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This paper develops inference methods for the iterated overidentified Generalized
Method of Moments (GMM) estimator. We provide conditions for the existence of the
iterated estimator and an asymptotic distribution theory, which allows for mild misspec-
ification. Moment misspecification causes bias in conventional GMM variance estima-
tors, which can lead to severely oversized hypothesis tests. We show how to consistently
estimate the correct asymptotic variance matrix. Our simulation results show that our
methods are properly sized under both correct specification and mild to moderate mis-
specification. We illustrate the method with an application to the model of Acemoglu,
Johnson, Robinson, and Yared (2008).

KEYWORDS: Misspecification, generalized method of moments, overidentification,
covariance matrix estimation.

1. INTRODUCTION

WHITE (1980A, 1980B, 1982) ADVOCATED FOR ROBUST INFERENCE, meaning that vari-
ance estimation should be valid under broader assumptions than the model interpreted
narrowly. His seminal papers showed how to construct robust covariance estimators for
linear regression and for likelihood estimation, which provide asymptotically valid infer-
ence for pseudo-true parameters without correct model specification. White’s vision for
robust covariance estimation dominates much of econometric practice. The metaphor of
robust estimation also motivated the generalized method of moments (GMM) estimator
of Lars Hansen (1982), as it was understood that maximum likelihood estimation can be
sensitive to model misspecification. This concern for robustness is echoed in the mono-
graph by Hansen and Sargent (2008), where they argue that decisions should be robust to
mild model misspecification.

This paper provides a rigorous distribution theory for iterated GMM in overidentified
econometric models under mild misspecification. We focus on the iterated estimator as it
removes the arbitrary dependence of the one-step and two-step GMM estimators on the
initial weight matrix. By “misspecification” we mean that some moment conditions may
fail in the population. This is appropriate when the model is viewed as an approximation
rather than as literally true. By “mild misspecification,” we mean that the degree of mis-
specification is bounded. This is similar to the concept of bounded robustness proposed in
Hansen and Sargent (2008). It is different from “local misspecification,” which treats the
degree of misspecification as diminishing in sample size. A reasonable interpretation is
that “mild misspecification” is intermediate between “local misspecification” and “global
misspecification.”
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Our contributions include the first formal demonstration of existence of the iterated es-
timator by establishing that the iteration sequence is a contraction, an asymptotic distribu-
tion theory for the iterated estimator allowing for misspecification, consistent covariance
matrix estimation allowing for misspecification, and simulation evidence documenting the
large distributional distortions in conventional test statistics due to misspecification and
how our proposed standard errors dramatically reduce these distortions.

Moment misspecification alters the GMM asymptotic covariance matrix, as was first
pointed out by Hall and Inoue (2003). Under misspecification, the asymptotic covari-
ance matrix contains terms, which depend on estimation error in the moment derivatives,
weight matrix estimation, the degree of curvature of the model moments, and the sensitiv-
ity of the weight matrix to the parameter values. Ignoring these terms leads to substantial
size distortions. Hall and Inoue (2003) developed a distributional theory for the one-step
and two-step GMM estimator under misspecification; this paper extends this theory to the
iterated GMM estimator. An interesting by-product of our analysis is that the asymptotic
distribution of the iterated estimator is simpler than the two-step estimator.

Our misspecification-robust covariance matrix estimator is closely related to the finite
sample correction of Windmeijer (2000, 2005), which is routinely used in practice. The
Windmeijer formula corrects for the bias in the standard error of the linear two-step and
iterated GMM estimators by considering the extra variation arising from the efficient
weight matrix being evaluated at an estimate rather than the true value. Hwang, Kang,
and Lee (2021) showed that the misspecification-robust standard errors provide the same
order of finite sample correction with the Windmeijer standard error under correct speci-
fication. Since the Windmeijer formula is not robust to misspecification, these calculations
show that our misspecification-robust standard errors are more accurate than both con-
ventional and Windmeijer standard errors.

The assumptions in this paper are closely related to overidentified instrumental vari-
able (IV) regression with heterogeneous treatment effects (Imbens and Angrist (1994),
Angrist and Imbens (1995), Kolesár (2013)). As shown in Lee (2018) and Evdokimov and
Kolesár (2018), conventional inference methods are inappropriate in this context and al-
ternative standard error formulas are necessary. The theory and methods presented in
this paper include the heterogeneous treatment effect IV model as a special case and
apply more broadly to linear and nonlinear GMM estimation. We also build on the mo-
ment misspecification literature of White (1982), Maasoumi and Phillips (1982), Gallant
and White (1988), Hall and Inoue (2003), Aguirre-Torres and Toribio (2004), Schennach
(2007), Dovonon (2016), and Lee (2014, 2016). A relevant connection is Ai and Chen
(2007), who derive the asymptotic distribution of the sieve minimum distance estimator
for misspecified conditional moment restrictions models.

We focus on models which are potentially misspecified. These models have no true
parameter, so the “true” parameter must be defined as a pseudo-true value—the value
which minimizes the population version of the sample criterion. This follows a long tra-
dition in econometrics. Goldberger (1991) proposed interpreting the least squares re-
gression coefficient vector as the best linear predictor. White (1980a, 1982, 1984, 1994)
recommended interpreting parameter values as minimizers of population criterion. An-
grist, Chernozhukov and Fernández-Val (2006) derived the pseudo-true parameter value
for the quantile regression estimator. In the asset pricing literature, Kan and Robotti
(2008) and Gospodinov, Kan, and Robotti (2014) provided misspecification-robust infer-
ence methods for the GMM pseudo-true value minimizing the distance metric of Hansen
and Jagannathan (1997). In the heterogeneous treatment effects literature, Angrist and
Imbens (1995) showed that the two-stage least squares (2SLS) estimand is the average
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causal response (ACR), which is a weighted average of the local average treatment ef-
fects (LATEs). As shown by Lee (2018), the moment condition model underlying 2SLS is
misspecified if the instruments identify the instrument-specific LATEs. Thus, the ACR is
a well-accepted GMM pseudo-true value.

More generally, our approach is related to recent work on characterizing various pol-
icy relevant treatment effects as weighted averages of the marginal treatment effect, for
example, Heckman and Vytlacil (2005), Heckman, Urzua, and Vytlacil (2006), Brinch,
Mogstad, and Wiswall (2017), Mogstad, Santos, and Torgovitsky (2018), Andrews (2019),
Evdokimov and Kolesár (2018), and Słoczyński (2018). Since these examples cannot be
handled by a local misspecification framework (e.g., Cheng, Liao, and Shi (2019)), our
approach is complementary to local misspecification.

The iterated GMM estimator is related to—but substantially different from—the con-
tinuously updated estimator (CU-GMM) of Hansen, Heaton, and Yaron (1996). The CU-
GMM is a one-step estimator (no iteration is required). Its asymptotic distribution under
misspecification could be derived by methods similar to those employed in this paper but
we do not do so to keep the presentation focused.

There are a number of limitations to our analysis. First, our results assume that the mo-
ment conditions are smooth. Allowing for nondifferentiable moment conditions would be
desirable but would require a different technical approach. Second, it is difficult to give
economic interpretation to pseudo-true parameter values. Consequently, this limits inter-
est in valid inference procedures for pseudo-true values. Third, the smoothness and mo-
ment assumptions needed for misspecification-robust inference are stronger than those
needed for conventional inference methods. This is analogous to the fact that White’s
(1980a) heteroskedasticity-robust covariance matrix estimator requires stronger assump-
tions than the classical variance estimator. Fourth, we do not allow for weak identification,
and this extension would be desirable but considerably more challenging. Fifth, we do not
consider how to select among point estimators in the context of potential misspecifica-
tion. This is a particularly difficult yet important topic. The methods of Cheng, Liao, and
Shi (2019) may be useful in this regard.

A common application of overidentified GMM is in dynamic panel models. Dynamic
panel regression is highly susceptible to misspecification, as it is not credible that the dy-
namic structure (number of lags) is known a priori. Consequently, dynamic panel models
should generically be viewed as constructive approximations. We illustrate our methods
by replicating and extending the results of Acemoglu et al. (2008) and Cervellati, Jung,
Sunde, and Visher (2014). We show that the GMM estimates are highly sensitive to the
number of GMM iterations. We also show that (depending on the specification) the stan-
dard errors can change enormously if the misspecification-robust variance estimator is
used instead of the standard Arellano-Bond estimator. These results are consistent with
mild misspecification and demonstrate the importance of using robust methods for em-
pirical research.

A Matlab code which replicates the empirical work reported in the paper is available
on the authors’ webpages.

Regarding notation, let λmin(A) and λmax(A) denote its smallest and largest eigenvalue
of a positive semidefinite matrixA. For a vector a, let ‖a‖ = (a′a)1/2 denote the Euclidean
norm. For a matrix A, let ‖A‖ = √

λmax(A′A) denote the spectral norm.
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2. GENERALIZED METHOD OF MOMENTS ESTIMATION

Consider a standard overidentified moment condition model. The moment equation is

E
[
m(Xi�θ0)

]= 0� (1)

where m(x�θ) is l× 1 and θ ∈Θ⊂R
k with l > k. Given a sample {X1� � � � �Xn} let

mn(θ)= 1
n

n∑
i=1

m(Xi�θ)

be the sample estimator of (1) given θ. Let

W n(θ)= 1
n

n∑
i=1

v(Xi�θ)v(Xi�θ)
′

be a weight matrix estimator where v(x�θ) is l× 1. Two leading examples are 2SLS which
sets v(x�θ) = z for an instrument vector Zi, and the efficient weight matrix which sets
v(x�θ)=m(x�θ).

The GMM criterion function is

Jn(θ�φ)=mn(θ)
′W n(φ)

−1mn(θ)� (2)

The parameter φ is the initial value used to form the weight matrix. The GMM estimator
is the value which minimizes the criterion function. Define the mapping

gn(φ)= arg min
θ∈Θ

Jn(θ�φ)� (3)

This is the minimizer of the criterion function over θ, given the initial value φ used to
form the weight matrix. Let θ̂0 be an initial value. The one-step estimator is θ̂1 = gn(θ̂0),
the two-step estimator is θ̂2 = gn(θ̂1), and the s-step estimator is

θ̂s = gn(θ̂s−1)� (4)

The iterated GMM estimator is the limit of this sequence

θ̂= lim
s→∞

θ̂s� (5)

We discuss in Section 4 sufficient conditions such that this limit exists.
The limit (5) is a fixed point of the equation

gn(θ̂)= θ̂� (6)

An interesting feature (previously unnoticed) is that the iterated estimator θ̂ is identical
if the centered version of the efficient weight matrix is used. That is, set v(x�θ)=m(x�θ)
and

W
∗
n(θ)= 1

n

n∑
i=1

m(Xi�θ)m(Xi�θ)
′ −mn(θ)mn(θ)

′�

J
∗
n(θ�φ)=mn(θ)

′W
∗
n(φ)

−1mn(θ)�
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g∗
n(φ)= arg min

θ∈Θ
J

∗
n(θ�φ)�

θ̂s = g∗
n(θ̂s−1)�

Let θ̂∗ be the limit of the sequence θ̂s .

THEOREM 1: Set v(x�θ)=m(x�θ) and assume that W n(θ) and W
∗
n(θ) are nonsingular.

Then θ̂∗ = θ̂.

This result has antecedents. Newey and Smith (2004, footnote 2) asserted that weight
matrix recentering does not affect the CU-GMM estimator, but did not provide a proof.
Based on the first-order conditions for the s-step GMM estimator, Hall (2005, p. 129)
asserted that recentering may not affect the probability limit of the iterated GMM esti-
mator, but also did not provide a proof. Theorem 1 shows that this equivalence is finite
sample exact for the iterated estimator. By similar reasoning, this result extends as well to
pseudo-true parameter values.

3. EXISTENCE OF PSEUDO-TRUE PARAMETER

In this section, we define and demonstrate existence of the pseudo-true parameter θ0

when the overidentified moment equation (1) is not necessarily satisfied. Following White
(1982), we define θ0 as the solution to the population analog of the estimator.

Define the population analogs of the sample moment and weight matrix

m(θ)= 1
n

n∑
i=1

E
[
m(Xi�θ))

]
� (7)

W (θ)= 1
n

n∑
i=1

E
[
v(Xi�θ)v(Xi�θ)

′]� (8)

Under heterogeneous distributions, the expectations (7) and (8) may vary with n. To not
over-burden the notation, we do not index these and similar expressions by n. Define the
population analogs of (2) and (3):

J(θ�φ)=m(θ)′W (φ)−1m(θ)�

g(φ)= arg min
θ∈Θ

J(θ�φ)�
(9)

Definition (9) specifies g(φ) as the best fitting value of θ given the weight matrix W (φ)
and an initial value φ. Under correct specification so that (1) holds and W (φ) > 0, then
the solution g(φ)= θ0 is unique. Under moment misspecification, however, the solution
(9) may vary with φ.

As an analog of the iterated GMM estimator (6) we define θ0 to be the fixed point
which solves

g(θ0)= θ0� (10)

Conceptually, one could imagine obtaining θ0 by iterating g(φ) until convergence.
The existence of the fixed point (10) has not been discussed in the previous literature.

We now provide a formal justification. Define Q(θ) = ∂
∂θ′m(θ) and S(θ) = ∂

∂θ′ vecW (θ).
S(θ) is a measure of the sensitivity of the weight matrix to the parameter value.
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ASSUMPTION 1:
1. Θ is compact
2. For all φ ∈Θ, g(φ) is unique and in the interior of Θ
3. m(θ) is twice continuously differentiable in θ ∈Θ
4. W (θ) is continuously differentiable in θ ∈Θ
5. infφ∈Θ λmin(W (φ))≥ C > 0

6. supφ∈Θ J(g(φ)�φ) <
C2

3
4C1C2

for

C1 = sup
φ∈Θ

∥∥Q(g(φ))′W (φ)−1Q
(
g(φ)

)∥∥� (11)

C2 = sup
φ∈Θ

S
(
g(φ)

)′(
W (φ)−1 ⊗W (φ)−1

)
S
(
g(φ)

)
� (12)

C3 = inf
φ∈Θ

∥∥∥∥ ∂2

∂θ∂θ′ J(θ�φ)|θ=g(φ)
∥∥∥∥� (13)

Assumption 1.1 imposes compactness for technical convenience. Assumption 1.2 states
that for any population weight matrix there is a unique population minimizer. Assump-
tions 1.3 and 1.4 are smoothness conditions on the population moments and weight func-
tion. These conditions are stronger than needed for the correctly specified case. Assump-
tion 1.5 excludes singular population weight matrices.

Assumption 1.6 is unusual. It controls the degree of misspecification. It allows for mis-
specification since it allows J(θ0�φ) > 0. It only allows, however, for mild misspecification
since the magnitude of J(g(φ)�φ) is bounded. Assumption 1.6 is automatically satisfied
under correct specification (since in that contextm(θ0)= 0) but otherwise allows for mild
deviations from the assumed model in the sense that for φ1 �=φ2, g(φ1) �= g(φ2) but the
difference is bounded. Mild misspecification allows global misspecification (‖m(θ)‖ > 0
for all θ ∈ Θ) but differs from local misspecification (m(θ0) = η/ns for some η �= 0 and
s > 0). Our definition of mild misspecification is similar to Hansen and Sargent (2008):
the set of models around the benchmark model that lie within a fixed sized entropy ball.
Our stated upper bound C2

3/4C1C2 is technical, and depends on the norm of population
moments. The upper bound C2

3/4C1C2 is determined by the constants C1, C2, and C3 de-
fined in (11), (12), and (13).C1 and C2 are finite under Assumptions 1.1–5.C3 > 0 typically
holds under Assumption 1.2. The allowable range for the left-side of Assumption 1.6 is
larger when C3 is larger (which occurs when g(φ) is well identified) and/or C2 is smaller
(less sensitivity of the weight matrix). Assumption 1.6 is not a sharp bound. Below we
provide examples where we explicitly calculate the contraction mapping. In two of these
examples (1 and 2), we show that the contraction mapping holds for all parameter values
so Assumption 1.6 is unnecessary. Furthermore, Assumption 1.6 is only used to establish
the existence of the fixed point under misspecification, and could be replaced by any other
sufficient condition for existence of the fixed point.

Assumption 1 is sufficient to establish the existence of the pseudo-true value θ0.

THEOREM 2: Under Assumption 1,

sup
φ∈Θ

∥∥∥∥ ∂

∂φ′g(φ)

∥∥∥∥< 1� (14)

The map g(φ) is a contraction and the fixed-point θ0 exists and is unique.
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We now provide three examples where we can explicitly calculate the contraction map-
ping.

EXAMPLE 1—Location Model: Consider a simple location model with i.i.d. observa-
tions Xi = (Yi�Zi) where Y and Z have the same unknown mean. The moment function
is m(Xi�θ)= (Yi − θ�Zi − θ)′. Assume that the true data generating process is a bivari-
ate normal with E[Yi] = 0, E[Zi] = α, Var[Yi] = Var[Zi] = 1, and Cov(Yi�Zi)= 0�5. We
calculate that the GMM mapping with the weight matrix W (φ)= E[m(Xi�φ)m(Xi�φ)

′]
is

g(φ)= α

2
(
1 + α2

) + α2

1 + α2φ�

Since (∂/∂φ)g(φ) = α2/(1 + α2) < 1 for all real α, g(φ) is a contraction irrespective
of the degree of misspecification. The minimized population criterion is J(g(φ)�φ) =
α2/(1+α2), which does not depend onφ. It deviates from zero when α �= 0 but is bounded
in α. The fixed point is θ = α/2, which can be obtained by solving the population first-
order condition. Alternatively, the fixed point can be obtained without iteration by using
the centered efficient weight matrixW ∗ =W (φ)−E[m(Xi�φ)]E[m(Xi�φ)]′ becauseW ∗

does not depend on φ.1 With W ∗ the minimized criterion is J∗(g∗(φ)�φ)= α2, which is
unbounded in α. In this example, Assumption 1.6 is unnecessary.

EXAMPLE 2—Linear IV: Consider a simple linear instrumental variable regression.
The model is Yi = Xiθ0 + εi, E[Ziεi] = 0 where Xi and θ0 are scalar and Zi =
(Z1i�Z2i)

′ is a vector of two instruments. The moment function is m(Wi�θ) = (Z1i(Yi −
Xiθ)�Z2i(Yi − Xiθ))

′ where Wi = (Yi�Xi�Z1i�Z2i). Assuming that the data-generating
process is Yi = Xi + α(Z1i − Z2i) + ei, Xi = (Z1i + Z2i) + ui, Zi ∼i�i�d N(0� I2), and
(ei�ui)

′ ∼i�i�d N(0� [1�0�5;0�5�1]), the GMM mapping with the weight matrix W (φ) =
E[m(Wi�φ)m(Wi�φ)

′] is

g(φ)= 5 − 7φ+ 3φ2 + α2(2 + 4φ)
5 − 7φ+ 3φ2 + 6α2 �

Since (∂/∂φ)g(φ) < 2/3 for all real α, the mapping is a contraction irrespective of
the degree of misspecification. The minimized population criterion is bounded because
J(g(φ)�φ)= (3α2 + 3

2(φ− 7
6)

2 + 11
24)

−1α2 < 1
3 . The fixed point is θ= θ0, which is invariant

to the degree of misspecification. In this example, Assumption 1.6 is unnecessary.
In general IV models, a sufficient condition for the GMM estimator to be a contraction

can be derived. Consider the model Yi =Xiθ0 +Z′
iα+ εi, Xi =Z′

iπ+ui where Yi and Xi

are scalars and Zi is an l× 1 vector. Assume that (Yi�Xi�Zi) are i.i.d. A nonzero αmeans
a violation of the exclusion restriction. Further assume that E[Ziui] = 0, E[Ziεi] = 0, and
π �= 0 and let Σ=E[ZiZ′

i]. The GMM mapping with a weight matrix W (φ) is

g(φ)= θ0 + (π ′ΣW (φ)−1Σπ
)−1
π ′ΣW (φ)−1Σα�

Since the exact expression for W (φ)−1 in terms of model parameters is hard to obtain
so is the exact condition for |(∂/∂φ)g(φ)|< 1. However, by manipulating the matrices it

1This is true for any moment function in the form of m(Xi�θ)= π(Xi)+ h(θ), for example, efficient mini-
mum distance estimators.
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can be shown that |(∂/∂φ)g(φ)| = 0 if πα′ = απ ′. This condition holds if the instruments
are all valid (α = 0) or π = α. The latter case may arise in practice where the strong
instruments are likely to be invalid while the weaker instruments are likely to be valid.
For example, lagged dependent variables are often used as instruments in the dynamic
panel models. If there is a serial correlation in the errors, the instrument becomes weaker
but less invalid as the lag increases.

EXAMPLE 3—Nonlinear model of Schennach (2007): Consider a simple nonlinear
model where the mean is estimated imposing a known variance. The moment function
is given by

m(Xi�θ)=
(

Xi − θ
(Xi − θ)2 − 1

)
� (15)

The parameter of interest is θ and a unit variance is imposed. The moment condition is
misspecified if the actual variance differs from one. The data-generating process isXi ∼i�i�d

N(θ0�σ
2) where σ2 > 0. We set θ0 = 0. The degree of misspecification is defined as α=

σ2 − 1. The model is correctly specified if α= 0. The centered weight matrix is

W (φ)=E[m(Xi�φ)m(Xi�φ)
′]−E[m(Xi�φ)

]
E
[
m(Xi�φ)

]′
=
[

1 + α −2(1 + α)φ
−2(1 + α)φ 2(1 + α)(1 + α+ 2φ2

)] �
It is nonsingular for all φ ∈ Θ and for all α > −1 because det(W (φ)) = 2(1 + α)3 �= 0.
The GMM criterion function is

J(θ�φ)= θ4 − 4φθ3 + 2
(
2(1 + α)+ 2φ2 − 1

)
θ2 − 4αφθ+ α2

2(1 + α)2 �

If α= 0 (correctly specified), the unique minimizer is θ0 = 0 regardless of φ. Under mis-
specification, the minimizer generally depends on φ and α and a closed form expression
for g(φ) is not available. Using numerical methods, we verified that g(φ) is unique. By
the implicit mapping theorem, it follows that (formal justification is given in the proof of
Theorem 2)

∂

∂φ′g(φ)=
(
∂

∂θ

∂

∂θ′ J
(
g(φ)�φ

))−1
∂

∂φ

∂

∂θ′ J
(
g(φ)�φ

)
�

Being a contraction requires that supφ∈Θ ‖(∂/∂φ′)g(φ)‖< 1. The fixed point is θ0 which
can be obtained by solving the population first-order condition evaluated at φ= θ. Since
it can be numerically verified that supφ∈Θ ‖(∂/∂φ′)g(φ)‖ = ‖(∂/∂φ′)g(φ)‖φ=θ0 the de-
gree of misspecification needs to be restricted as α > −1/3. In other words, if σ2 ≤ 2/3
then the GMM mapping does not converge. Also it can be numerically verified that
supφ∈Θ J(g(φ)�φ)= J(θ0� θ0). Since J(θ0� θ0)= α2/(2(1 + α)2)2 ≥ 1/8 for α≤ −1/3, the
upper bound in Assumption 1.6 can be set at 1/8. In this example, Assumption 1.6 is
binding.

4. EXISTENCE OF ITERATED GMM ESTIMATOR

The iterated GMM estimator (5) is defined as the limit of the s-step estimator or equiv-
alently as the fixed point (6). The existence of this limit has not been discussed previous.
In this section, we provide sufficient conditions.
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ASSUMPTION 2:
1. The observations Xi are independent.
2. For all θ ∈ Θ and j = 1� � � � �k the random variables ‖m(X�θ)‖, ‖ ∂

∂θ′m(X�θ)‖,
‖ ∂2

∂θj∂θ
′m(X�θ)‖, ‖v(X�θ)‖2, and ‖ ∂

∂θ′ v(X�θ)‖2 are uniformly integrable.

3. For j1� j2 = 1� � � � �k, supi E[supθ∈Θ ‖ ∂3

∂θj1 ∂θj2 ∂θ
′m(Xi�θ)‖]<∞.

4. For j = 1� � � � �k, supi E[supθ∈Θ ‖ ∂2

∂θj∂θ
′ v(Xi�θ)‖2]<∞.

Assumption 2 is used to verify that a set of sample moments converge uniformly in
probability to their expectations.

THEOREM 3: Under Assumptions 1 and 2, as n→ ∞
1. supφ∈Θ ‖gn(φ)− g(φ)‖ −→

p
0.

2. With probability tending to one, the map gn(φ) is a contraction and the fixed point θ̂
exists and is unique.

3. ‖θ̂− θ0‖ −→
p

0.

The proof is based on Dominitz and Sherman (2005, Theorem 2 and Lemma 3). They
show that if the population mapping g(φ) is a contraction and gn(φ) and its derivative
are uniformly consistent then gn(φ) is a contraction, the fixed point exists (both with
probability tending to one), and the fixed point θ̂ is consistent. We verify these conditions
by applying the uniform law of large numbers to gn(φ) and its derivative.

REMARK 1: The fixed point θ0 and the estimator θ̂ are linked to the class of minimum
discrepancy (MD) estimators (Corcoran (1998)) defined as

θ̃= arg min
θ∈Θ�π1�����πn

n∑
i=1

h(πi)� s.t.
n∑
i=1

πim(Xi�θ)= 0�
n∑
i=1

πi = 1�

where h(π) is a convex function of a scalar π. In particular, Imbens, Spady, and Johnson
(1998) and Newey and Smith (2004) show that the first-order conditions of the log Eu-
clidean likelihood (LEL) and the CU-GMM both corresponding to h(π)= n−1(n2π2 −1)
take the form

0 =
(

n∑
i=1

π̂iQ(Xi� θ̂)

)′

W n(θ̂)
−1mn(θ̂)� (16)

where Q(x�θ)= (∂/∂θ′)m(x�θ), W n(θ)= n−1
∑n

i=1m(Xi�θ)m(Xi�θ)
′, and

π̂i = 1 −mn(θ̂)
′W n(θ̂)

−1m(Xi� θ̂)�

Thus, the difference between (16) and the first-order condition of the iterated GMM (17)
is how E[Q(Xi�θ0)] is estimated. The iterated GMM uses equal weights and the LEL
uses the optimal2 weights. If Q(x�θ) does not depend on x (e.g.,m(x�θ)= π(x)+h(θ)),
then

n∑
i=1

π̂iQ(Xi� θ̂)=
(

n∑
i=1

π̂i

)
Q(θ̂)

2The optimality of the LEL weights does not hold under misspecification.



1428 B. E. HANSEN AND S. LEE

and (16) can be written as

0 =Q(θ̂)′Ŵn(θ̂)
−1mn(θ̂)�

which is the iterated GMM first-order condition. The same is true for the population
first-order conditions. Under misspecification, the pseudo-true values of the MD estima-
tors are defined as the minimizer of the population version of the discrepancy (Schen-
nach (2007)). For example, the empirical likelihood estimators (h(π)= − lnπ) of Owen
(1988), Qin and Lawless (1994), and Imbens (1997) minimizes the discrepancy called the
Kullback–Leibler information criterion. The exponential tilting estimator (h(π)= π lnπ)
of Kitamura and Stutzer (1997) and Imbens, Spady, and Johnson (1998) minimize the
discrepancy called the entropy. These are all well-defined discrepancy measures and in
general it is difficult to argue that one is superior to others.

5. WHY ITERATE?

A reasonable question is why an empirical researcher should prefer the iterated GMM
estimator θ̂ relative to the 2-step estimator θ̂2. Under correct specification both have the
same first-order asymptotic distribution. In the lack of a higher-order theory what is the
rationale for preferring one estimator over the other? We give three reasons.

First, the iterated GMM estimator removes the arbitrariness induced by the choice of
initial estimator θ̂0. Two researchers may select distinct yet reasonable initial estimators
and will thus obtain two distinct two-step GMM estimators θ̂2. Unless there is a com-
pelling reason to select a specific initial estimator θ̂0 there is no compelling reason to
select one of the two two-step estimators over the other. By iterating until convergence,
the estimators will coincide and the arbitrariness will be eliminated.

Second, as we show in Theorem 4 below, the asymptotic distribution of the iterated
GMM estimator takes a simpler form than that of the 2-step estimator found by Hall and
Inoue (2003). This means that using the iterated estimator makes it more convenient to
implement misspecification-robust inference.

Third and possibly most importantly, the iterated GMM estimator appears to have re-
duced variance. This argument is a bit heuristic, but is based on the contraction property.
Since the iteration mapping is a contraction, each iteration is approximately variance re-
ducing.

To see this, combine equation (4) with Theorem 3.1 and equation (14) in Theorem 2.
We find that the s-step estimator approximately equals

θ̂s − θ0 = gn(θ̂s−1)− θ0

� g(θ̂s−1)− θ0

� ∂

∂θ′ g(θ0)(θ̂s−1 − θ0)�

For example, in the scalar case

var(θ̂s)� c2 var(θ̂s−1)�

where c is from Theorem 2. Since c < 1, iteration reduced the variance.
These arguments are heuristic and are not meant to be either finite sample nor asymp-

totically rigorous statements. Rather, the heuristic is that since the iteration operation is
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a contraction which is an approximately affine function with a slope less than unity, it is
approximately variance reducing.

The one potential downside to iteration is computation cost. The computation of the
iterated GMM estimator is roughly linear in the number of iterations. In linear models,
including linear GMM, computation cost is negligible so this should not be a practical
concern. In nonlinear models, computational cost can be a consideration; however, this
could be avoided by linearizing the moment condition. For example, Lewbel and Pen-
dakur (2009) used a form of iterated linear GMM estimator to estimate a highly nonlinear
model. The moment conditions are linearized by evaluating the nonlinear components at
the previous step estimate. They report that the iterated estimator is numerically very
close to the fully nonlinear estimator.

6. ASYMPTOTIC DISTRIBUTION

In this section, we provide the asymptotic distribution of the iterated GMM estima-
tor while allowing for possible moment misspecification. The iterated GMM estimator θ̂
satisfies the first-order condition

0 = 1
2
∂

∂θ
Jn(θ� θ̂)|θ=θ̂ =Qn(θ̂)

′W n(θ̂)
−1mn(θ̂)� (17)

The standard approach is to make a first-order Taylor expansion of mn(θ̂) about mn(θ0)
and then apply a central limit theory to mn(θ0). Under correct specification this is appro-
priate since E[m(Xi�θ0)] = 0. Under misspecification, this latter condition does not hold
so this expansion does not lead to a constructive solution.

To obtain the correct asymptotic distribution, we can instead expand the entire first-
order condition rather than just the sample moment mn(θ̂). Define

Fn(θ)=Qn(θ)
′W n(θ)

−1mn(θ)

which satisfies 0 = Fn(θ̂). Expand Fn(θ̂) about θ0 and rearranging, we find that
√
n(θ̂− θ0)� −Hn(θ0)

−1√nFn(θ0)� (18)

where

∂

∂θ′Fn(θ)= 1
2
∂2

∂θ∂θ′ Jn(θ�φ)+ 1
2

∂2

∂θ∂φ′ Jn(θ�φ)|φ=θ

=Qn(θ)
′W n(θ)

−1Qn(θ)+ (mn(θ)
′W n(θ)

−1 ⊗ Ik
)
Rn(θ)

− (mn(θ)
′W n(θ)

−1 ⊗Qn(θ)
′W n(θ)

−1
)
Sn(θ)

≡Hn(θ) (19)

and Rn(θ)= ∂
∂θ′ vec(Qn(θ)

′). (This and other calculations are justified in the Appendix.)
Next, we expand Fn(θ0) in terms of sample moments. Set μ=m(θ0), Q=Q(θ0), W =

W (θ0), R(θ)= ∂
∂θ′ vec(Q(θ)′), R= R(θ0), and S = S(θ0). Set mn =mn(θ0), Qn =Qn(θ0),

and W n = W n(θ0). The vector μ is the magnitude of the population moment condition
evaluated at the pseudo-true values, and thus measures the magnitude of the degree of
misspecification. The matrix Q is the derivative of the moment m(θ) and measures the
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degree of identification. The matrix R is the second derivative of the moment m(θ) and
measures its curvature. The matrix S is the derivative of the weight matrix W (θ) and
measures the sensitivity of the weight matrix to the parameter value.

In the Appendix, we show that
√
nFn(θ0)= √

nF̃n + op(1)� (20)

where

F̃n =Q′W −1mn +QnW
−1μ−Q′W −1W nW

−1μ�

We set

ψi =Q′W −1m(Xi�θ0)+Q(Xi�θ0)
′W −1μ−Q′W −1v(Xi�θ0)v(Xi�θ0)

′W −1μ (21)

so that

√
nF̃n = 1√

n

n∑
i=1

ψi� (22)

The CLT can be applied to (22) which has variance

Ω= 1
n

n∑
i=1

E
[
ψiψ

′
i

]
� (23)

Equations (18), (20), and (22) imply

√
n(θ̂− θ0)� −Hn(θ0)

−1

(
1√
n

n∑
i=1

ψi

)
+ op(1)�

This leads to an asymptotic distribution theory for θ̂.
We now provide regularity conditions and a formal statement. Define

H(θ)= 1
2

(
∂2

∂θ∂θ′ J(θ�φ)+ ∂2

∂θ∂φ′ J(θ�φ)
)∣∣∣∣

φ=θ

=Q(θ)′W (θ)−1Q(θ)+ (m(θ)′W (θ)−1 ⊗ Ik
)
R(θ)

− (m(θ)′W (θ)−1 ⊗Q(θ)′W (θ)−1
)
S(θ)

and

H =H(θ0)=Q′W −1Q+ (μ′W −1 ⊗ Ik
)
R− (μ′W −1 ⊗Q′W −1

)
S� (24)

The matrix H plays an important role in the asymptotic distribution. Its leading compo-
nent Q′W −1Q is the inverse of the asymptotic covariance matrix under correct specifica-
tion when W is the efficient weight matrix. The second term in H is proportional to μ
(the magnitude of misspecification) and R (the curvature in the moment condition). The
third term in H is proportional to μ and S (the sensitivity of the weight matrix to the pa-
rameters). Thus H will be close to Q′W −1Q when the degree of misspecification is small,
and/or the curvature of m(θ) and sensitivity of W (θ) are small. Otherwise, H will differ
from Q′W −1Q.

Define V =H−1ΩH−1′. Let N be some neighborhood of θ0.
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ASSUMPTION 3:
1. The random variables ‖m(Xi�θ)‖2, ‖ ∂

∂θ′m(Xi�θ)‖2, and ‖v(Xi�θ)‖4 are uniformly in-
tegrable for all θ ∈N .

2. λmin(H
′H)≥ C > 0.

3. λmin(Ω)≥ C > 0.

Assumption 3.1 is necessary in order to apply the central limit theorem to (22). As-
sumptions 3.2 and 3.3 exclude singular covariance matrices.

THEOREM 4: Under Assumptions 1–3, as n→ ∞
V −1/2√n(θ̂− θ0)−→

d
N(0� Ik)� (25)

Theorem 4 provides a simple characterization of the asymptotic distribution of the it-
erated GMM estimator under mild moment misspecification.

The asymptotic variance in Theorem 4 differs from the classical formula(
Q′W −1Q

)−1(
Q′W −1Ω11W

−1Q
)(
Q′W −1Q

)−1
�

where Ω11 is (23) with μ = 0, in two ways. First, the matrix H defined in (24) differs
from Q′W −1Q as discussed above. The magnitude of this difference depends on the de-
gree of misspecification, the curvature in m(θ), and the sensitivity of W (θ). Second, the
asymptotic covariance matrix Ω defined in (23) of the vector ψi is an augmented ver-
sion of the classic covariance matrix. Ω is augmented by the variation in Q(Xi�θ0) and
v(Xi�θ0)v(Xi�θ0)

′. Larger variance in these variables implies larger differences. These
differences disappear under correct specification.

The asymptotic distribution in Theorem 4 is similar to that obtained by Hall and Inoue
(2003). They are equivalent when W (θ) does not depend on θ (which excludes iterated
GMM with an efficient weight matrix). Theorem 4 is the first distribution theory which
formally covers the iterated GMM estimator, both under correct specification and mis-
specification.

The assumptions allow for heterogeneous distributions, thus the asymptotic covariance
matrix V may vary with sample size. We have not indexed the population moments by
n to keep the notation uncluttered, but it is useful to observe that the assumptions do
not impose homogeneity. This is why the asymptotic distribution in (25) is written in self-
normalized notation.

7. COVARIANCE MATRIX ESTIMATION

It is straightforward to calculate an estimator of the asymptotic covariance matrix V .
Construct the estimators Q̂=Qn(θ̂), R̂=Rn(θ̂), Ŝ = Sn(θ̂), Ŵ =W n(θ̂), μ̂=mn(θ̂), and

Ĥ =Hn(θ̂)= Q̂′Ŵ −1Q̂+ (μ̂′Ŵ −1 ⊗ Ik
)
R̂− (μ̂′Ŵ −1 ⊗ Q̂′Ŵ −1

)
Ŝ� (26)

An alternative numerical method is

Ĥ = 1
2

(
∂2

∂θ∂θ′ Jn(θ�φ)+ ∂2

∂θ∂φ′ Jn(θ�φ)
)∣∣∣∣

φ=θ=θ̂
�

We use (26) for our numerical and empirical calculations.
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Construct the vectors

ψ̂i = Q̂′Ŵ −1m(Xi� θ̂)+Q(Xi� θ̂)
′Ŵ −1μ̂− Q̂′Ŵ −1v(Xi� θ̂)v(Xi� θ̂)

′Ŵ −1μ̂�

the variance estimator

Ω̂= 1
n

n∑
i=1

ψ̂iψ̂
′
i� (27)

and

V̂ = Ĥ−1Ω̂Ĥ−1′� (28)

The asymptotic standard errors for θ̂ are the square roots of the diagonal elements of
n−1V̂ .

We now establish that V̂ is consistent for V and that replacement in the asymptotic
distribution of V by V̂ has no effect.

ASSUMPTION 4:
1. supi E[supθ∈N ‖ ∂2

∂θj∂θ
′m(Xi�θ)‖2]<∞.

2. supi E[supθ∈N ‖ ∂
∂θ′ v(Xi�θ)‖4]<∞.

Assumption 4 is used to establish the uniform convergence of Ω̂.

THEOREM 5: Under Assumptions 1–4,

‖V̂ − V ‖ −→
p

0

and

V̂ −1/2√n(θ̂− θ0)−→
d
N(0� Ik) (29)

as n→ ∞.

Equation (29) implies that test statistics constructed with V̂ have standard asymp-
totic distributions. In particular, t-statistics are asymptotically standard normal, and Wald
statistics have asymptotic chi-square distributions. Conventional confidence intervals con-
structed with the GMM estimator and our proposed standard errors have asymptotically
correct coverage for the pseudo-true values.

To emphasize, Theorem 5 shows that robust t-statistics and Wald statistics calculated
with (28) have conventional asymptotic distributions. The result fails if the standard co-
variance matrix estimator is used.

8. SIMULATION

In this section, we illustrate our methods in two simulation experiments, one for a lin-
ear model and one for a nonlinear model. For both models, we investigate inference for
iterated efficient GMM estimation using conventional and our recommended robust stan-
dard errors. The Windmeijer (2000, 2005) corrected standard errors are also calculated
for the linear model. We find large and important improvements in performance by using
our recommended methods. All calculations use 5000 Monte Carlo replications.
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Our first experiment concerns a simple linear instrumental variable regression with a
single endogenous regressor. The model is

Yi =Xiθ0 + εi�
E[Ziεi] = 0�

(30)

where Xi and θ0 are scalar and Zi = (Z1i�Z2i�Z3i�Z4i)
′ is a vector of instrumental vari-

ables. We estimate θ0 by iterated efficient GMM, and calculate standard errors using the
conventional heteroskedasticity-robust formula, the Windmeijer corrected formula, and
our misspecification-robust formula.

Our data-generating process is

Yi =Xi + α(Z1i −Z2i +Z3i −Z4i)+ ei�
Xi = π(Z1i +Z2i +Z3i +Z4i)+ ui�
Zi ∼i�i�d N(0� I4)�(
ei
ui

)
∼i�i�d N

((
0
0

)
�

[
1 0�5

0�5 1

]) (31)

with Zi independent of (ei�ui). We vary α from 0 to 1 in steps of 0.1, and set the first-stage
coefficient π so that the first-stage R2 = 0�20 or 0�02, corresponding to relatively strong
and weak instrument settings. We set the number of observations as n= 250 and 2500.

The key parameter is α. At α= 0, the model is correctly specified. For α �= 0, we find

E
[
Zi(Yi −Xiθ0)

]=
⎛⎜⎝ α

−α
α

−α

⎞⎟⎠ �= 0 (32)

so the moment condition (30) fails to hold. Note that (32) is the moment condition eval-
uated at the pseudo-true value. The instruments are invalid due to the violation of the
exclusion restriction. The model is designed so that the pseudo-true value θ0 is invari-
ant to α.3 (This choices eases reporting and interpretation. It is worth mentioning once
again that one challenge with inference allowing for misspecification is that in general the
pseudo-true parameter value is not invariant to misspecification.)

The results are reported in Table I. In the fourth column, we report the ratio of the
mean of our proposed misspecification-robust standard errors relative to the actual stan-
dard deviation of θ̂ across the 5000 simulation replications. The standard error is unbi-
ased if this ratio is 1, is biased downwards for values less than 1, and biased upwards
for values greater than 1. We can see that under strong identification (R2 = 0�20) our
proposed standard errors are nearly unbiased in all cases examined. Under weak iden-
tification (R2 = 0�02), our proposed standard errors are upward biased for n = 250, but
nearly unbiased for n= 2500.

In the fifth column, we report the ratio of the mean of the Windmeijer corrected stan-
dard errors relative to the standard deviation of θ̂. The smaller size distortion and reduced
bias in the Windmeijer standard errors under correct specification (α = 0) are clearly

3Since the model is linear the pseudo-true value can be obtained by solving the population first-order con-
dition, Q′W (θ0)

−1m(θ0)= 0.
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TABLE I

MONTE CARLO RESULTS FOR LINEAR MODEL

R2 n α sr (θ̂)/s�d sw(θ̂)/s�d s(θ̂)/s�d Size(tr ) Size(tw) Size(t) Reject(J) Med. Iter

0.2 250 0 1.012 0.999 0.974 0.058 0.059 0.066 0.052 3
0�2 1.001 0.919 0.712 0.066 0.079 0.162 0.998 7
0�4 0.997 0.902 0.511 0.078 0.098 0.312 1.000 11
0�6 0.980 0.895 0.433 0.105 0.119 0.408 1.000 14
0�8 0.973 0.896 0.393 0.109 0.127 0.450 1.000 15
1 0.955 0.882 0.372 0.121 0.137 0.488 1.000 16

2500 0 0.990 0.989 0.987 0.051 0.051 0.052 0.050 2
0�2 1.011 0.935 0.732 0.047 0.069 0.157 1.000 6
0�4 0.992 0.891 0.501 0.060 0.087 0.319 1.000 11
0�6 1.001 0.900 0.415 0.053 0.081 0.414 1.000 14
0�8 0.971 0.876 0.363 0.062 0.091 0.477 1.000 16
1 0.980 0.887 0.345 0.067 0.094 0.507 1.000 18

0.02 250 0 1.277 1.013 0.992 0.083 0.116 0.125 0.054 4
0�2 1.096 0.594 0.516 0.068 0.223 0.284 0.861 6
0�4 1.270 0.541 0.438 0.077 0.276 0.426 0.912 8
0�6 1.004 0.504 0.402 0.081 0.312 0.490 0.910 8
0�8 1.019 0.505 0.396 0.076 0.327 0.527 0.913 9
1 1.003 0.501 0.391 0.074 0.318 0.533 0.915 9

2500 0 1.048 1.018 1.016 0.048 0.053 0.054 0.051 3
0�2 1.007 0.463 0.370 0.060 0.349 0.467 1.000 7
0�4 1.002 0.397 0.247 0.058 0.441 0.661 1.000 10
0�6 1.000 0.388 0.215 0.064 0.470 0.721 1.000 12
0�8 0.992 0.386 0.204 0.067 0.474 0.745 1.000 14
1 1.010 0.393 0.199 0.062 0.469 0.751 1.000 15

seen, as is shown in Windmeijer (2000, 2005). In contrast, the bias of the Windmeijer
standard error increases in the degree of misspecification. The standard errors are moder-
ately downward biased under strong identification but severely (60%) biased under weak
identification. This is consistent with the finding of Hwang, Kang, and Lee (2021) that the
Windmeijer formula only partially corrects the misspecification bias.

In the sixth column, we report the ratio of the mean of the conventional
heteroskedasticity-robust standard errors relative to the standard deviation of θ̂. We can
see that the standard errors are unbiased for α = 0 but highly biased for α �= 0. The
standard errors are downward biased, meaning that the reported standard errors un-
derstate estimation uncertainty. The bias is severe even for the smallest departure from
α= 0, with approximately a 30% downwards bias for α= 0�2 under strong identification,
and a 50–60% downward bias under weak identification. The bias is increasing in α and
does not improve with sample size. Indeed the worst case arises for α= 1, R2 = 0�02, and
n= 2500, where the conventional standard error is about one-fifth the true standard devi-
ation. These results demonstrate unambiguously that the conventional heteroskedasticity-
robust standard errors are severely affected by moment misspecification.

In columns seven to nine we report the size of nominal asymptotic 5% t-tests for
H0 : θ0 = 1 against H1 : θ0 �= 1. Column seven reports the size of tests using our pro-
posed misspecification-robust standard errors. We can see that there is meaningful size
distortion from our misspecification-robust t-tests when the sample size is small (rejec-
tion rates range from 6% to 12% under strong identification, and from 7% to 8% un-
der weak identification), but this disappears as the sample size increases. Column eight
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reports the size of the test using the Windmeijer corrected standard errors. Similar to
column five there is moderate size distortion (rejection rates range from 6% to 13.7%)
under strong identification and it improves as the sample size increases (range from 5% to
9%). Under weak identification, the test exhibits severe size distortion under misspecifica-
tion (rejection rates range from 22% to 32%) and it worsens as the sample size increases
(range from 35% to 47%). Column nine reports the size of the test using the conventional
heteroskedasticity-robust standard errors. We can see that the test is highly oversized with
the size distortion increasing in the degree of misspecification, as the strength of the in-
struments weaken, and as the sample size increases. The rejection rates are severely dis-
torted even for the mildest departures from correct specification in the presence of weak
instruments. Indeed, the size of the t-test is 46.7% for α= 0�2 and n= 2500 and exceeds
70% for α > 0�6.

In column ten, we report rejection rates for the J test using the asymptotic 5% critical
value. While the J test will properly detect misspecification when n = 2500, it may not
when n= 250, especially in the presence of weak instruments.

In the final column, we report the median number of iterations required to obtain con-
vergence, which is defined as ‖θ̂s − θ̂s−1‖ < 10−5. The results show that the number of
required iterations is increasing in the degree of misspecification. This is consistent with
Assumption 1.4 which is used to establish the convergence of the GMM iteration se-
quence. As misspecification increases the contraction property weakens, and thus itera-
tive convergence slows. It is noteworthy that in all our simulation runs the GMM iteration
sequence did converge.

Our theory does not cover the case of weak instruments. To investigate the impact
of weak instruments, we computed a further simulation using n = 2500 and R2 = 0�002,
which corresponds to a concentration parameter similar to the n = 250 and R2 = 0�02
case. As might be expected, we found the performance of the method to be similar to the
n= 250 and R2 = 0�02 case. This illustrates that our methods are not robust to very weak
instruments.

It is worth pointing out the behavior of the statistics when there is no misspecification
(α= 0). In this setting, both conventional and robust methods are appropriate, and in fact
one might expect the conventional methods to work better since the covariance matrix is
estimating fewer terms. However, the misspecification-robust t-statistic has less size dis-
tortion than the conventional t-statistic, in particular when the sample size is small and
the instruments are weak. Surprisingly, this is not a coincidence. Hwang, Kang, and Lee
(2021) show that the misspecification-robust standard errors provide finite sample correc-
tions up to the same order with the Windmeijer correction under correct specification for
linear GMM assuming strong identification. Thus, it is strongly preferred to use our new
robust standard error for linear models.

Our second experiment involves a simple nonlinear model of Schennach (2007), which
is presented in Example 3 in Section 3. We estimate θ0 by iterated efficient GMM us-
ing the centered weight matrix and calculate the standard error using the conventional
heteroskedasticity-robust formula and our misspecification-robust formula. Replications
where convergence failed are excluded.

Since we have shown in Example 3 that the GMM mapping does not converge if α ≤
−1/3, we set α= −0�3, −0�25, 0 (correct specification), 0�5, 1, and 2. The iterated efficient
GMM pseudo-true value is θ0 = 0 which is invariant to α. It can be found by solving the
first-order condition and setting φ = θ because the first-order condition has a unique
root. We set the number of observations as n= 250 and 2500.

The overall results are quite similar to those presented in Table I, showing excellent
performance of our misspecification-robust standard errors and t tests across α relative
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to the conventional standard errors and t tests. Notably, the performance of our proposed
standard errors is not affected conditional on convergence. At α= −0�3, which is close to
the value α= −1/3 where convergence fails, the convergence failure rate is about 36% of
the repetitions, which are reported in the final column of the table.

9. APPLICATION: INCOME AND DEMOCRACY

In an influential paper, Acemoglu et al. (2008, AJRY hereinafter) find no evidence of
a causal effect of income on democracy. This contrasts to the conventional wisdom that
income has a positive causal effect. AJRY estimate the dynamic panel regression

Yit = αYi�t−1 + γXi�t−1 +μt + δi + uit� (33)

where Yit is a measure of democracy, Xit is log income per capita, μt is a time effect,
and δi is a country fixed effect. The error term uit has mean zero for all i and t. The
parameter of interest is γ, the effect of income on democracy. Their data set includes
127 countries observed over 1960–2000 at both 5-year and 10-year frequencies. While
AJRY consider several estimators, we focus on the one-step GMM estimator of Arellano
and Bond (1991). This is an overidentified GMM setting. It is unlikely that the AJRY
model is correctly specified as the dynamics, functional form, and coefficient homogeneity
assumption could all be incorrect. This is a natural application to investigate the impact
of our proposed estimators.

Dynamic GMM applications with T > 3 time periods have clustered dependence struc-
tures. Therefore, clustered variance estimation is used. The extension of our variance
estimators to the clustered setting is reasonably straightforward and is described in our
companion papers Hansen and Lee (2019, 2020).4

The AJRY estimates of (33) are reported in their Table 2. We repeat their estimates
in Table III. Columns I and III are the estimates reported in AJRY (one-step GMM).
Columns II and IV are iterated GMM (which are not reported in AJRY). We report

TABLE II

MONTE CARLO RESULTS FOR NONLINEAR MODEL

n α sr (θ̂)/s�d s(θ̂)/s�d Size(tr ) Size(t) Reject(J) Med. Iter Failed Conv.

250 −0�3 0.994 0.918 0.035 0.048 0.623 36 36.6%
−0�25 0.987 0.937 0.051 0.060 0.805 13 13.4%

0 1.002 0.997 0.050 0.051 0.063 3 0%
0�5 0.997 0.920 0.051 0.073 0.988 7 0%
1 1.004 0.859 0.053 0.095 1.000 8 0%
2 0.999 0.787 0.054 0.128 1.000 10 0%

2500 −0�3 0.983 0.875 0.051 0.079 0.927 25 7.3%
−0�25 1.007 0.935 0.050 0.062 1.000 11 0%

0 0.997 0.996 0.050 0.050 0.050 2 0%
0�5 1.010 0.935 0.048 0.063 1.000 6 0%
1 0.990 0.845 0.052 0.100 1.000 8 0%
2 1.006 0.782 0.048 0.125 1.000 9 0%

4The theoretical treatment in the original version of this paper allowed for clustered dependence but was
removed at the coeditor’s request to allow a clean focus on the primary issues.
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TABLE III

EXTENSION OF ACEMOGLU ET AL. (2008, TABLE 2)a

Column (4) Column (8)
5-year data 10-year data

One-step Iterated One-step Iterated
I II III IV

Democracyt−1 0�489 0�744 0�227 0�288
Arellano–Bond s.e. (0�085) (0�043) (0�123) (0�111)
Misspecification-Robust s.e. (0�095) (0�128) (0�125) (0�146)

Incomet−1 −0�129 −0�009 −0�318 −0�280
Arellano–Bond s.e. (0�076) (0�040) (0�180) (0�170)
Misspecification-Robust s.e. (0�088) (0�039) (0�183) (0�202)

Cumulative Income Effect −0�253 −0�036 −0�411 −0�393
Arellano–Bond s.e. (0�148) (0�152) (0�243) (0�243)
Misspecification-Robust s.e. (0�163) (0�149) (0�246) (0�290)

Hansen J Test [0�04] [0�42] [0�08] [0�09]
# of Iterations 0 23 0 9
# of Instruments 55 15
Observations 838 338
Countries 127 118

aStandard errors clustered by country.

Arellano–Bond standard errors and our new misspecification-robust standard errors,
both clustered by country. We report the number of instruments used, the number of
total observations, the number of countries G, and the p-value of the overidentifying re-
strictions J test. The J statistics are constructed using the uncentered clustered efficient
weight matrix.

We focus on two issues: (1) The difference between the one-step and iterated estimates.
(2) The difference between the Arellano–Bond and misspecification-robust standard er-
rors.

First, we find that the difference between the one-step and iterated GMM estimates can
be large. For example, in the 5-year data the one-step point estimate for γ is −0�129 while
the iterated GMM estimate is −0�009. This large difference means that one-step estima-
tion is sensitive to the initial estimator. Two econometricians with different initial weight
matrices will find two meaningfully different estimates. Any choice except the iterated
solution is arbitrary.

To emphasize the strong and arbitrary dependence of the GMM estimator on the initial
weight matrix and the importance of iterating until convergence, we display in Figure 1
the point estimates for α̂ (panel (a)) and γ̂ (panel (b)) as a function of the iteration. Five
lines are plotted corresponding to distinct starting values. Also displayed are the asymp-
totic 95% confidence intervals for the iterated GMM estimates. What can be seen is that
while the sequence of GMM estimates converge to a well-defined limit as the number of
iterations increase, the convergence takes a fairly large number of iterations (over 20).
While the change in the point estimates between iterations is small, the overall change
by iterating to convergence is substantial. Quite intriguingly, the income coefficient iter-
ates are nonmonotonic. This demonstrates substantial arbitrariness of using any estimator
other than iterated GMM.

Second, the difference between the two sets of standard errors can be large. For exam-
ple, in the 5-year data the misspecification-robust standard error for the iterated estima-
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FIGURE 1.—Convergence path of the iterated GMM estimator in Column II of Table III with initial weight
matrices W n(φ̃) where φ̃ is the one-step GMM of AJRY (circle); φ̃ is the one-step GMM using the identity
matrix (x); φ̃= (0�0� � � �) (+); φ̃= (0�5�0�5� � � �) (∗); φ̃= (−0�5�−0�5� � � �) (diamond), Thicker (lighter) error
bar at the converging point is the asymptotic 95% confidence interval based on the robust (conventional)
standard error.

tor of the lagged democracy coefficient is about three times the Arellano–Bond standard
error. This shows that taking into account misspecification can make an enormous differ-
ence in the standard errors.

The p-values of the overidentification J tests provide mixed answers to the validity
of model specifications but overall the tests suggest that the dynamic panel regression
equation may be misspecified. This is consistent with our finding that standard errors
are affected by the use of the misspecification-robust formula. However, note that the
iterated GMM estimates have only mildly significant J statistics (the p-value is 0�09).
In this context, it is common for applied researchers to treat the statistic as “borderline
significant” and continue with their analysis unadjusted. Our view is that regardless of the
value of the J statistic it is better to report the misspecification-robust standard errors as
these are agnostic to whether the model is correctly specified or mildly misspecified.

It is noteworthy that the p-values of the J test reported in AJRY are 0�26 and 0�07,
which are different from our values 0�04 and 0�08 in Columns I and III. The reason is that
their statistic is the two-step GMM criterion with the efficient weight matrix evaluated at
the one-step estimate while ours is the two-step GMM criterion with both the moment
and efficient weight matrix being evaluated at the two-step estimate. Comparing the p-
values one finds that the J test can be quite sensitive to the user’s choice of the estimate
where the efficient weight matrix is evaluated. The result of AJRY is based on the popular
Stata command xtabond2 for dynamic panel models. The command calculates the J
statistic and the p-value based on the two-step GMM with the one-step weight matrix
even when the one-step GMM estimates are reported. This does not seem to be a reliable
test but there is no clear guideline on this. We recommend using the J statistic evaluated
at the iterated GMM, which is not subject to such arbitrariness.

What are the causes of potential misspecification? One possibility is that the dynamic
structure in (33) is incorrect—that lagged values are omitted. If the dynamics are mis-
specified, then the moment conditions are not satisfied and the Arellano–Bond standard
errors will be incorrect. Since the “true” dynamic structure of a panel regression is not
known a priori, this is a strong reason to generically allow for misspecification.
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Another reason for potential misspecification is coefficient heterogeneity. If the coeffi-
cients are heterogeneous across countries, then moment conditions will not be satisfied.
For example, in model (33), if the coefficient γi (the effect of income on democracy)
varies with country i, then the moment conditions will be invalid. To see this, if we set
γ = E[γi] as the mean coefficient, then the effective error in the differenced equation
(33) is �uit + (γi − γ)�Xi�t−1, which will be correlated with the instrument Yi�t−2.

There is strong evidence for coefficient heterogeneity in equation (33). Cervellati et al.
(2014, CJSV hereinafter) argue that the income effect is heterogeneous between former
colonies and noncolonies, and furthermore within colonies based on the quality of po-
litical institutions. Bonhomme and Manresa (2015) found evidence of grouped patterns
of unobserved heterogeneity in the same dataset. Lu and Su (2017) also found strong
evidence of heterogeneity in the income effect across countries. This literature makes a
clear case that the coefficients (primarily γ) vary across countries. In this case, model (33)
should be viewed as an approximation rather than a tight statistical model. The coeffi-
cients should be viewed as projections and the moment conditions acknowledged to be
potentially invalid.

To highlight this issue further, we examine a key table from CJSV (their Table 4) where
they present Arellano–Bond estimates of model (33) augmented to allow the income ef-
fect to vary across groups. Their model is

Yit = αYi�t−1 + γXi�t−1 +φXi�t−1ci +μt + δi + uit�
where ci is a country-specific dummy variable for “historically strong institutions”. (Ace-
moglu, Johnson, Robinson, and Yared (2009) make a similar distinction, describing
colonies with “historically weak institutions” as “extractive.”) CJSV estimate this model
for the subsample of former colonies using three distinct measures of institutional qual-
ity: (i) the level of constraints on the executive in 1900; (ii) whether the country became
independent before 1900; and (iii) whether the colony was subject to the rule of a late

TABLE IV

EXTENSION OF CERVELLATI ET AL. (2014, TABLE 4)a

Constraints Independence No Late Colonial

One-step Iterated One-step Iterated One-step Iterated
I II III IV V VI

Democracyt−1 0�289 −0�423 0�343 0�724 0�355 0�666
Arellano–Bond s.e. (0�123) (0�039) (0�110) (0�044) (0�101) (0�040)
Misspecification-Robust s.e. (0�142) (0�380) (0�127) (0�152) (0�115) (0�125)

Incomet−1 −0�417 −0�337 −0�270 −0�011 −0�303 −0�052
Arellano–Bond s.e. (0�194) (0�116) (0�113) (0�050) (0�110) (0�047)
Misspecification-Robust s.e. (0�221) (0�289) (0�134) (0�047) (0�122) (0�041)

Incomet−1 × ci 0�345 0�296 0�224 0�020 0�318 0�111
Arellano–Bond s.e. (0�162) (0�073) (0�121) (0�037) (0�122) (0�039)
Misspecification-Robust s.e. (0�169) (0�309) (0�125) (0�077) (0�130) (0�053)

Hansen J Test [0�03] [0�02] [0�04] [0�38] [0�15] [0�37]
# of Iteration 0 297 0 32 0 28
# of Instruments 56 56 56
Observations 531 628 631
Countries 79 99 100

aStandard errors clustered by country.
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colonial power. We repeat their estimates in Table IV below for the 5-year sample. CJSV
reported one-step Arellano–Bond estimates and standard errors which are reported in
our columns I, III, and V. In addition, we report iterated GMM estimates (in columns II,
IV, and VI) and misspecification-robust standard errors.

We find that some of the iterated GMM estimates are quite different from the one-step
estimates. This means that the one-step estimates are dependent on the initial weight
matrix. We also find that the misspecification-robust standard errors differ from the
Arellano–Bond standard errors; in some cases they are three to four times as large. Ex-
amining the overidentification J tests we find that three of the six p-values5 are significant
at the 5% level indicating potential misspecification.

Turning to the question raised by CJSV—is there heterogeneity in the income effect
across institutional structure—our results (iterated GMM with misspecification-robust
standard errors) are that in two of the three specifications the t-statistics for φ = 0 are
statistically far from significant. This is due to both smaller coefficient estimates and larger
standard errors relative to the results reported in CJSV. In the third specification (no late
colonial power), the t-ratio of 2.1 is marginally significant at the 5% level. Our conclusion
is that there is no strong evidence of the heterogeneity allegedly found by CJSV.

While this finding (no statistical evidence of coefficient heterogeneity) may appear to
contradict our claim of possible misspecification in the AJRY analysis, the key is the need
for standard errors to be robust to potential misspecification. Only by using robust stan-
dard errors can we make inferences which are not fragile to specification choices.

Finally, we believe the empirical analysis reported in this section reveals that the
misspecification-robust standard errors are useful for empirical practice. As we have il-
lustrated, they are helpful not only to provide robust inference but to develop improved
specifications.

APPENDIX

PROOF OF THEOREM 1: By the Woodbury matrix identity,

W n(φ)
−1 = [

W
∗
n(φ)+mn(φ)mn(φ)

′]−1

=W
∗
n(φ)

−1 − W ∗
n (φ)

−1mn(φ)mn(φ)
′W

∗
n(φ)

−1

1 +mn(φ)
′W

∗
n(φ)

−1mn(φ)
�

Thus

Jn(θ�φ)=mn(θ)
′W

∗
n(φ)

−1mn(θ)−
(
mn(θ)

′W ∗
n (φ)

−1mn(φ)
)2

1 +mn(φ)
′W

∗
n(φ)

−1mn(φ)
�

= J∗
n(θ�φ)

(
1 − ρn(θ�φ)2 J

∗
n(φ�φ)

1 + J∗
n(φ�φ)

)
�

where

ρn(θ�φ)
2 =

(
mn(θ)

′W ∗
n (φ)

−1mn(φ)
)2

J
∗
n(φ�φ)J

∗
n(θ�φ)

5The reported p-values of the J test in CJSV are different from our p-values for the same reason given in
the AJRY analysis.
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is the squared weighted correlation between mn(θ) and mn(φ). Note that J
∗
n(θ� θ̂

∗) is
minimized over θ at θ̂∗ and ρn(θ� θ̂∗)2 is maximized at θ̂∗. It follows that Jn(θ� θ̂∗) is min-
imized over θ at θ̂∗. This means that θ̂∗ solves the fixed point of gn(θ̂

∗)= θ̂∗ so θ̂= θ̂∗ as
claimed. Q.E.D.

PROOF OF THEOREM 2: g(φ) is an interior minimizer of J(θ�φ) so solves the first-
order condition

0 = ∂

∂θ
J(θ�φ)= 2Q(θ)′W (φ)−1m(θ)� (34)

Since (34) is continuously differentiable under Assumptions 1.3 and 1.4, and W (φ) is
uniformly invertible under Assumption 1.5, it follows by the implicit function theorem
that g(φ) exists, is continuously differentiable, and its derivative equals

∂

∂φ′g(φ)= −D(φ)−1B(φ)� (35)

where

D(φ)= ∂2

∂θ∂θ′ J(θ�φ)|θ=g(φ)�

B(φ)= ∂2

∂θ∂φ′ J(θ�φ)|θ=g(φ)�

We calculate that

B(φ)= 2
(
m
(
g(φ)

)′ ⊗Q(g(φ))′) ∂
∂φ′ vec

(
W (φ)−1

)
� (36)

Using (11), (12), and Assumption 1.6, we find that

∥∥B(φ)∥∥= 2
∥∥∥∥(m(g(φ))′ ⊗Q(g(φ))′) ∂∂φ′ vec

(
W (φ)−1

)∥∥∥∥
= 2

∥∥(m(g(φ))′ ⊗Q(g(φ))′)(W (φ)−1 ⊗W (φ)−1
)
S(φ)

∥∥
≤ 2

(
J
(
g(φ)�φ

)∥∥Q(g(φ))′W (φ)−1Q
(
g(φ)

)∥∥
× ∥∥S(φ)′(W (φ)−1 ⊗W (φ)−1

)
S(φ)

∥∥)1/2

<C3�

Combined with (13), we find∥∥∥∥ ∂

∂φ′g(φ)

∥∥∥∥≤ ∥∥D(φ)−1
∥∥∥∥B(φ)∥∥< 1

This is (14) and implies the map g(φ) is a contraction. By the Banach fixed-point theorem,
this implies that the fixed point θ0 exists and is unique. Q.E.D.
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PROOF OF THEOREM 3.1: Define the sample derivatives Qn(θ) = ∂
∂θ′mn(θ), Rn(θ) =

∂
∂θ′ vec(Qn(θ)

′), and Sn(φ)= ∂
∂φ′ vecW n(φ). Our first task is to show that the sample av-

erages mn(θ), Qn(θ), Rn(θ), W n(θ), and Sn(θ) converge in probability uniformly to their
population expectations. Each is a sample average of the form 1

n

∑n

i=1 q(Xi�θ) where the
q(Xi�θ) are independent under Assumption 2.1, uniformly integrable under Assumption
2.2, and have a bounded first derivative under Assumptions 2.3 and 2.4. Thus each satis-
fies the uniform weak law of large numbers over θ ∈Θ as required. For the ULLN, see D.
Andrews (1992, Theorem 3).

The uniform convergence of mn(θ) and W n(φ), plus the uniform invertibility of W (φ)
from Assumption 1.5 imply

sup
φ�θ

∥∥Jn(θ�φ)− J(θ�φ)∥∥−→
p

0� (37)

Since g(φ) minimizes J(θ�φ) and gn(φ) minimizes Jn(θ�φ)

0 ≤ J(gn(φ)�φ)− J(g(φ)�φ)
= J(gn(φ)�φ)− Jn(gn(φ)�φ)− J(g(φ)�φ)+ Jn(gn(φ)�φ)
≤ J(gn(φ)�φ)− Jn(gn(φ)�φ)− J(g(φ)�φ)+ Jn(g(φ)�φ)
≤ 2 sup

φ�θ

∥∥Jn(θ�φ)− J(θ�φ)∥∥−→
p

0�

where the final convergence by (37). This implies

sup
φ

∣∣J(gn(φ)�φ)− J(g(φ)�φ)∣∣−→
p

0�

Fix ε > 0. Under Assumption 1.2, g(φ) uniquely minimizes J(θ�φ). The latter is con-
tinuous as a by-product of the proof of (37), so we can find a η > 0 such that for all φ,
‖g(φ)− θ‖> ε implies |J(g(φ)�φ)− J(θ�φ)|>η. Thus

sup
φ

∣∣J(g(φ)�φ)− J(gn(φ)�φ)∣∣≤ η
implies supφ ‖gn(φ)− gn(φ)‖ ≤ ε. Hence

P
(

sup
φ

∥∥g(φ)− gn(φ)
∥∥≤ ε

)
≥ P(sup

φ

∣∣J(g(φ)�φ)− J(gn(φ)�φ)∣∣≤ η)→ 1

as asserted. Q.E.D.

PROOF OF THEOREM 3.2: The fixed-point θ̂ exists and is unique if gn(φ) is a contrac-
tion mapping, in the sense that there is a 0 ≤ c < 1 such that∥∥gn(φ1)− gn(φ2)

∥∥≤ c‖φ1 −φ2‖ (38)

for allφ1�φ2 ∈Θ. Dominitz and Sherman (2005) Lemma 3 show that sufficient conditions
for (38) to hold with probability tending to one as n→ ∞ are that (i) g(φ) is a contrac-
tion mapping (established in Theorem 2); (ii) supφ ‖gn(φ)− g(φ)‖ →p 0 (established in
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part 1); and (iii) supφ ‖ ∂
∂φ′gn(φ)− ∂

∂φ′g(φ)‖ →p 0. Hence it is sufficient to verify this final
condition.

Recall that ∂
∂φ′g(φ) can be expressed as (35) where B(θ�φ) equals (36). We calculate

that

D(θ�φ)= 2
{
Q(θ)′W (φ)−1Q(θ)+ (m(θ)′W (φ)−1 ⊗ I)R(θ)}

and
∂

∂φ′gn(φ)= −Dn

(
gn(φ)�φ

)−1
Bn
(
gn(φ)�φ

)
�

where

Bn(θ�φ)= −2
[
mn(θ)

′ ⊗Qn(θ)
′][W n(φ)

−1 ⊗W n(φ)
−1
]
Sn(φ)

and

Dn(θ�φ)= 2
{
Qn(θ)

′W n(φ)
−1Qn(θ)+ (mn(θ)

′W n(φ)
−1 ⊗ I)Rn(θ)}�

Earlier we demonstrated that mn(θ), Qn(θ), Rn(θ), W n(θ), and Sn(θ) satisfy the ULLN.
The continuous mapping theorem implies that Bn(θ�φ) − B(θ�φ) and Dn(θ�φ) −
D(θ�φ) converge uniformly, and thus ∂

∂φ′gn(φ) − ∂
∂φ′g(φ) as well. This completes the

proof. Q.E.D.

PROOF OF THEOREM 3.3: Dominitz and Sherman (2005, Theorem 2) show that if
s(n)→ ∞ then ‖θ̂s(n) − θ0‖ −→

p
0 since g(φ) is a contraction mapping (Theorem 2) and

supφ ‖gn(φ)− g(φ)‖ −→
p

0 (Theorem 3.1). Combined with Theorem 3.2, we find

‖θ̂− θ0‖ ≤ ‖θ̂s(n) − θ0‖ + ‖θ̂− θ̂s(n)‖ −→
p

0� Q.E.D.

PROOF OF THEOREM 4: We can write F = Q′W −1m using the alternative representa-
tions

F = (m′W −1 ⊗ Ik
)

vecQ′

= (m′ ⊗Q′) vecW −1

and recall the identity

∂

∂θ′ vecW −1 = −(W −1 ⊗W −1
) ∂
∂θ′ vecW �

An application of the chain rule yields (19) in the text. Similarly, defining

F(θ)=Q(θ)′W (θ)−1m(θ)

we calculate that its derivative equals

∂

∂θ′F(θ)=Q(θ)′W (θ)−1Q(θ)+ (m(θ)′W (θ)−1 ⊗ Ik
)
R(θ)

− (m(θ)′W (θ)−1 ⊗Q(θ)′W (θ)−1
)
S(θ)

≡H(θ)�
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Notice that the first-order condition for the estimator satisfies Fn(θ̂) = 0 and that for
the pseudo-true value satisfies F(θ0)= 0. They satisfy the expansion

0 = Fn(θ̂)= Fn(θ0)+H∗
n(θ̂− θ0)�

where the jth row of H∗
n is the jth row of Hn(θnj) and θnj is on the line segment joining θ̂

and θ0. Using the square root matrix V −1/2 =Ω−1/2H, we find

√
nV −1/2(θ̂− θ0)= −Ω−1/2HH∗−1

n

√
nFn(θ0)�

The theorem follows from the two limit results:∥∥HH∗−1
n − Ik

∥∥−→
p

0� (39)

√
nFn(θ0)−→

d
N(0� Ik)� (40)

Take (39). In the proof of Theorem 3.1, we showed that mn(θ), Qn(θ), Rn(θ), W n(θ),
and Sn(θ) satisfy the ULLN over θ ∈ Θ. Since Hn(θ) is a continuous function of these
moments, it converges uniformly as well. Together with ‖θ̂ − θ0‖ −→

p
0 and ‖H−1‖ =√

1/λmin(H ′H)≤ C−1/2 <∞, we obtain∥∥H−1/2H∗
nH

−1/2′ − Ik
∥∥= ∥∥H∗

n −H∥∥∥∥H−1
∥∥−→

p
0�

This implies that the eigenvalues of H−1/2H∗
nH

−1/2′ converge in probability to 1, which
implies the same for H1/2′H∗−1

n H1/2 and the singular values of HH∗−1
n . This implies (39).

Take (40). Assumption 3.1 and independence of the observations implies that
√
n(mn−

μ),
√
n(Qn − Q) and

√
n(W n − W ) are Op(1). Assumption 1.3 implies W −1 > 0, so√

n(W
−1

n −W −1)=Op(1) as well. Then by standard expansions and 0 =Q′W −1μ we find

√
nFn(θ0)= √

nQ
′
nW

−1

n mn

= √
n
(
Q′W −1mn +Q′

nW
−1μ−Q′W −1W nW

−1μ
)+ op(1)

= 1√
n

n∑
i=1

ψi + op(1)�

whereψi is defined in (21). Sinceψi are independent across i, mean zero (sinceQ′W −1μ=
0), uniformly square integrable (Assumption 3.1), and λmin(Ω)≥ C > 0 (Assumption 3.3),
an application of the multivariate CLT for heterogeneous random vectors establishes (40).

Q.E.D.

PROOF OF THEOREM 5: Given (39) it is sufficient to show that

‖Ω̂−Ω‖ −→
p

0� (41)
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We can write ψi =D′fi(θ0) and ψ̂i = D̂′fi(θ̂) where

D=
⎡⎣ W −1Q

W −1μ⊗ Ik
−W −1μ⊗W −1Q

⎤⎦
and

fi(θ)=
⎡⎣ m(Xi�θ)

vec
(
Q(Xi�θ)

′)
v(Xi�θ)⊗ v(Xi�θ)

⎤⎦ �
and D̂ is defined as the sample version of D. We can write Ω̂= D̂′G̃(θ̂)D̂ where

G̃(θ)= 1
n

n∑
i=1

fi(θ)fi(θ)
′�

It is straightforward to establish that D̂ − D −→
p

0. Equation (41) and the theorem

will follow if G̃(θ) satisfies the ULLN in a neighborhood of θ0. fi(θ)fi(θ)′ is uniformly
integrable under Assumption 3.1. It satisfies the derivative bound

sup
i

E

∣∣∣∣ ∂∂θ∥∥fi(θ)fi(θ)′∥∥
∣∣∣∣≤ 2

√
sup
i

E
(

sup
θ∈N

∥∥fi(θ)∥∥2
)

sup
i

E

(
sup
θ∈N

∥∥∥∥ ∂∂θ′ fi(θ)

∥∥∥∥2)
<∞

under Assumptions 3.1 and 4. Thus G̃(θ) satisfies the ULLN as required and the proof is
complete. Q.E.D.
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