

d _—
Rni_

'l"lz

/N)( nl—] ﬁi—j)'
j=0

First, observe that

37N max [R&|< max |gf—¢q2_;|=,0
<i<n i<n,j<N

1129
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by (34) and Lemma A.1. Second, since {¢% —1,3,;} is a martingale difference, by Lemma 2 of
Hansen (1991),
N 1/2
IREN, <P| Y kG/NY N2, —UE|  <P(Q,, + DKY2N"1/2
j=0
where P=18p*2//p — 1. Hence since N =Bn" and ypp/2 > 1,

(38) E max |RS|P <n max E|R%|?” <PP(Q, +1)PKP/2B~P/2p1=¥2/2 5
N<i<n N<izn

as n — . By Markov’s inequality, max, |R},| = 0,(1). Since max; o, = O,(1), it follows that

(39) max |g, 3RS, 0.
N<izn
Third,
N
(40) max |[Rl< max |g2—o2, |1+ max Y kG/N)e2,_
N<i<n i<n,j<N ’ N<izn ;g

< max |lg2-o? |(2+ max IR” ]—>p0
i<n,j<N N<izn

by (37) and (38). Fourth, consider R¢;. To simplify the notation, consider the case without an
intercept. Note that

Zk(]/N)(unx -j= rzti-j)

j=0

N

|+ VnlB-BI

(j/N)u

nyi—jXn,i—j—1

II

.]-((j/N)xrzz,i—j-l .

S| =
it

Now vn|gB- BI 0,(1) and max; Il/nE okG/N)x2 ;_i_1l=0,(N/n)=0,(1). Further, since
kG /Ny ;x5 j} is a MDA, by a derivation similar fo that used to show (39), we can show

that max; |(1/\/—)2 L okGi /Ny ;_xly ;i1 =, 0. It follows that
41 max |R¢|-, 0.

N<i<n

Equation (32) follows from (36), (37), (39), (40), and (41).
Finally, note that for i <N,

'én%_a'nﬂ:‘&n — Oni l<lO-N_ an+la _UN‘
so (33) follows from (32) and Lemma A.1, completing the proof. Q.E.D.

ProOF OF THEOREM 3: As discussed in the text, the adjusted variance estimator satisfies
Gty = o-z(s) The conditions of Theorem 1 are nearly applicable, except that the array g, G2} is not
adapted to ,; for i <N. A review of the proof shows that this is only used for the convergence of
the numerator (1 /Vn)Tr 10.:2%,;u,,;. The discrepancy only involves the term

(42) Z 1 Xni n i+1
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Fix some 5> 0. We can then find a 8> 0 such that E|[0¢ dW,l< . Yet for large enough n,
N = Bn¥ < &n. Thus

<E <.

1 &n 5
Wiga'n_izxni“n,iﬂ "Elfod’dWo

1 N

-2

E Z Oni Xnilln,i+1
VR =1

Since 7 is arbitrary, the discrepancy term (42) is asymptotically negligible, as required. Q.E.D.
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