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CONSISTENT COVARIANCE MATRIX ESTIMATION FOR
DEPENDENT HETEROGENEOUS PROCESSES

By Bruck E. Hansen!

1. INTRODUCTION

MANY TIME SERIES APPLICATIONS in econometrics—such as hypothesis tests from gener-
alized method of moments estimation (Hansen (1982)) or other dynamic models (Andrews
and Fair (1988))—require covariance matrix estimation robust to serial correlation and
heteroskedasticity. Robust variance estimation also plays a large role in the recent “unit
root” literature, including the unit root tests of Phillips (1987) and Phillips and Perron
(1987), the cointegration tests of Phillips and Ouliaris (1990), and the fully modified
estimator for cointegrated systems of Phillips and Hansen (1990).

Current consistency proofs which allow for general serial correlation require the
restrictive assumption of finite fourth moments. See, for example, White (1984), Newey
and West (1987), Gallant and White (1988), Keener, et. al. (1991), and Andrews (1991).
Robinson (1991) allows for violation of finite fourth moments in the restrictive case that
the data are covariance stationary and generated by a linear process with homoskedastic
martingale difference innovations. These assumptions exclude many useful applications.

This note presents a simple consistency proof for general kernel-based covariance
estimators, requiring the existence of only slightly more than second moments. Covari-
ance stationarity is not required. Instead, the data are assumed to satisfy either an
a-mixing or a ¢-mixing condition. The proof is quite straightforward, relying on recent
developments in the theory of mixingales. These results considerably broaden the scope
for application of robust covariance matrix estimation.

2. CONSISTENCY

We stay largely in the notational framework of Andrews (1991). Consider a sequence
of random vectors {V,(8)}, which are (possibly) a function of an unknown parameter
vector 8. We wish to estimate the “long-run” covariance matrix of the underlying process
V,=V/8,), where 6, denotes the true (or pseudo-true) value of 6. This matrix is

T T
Q= lim ¥ ¥ E(VV}) <.

Toejo1j=1

Assume that @ has some consistent estimator é, yielding the estimates IZ=V,(9).
Consider the class of kernel estimates of (2 given by

T
0= % kG/SDIG),

j=-T
T-j
F(])=—f E VtV;lﬂ’ j=0,
t=1

I'(j)=r(-jy, i<o.
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The kernel weights k(-) are assumed to satisfy the following condition.

(K) Forall xR, |k(x)l <1and k(x) =k( x) k(O) =1; k(x) is continuous
at zero and for almost all x € R; [rlk(x)ldx

Kernels which satisfy (K) include most considered in the literature. For example, the
Bartlett kernel is given by: k(x) =1 — |x| for |x| < 1. Some authors refer to the number
Sy as the band-width parameter, and others call Sy the lag truncation parameter. It is
indexed by T to denote its dependence upon sample size. Sy is assumed to go to infinity
as a power of sample size:

S S;— o, and for some g € (1/2,), $+*29/T=0(1).
T

Andrews (1991) documents? that for variables with finite fourth moments, the kernel will
dictate the appropriate choice of g. For the Bartlett kernel, g =1, and for the Parzen
and Quadratic Spectral (QS) kernels, g = 2.

It is most convenient if we start by analyzing the idealized estimator

T
Q= k(i/Sr)T (i)

j=-T

where I(j) is defined as I(j) but with the random variables V, instead of the estimates

;
Assume that E(V,) = 0. Let |V,llz = (Z,E|V,;|?)/, let {a,,};_, denote the a-mixing
(strong mixing) coefficients for {V,};,, and let {<p,,,}m 1 denote the o-mixing coefficients
for {V,}. Define & =o(V;: i <t), the sigma-field generated by the past history of {V},
and set E,_, X= E(X | 57 ). We start with mixingale-type bounds® for the products
V1V1'+j:
Lemma 1: Forj>0,y>B=>1,
(a) IE, V.Vl —EVVlg < < 12a,/ BNVl IV, 42y,

(b) |E, ViVl — EViV.illg <40k IV 2y IV, 412y

We assume the following conditions are satisfied by the process {V}}:

(V1) For some r € (2,4] such that r > 2 +1/q, and some p >r,

@) 12 ) aXV/r-VUP=g<o, ord Y, ol ¥P=A4<,
m=1 m=1
(i) supllV;ll, = C < .
t>1

(V1) is sufficient to uniformly bound the autocovariance matrix estimators:
Lemma 2: (V1) implies that |F(j) = T()N, 2 < 36 Alr/(r — 2)P/2C?)T~1+2/7,
Given these inequalities, it is straightforward to establish our main result.
Tueorem 1: Under (K), (S), and (V1), 2 -, asT— .

Andrews (1991) uses an asymptotic truncated mean square error criterion.
M1xmga1es in L? were introduced by McLeish (1975), and extended to LB, B =1, by Andrews

(1988).
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To analyze (2, we will invoke Theorem 1(a) of Andrews (1991). Set .# to be some
neighborhood of 6,. Let || -|| denote the Euclidean norm.

(V2)({d) VT (6-6,)=0,(1);

(i) supE( sup IIV,(G)[IZ) <o
t>1 \gedt
d
(iii) supE| sup ‘
t21 \ e

Tueorem 2: Under (K), (S), (V1), and (V2), -,0asT-

This is the first set of results which do not require finite fourth moments. In the
inequality p>2+1/q, a trade-off appears between finite moments and the rate of
dlvergence for the band-width parameter If S, grows just more slowly than 7172, then q
is just larger than 1/2 and we require p > 4. If S, grows like T'/3 (as Andrews (1991)
recommends for the Bartlett kernel) then g = 1 and we require p > 3. If S, grows like
T'/3 (as Andrews (1991) recommends for the Parzen and QS kernels) then g = 2 and we
require p > 5/2. This provides an argument for the choice of the Parzen or QS kernel
rather than the more popular Bartlett kernel. It is important to remember that the
recommendations of Andrews (1991) were based upon the criterion of asymptotic mean
squared error, and therefore are not necessarily applicable when p <4. Hence the
optimality of the bandwidth choices cannot be extended to the present context.

Even for the case of finite fourth moments, Theorems 1 and 2 are less restrictive than
the existing literature. First note that (V1) (i) is implied if a,, are of size —rp/[2(p —r)].
For ST growing close to T'/? (so g is close to 1 /2) then we have to set r =4 and thus
require that a,, be of size —2p/(p — 4), which is the size requirement used by Newey
and West (1987) They required, however, the strict condition S, = o(T'/#). On the other
hand, if we specify that S; grows like T 1/5, then g =2 and we need r > 5/2. We could
then set r = 3, which requires that «,, be of size —3p/[2(p — 3)], which is substantially
weaker than the conditions of Newey and West.

Condition (V2) allows for covariance matrix estimation for weakly dependent, hetero-
geneous data without stochastic or deterministic trends. As mentioned in the introduc-
tion, some of the literature on unit roots and cointegration makes heavy use of
covariance matrix estimation. In these cases, (V2) does not apply. We can instead use the
following condition. Let {§;} be a sequence of nonsingular matrices.

(V3)(@) Vi(8)=V,—(6-06,)X,;

(i) supllé, X, [l = Op(l);

t<T
(iii) VT (6-16,)87'=0,(1).

TueOREM 3: Under (K), (S), (V1), and (V3), O - 0 as T .

Theorem 3 allows for trended regressors of general form in linear regression. For
example, if X, =1t, then set ;= T~!, while if X, is an I(1) process, then set ;= T~1/2
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3. PROOFS

Proor oF LEMMa 1: To show (a), by McLeish’s a-mixing inequality (McLeish (1975,
Lemma 2.1)), Minkowski’s Inequality, Blackwell’s Theorem, and Holder’s Inequality,

||Et—thVt,+j _EV;V/H”B
<6al{P VNV, ~ BVl
<6a)/P V(WY lly + ||EV;V,+,~"y)
< 12ar1rl/B_l/7llV;I/t+j[[7
< 1227V N2y 1V, 412y

The argument for (b) is the same, expect that the first inequality is replaced by Serfling’s
inequality (Serfling (1968, Theorem 2.2)):

”Et—ml/tl/t,+j - EV;V/H”B < 2¢1_1/7||KK’+,’ - EV;I/I'+j”’Y Q.E.D.
The proof of Lemma 2 will rely on the following result from Hansen (1991, 1992):

Lemma A: For a sequence of random variables {X,J7_ 1, set &, = o(X;: 1 <i<t). If for
some B>1,allt>1, and all m > 1, |[E(X,| & _, g <c,¥,, and ¥ =1, _ ¥, <, then

T T 1/a
Y x, <361I’[B/(B—1)]3/2( Zc,"‘) , where a=min(B,2).
t=1 t=1

B

ProoF oF LEmma 2: By Lemma 1, |E,_,(V,V,; — EVV/ ;2 <c¥, where ¢, =
W IV, N, and 4, =12aX'/"=1/? or 4¢,~?/7. Thus by Lemmas 1 and A, and
assumption (V1),

T-j

1 ’ ’
? Zl (VIV;+j - EI/tI/t+j)
t=

\F(j) — EF(j)ll, 2=
r/2

T—

; 2/r
2 2
N1 14| 7 145 )
1

< %36(§¢m)[r/(r— 7)) e
1

<T 12736 A[r/(r - 2)]/*C?
which is the desired result. Q.E.D.

Proor or THEOREM 1: By Minkowski’s Inequality and Lemma 2,

(A1)  SFUTVVQ - EQl,

T
Y k(i/Sr)(F(j) - EF()))

j=-T

= S;lTl—Z/r

r/2

T
<87 Y k(i/SOIT Y TIE () = EF(), 2
j=-T

< [lk(x)l dx364[r/(r=2)]*C? <o,
R
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uniformly in 7. In addition

(AZ) STTZ/r—l = STT—l/(2q+1)T1/(2q+l)+2/r—l

= 0(1)T2[1/r—1/(2+1/q) =0(1),

since 7 >2+1/q. Thus S7!-T'"%" > . (A1) and (A2) yield |2 — EQ|l, > >0, and
hence 2 — EQ) -, 0 by Markov’s inequality. Lemma 6.6 of Gallant and White (1988),
shows that E{2 — (2, which completes the proof. Q.E.D.

Proor oF THEOREM 2: The proof of Theorem 1(a) in Andrews (1991) only uses the
conditions on {V,} to establish £2 — » §2. We can instead use Theorem 1 to establish this
result under our conditions. Condition (V2) is equivalent to Andrews’ Assumption B,
and the remainder of his proof carries over to the present case. Q.E.D.

Proor oF THEOREM 3:

- T 1 A
= ¥ kS 7 Z (00— viviy)
j=-T t

- T KG/S Z( (6-0,)XVi\; = V. X0, ;(6-6,)

j=-T
+(6-6,)X,X;,,(6-96,)).
By Minkowski’s inequality,

(A3) f;m o< Ll ¥ k(s LT 0K

j=-T

Z K(i/SD) ZVX,’+,(0 0,)

j=-T

Sr

T 1 R ) '
S T kG/s) 7 E (000,60
j=-T t

We will show that (A3) is O,(1). Since VT /Sy — =, it follows that 2 — £ = 0,(1), and by
Theorem 2, 2 -, 0.
First,

(A4) 5 kG/SH~ Z(e 6,)XV,.,

j=-T

_‘/f Y 1k(i/So)l

T j=-T

1 o
— T (0-0,)57'8, X7,
t

1
e
t

< [R |k (x)l dxIVT (6 - 6,)57 I

1
= 00X, X5y
t
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Second,
V|| Z 1 A
(AS) N Z k(J/ST)_ZI/tXll+j(0—00) =0p(1)‘
ST j=-T T t
Finally,
VT | Z 1. N
A6) —| X k(j/Sr)=X(6-6,)X. X, ;(6-6,)
ST j=-T T t
T L . 1 A -1 ’ r or—17p /
<< Z lk(i/Sl||= Z (9 - 00)8T BTXlXt+j6T8,T (0 - 00)
St je =T T
1 2
< _[le(x)l dx|VT (6-6,)87" ’? Yor X, x5y [(6-6,)57"
t
=0,(1).
(A4), (A5), and (A6) show that (A3) is 0,(1), completing the proof. Q.E.D.
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