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NOTES AND COMMENTS

LEAST SQUARES MODEL AVERAGING

BY BRUCE E. HANSEN1

This paper considers the problem of selection of weights for averaging across least
squares estimates obtained from a set of models. Existing model average methods are
based on exponential Akaike information criterion (AIC) and Bayesian information
criterion (BIC) weights. In distinction, this paper proposes selecting the weights by
minimizing a Mallows criterion, the latter an estimate of the average squared error
from the model average fit. We show that our new Mallows model average (MMA)
estimator is asymptotically optimal in the sense of achieving the lowest possible squared
error in a class of discrete model average estimators. In a simulation experiment we
show that the MMA estimator compares favorably with those based on AIC and BIC
weights. The proof of the main result is an application of the work of Li (1987).
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1. INTRODUCTION

THIS PAPER DEVELOPS a new model averaging estimator for least squares re-
gression. A model average estimator is a weighted average of estimates ob-
tained from different models. The goal in model averaging is to reduce estima-
tion variance while controlling omitted variable bias. We propose a Mallows
criterion for the selection of the model weights, an estimate of the squared er-
ror. The empirical weights are found by numerical minimization of this crite-
rion. We show that this method of weight selection is asymptotically optimal in
the sense that the fitted estimates asymptotically achieve the minimum squared
error in a class of discrete model average estimators.

Model selection has a long history in statistics and econometrics, and differ-
ent methods have been advocated based on distinct estimation criteria, includ-
ing Akaike information criterion (AIC; Akaike (1973)), Mallows’ Cp (Mal-
lows (1973)), Bayesian information criterion (BIC; Schwarz (1978)), delete-
one cross-validation (Stone (1974)), generalized cross-validation (Craven and
Wahba (1979)), and the focused information criterion (Claeskens and Hjort
(2003)). For generalized method of moments and empirical likelihood estima-
tion, analogous criteria have been proposed by Andrews and Lu (2001), Hong,
Preston, and Shum (2003), and Hall, Inoue, Jana, and Shin (2007).

Model averaging is an alternative to model selection. There is a large
Bayesian literature and a growing frequentist literature. Seminal contributions
to Bayesian model averaging include those by Draper (1995) and Raftery,
Madigan, and Hoeting (1997); for literature reviews, see Hoeting, Madigan,
Raftery, and Volinsky (1999) and Raftery and Zheng (2003). Some applica-
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tions in econometrics include works by Sala-i-Martin, Doppelhofer, and Miller
(2004), Brock and Durlauf (2001), Avramov (2002), Fernandez, Ley, and Steel
(2001a, 2001b), Garratt, Lee, Pesaran, and Shin (2003), Brock, Durlauf, and
West (2003), and Wright (2003a, 2003b). In the frequentist literature, Buck-
land, Burnham, and Augustin (1997) and Burnham and Anderson (2002) sug-
gested exponential AIC weights. The risk properties of a similar class of esti-
mators was examined by Leung and Barron (2006). Yang (2001) and Yuan and
Yang (2005) proposed a mixing estimator. Hjort and Claeskens (2003) pro-
vided an asymptotic analysis of model average estimators in likelihood-based
models.

Shrinkage and parameter penalization are other alternatives to model selec-
tion and averaging. Some recent contributions include the lasso-type estima-
tors of Knight and Fu (2000), the penalized likelihood estimators of Fan and Li
(2001) and Fan and Peng (2004), and the empirical Bayes estimator of Knox,
Stock, and Watson (2004).

There is also a large literature that discusses the effects of model selection
on inference. Potscher (1991) showed that AIC selection results in distorted in-
ference. Kabaila (1995) examined the impact on confidence regions. Buhlmann
(1999) presented conditions under which post-model-selection (PMS) estima-
tors are adaptive. Leeb and Potscher (2003, 2005, 2006) examined the uncon-
ditional and conditional distribution of PMS estimators and argued that they
cannot be uniformly estimated.

The approach we take in this paper is similar to that of selecting the number
of terms in a series expansion. Andrews (1991a) and Newey (1997) studied the
convergence rates for series estimators and give conditions for asymptotic nor-
mality, but did not give rules for selection. Shibata (1980, 1981, 1983) demon-
strated the asymptotic optimality of AIC selection in the context of Gaussian
regressions. Shibata’s analysis was extended to non-Gaussian autoregressions
by Lee and Karagrigoriou (2001). Li (1987) demonstrated the asymptotic op-
timality of model selection in homoskedastic linear regression using Mallows’
criterion, cross-validation, and generalized cross-validation. Andrews (1991b)
extended Li’s results to the case of heteroskedastic errors. A thorough review
of the asymptotic properties of model selection criteria has been provided by
Shao (1997). The optimality criterion used in these papers was critiqued by
Kabaila (2002).

We propose a model average estimator with weights selected by minimizing
a Mallows criterion. Our main contribution is a demonstration that the Mal-
lows criterion is asymptotically equivalent to the squared error, and thus our
Mallows model average (MMA) estimator asymptotically achieves the lowest
possible squared error in the class of model average estimators. Our proof is
an application of Theorem 2.1 of Li (1987).

There are two important limitations of our results. First, we restrict atten-
tion to regressions with conditionally homoskedastic errors. Andrews (1991b)
showed that model selection by Mallows’ criterion is not optimal under het-
eroskedasticity. The optimality of MMA will similarly fail under heteroskedas-
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ticity. Second, our asymptotic theory restricts the model average weights to a
discrete set due to the difficulty of establishing uniformity over a weight vec-
tor whose dimension is unbounded. Developing weight selection methods that
allow for heteroskedasticity and extending the proof technique to allow for
continuous weights are important topics for future research.

Section 2 discusses the estimation framework and model average estimators.
Section 3 calculates the average squared error of the model average estimator.
Section 4 introduces the Mallows criterion for the model average estimator
and its sampling properties. Section 5 presents simulation evidence in support
of the new MMA estimator. Proofs of the results are presented in the Appen-
dix. A Gauss program that calculates the MMA estimator is available on the
author’s webpage, www.ssc.wisc.edu/~bhansen.

2. MODEL AVERAGE ESTIMATOR

Let (yi� xi) : i = 1� � � � � n be a random sample, where yi is real-valued while
xi = (x1i� x2i� � � �) is countably infinite. The model is the homoskedastic linear
regression

yi = µi + ei�(1)

µi =
∞∑
j=1

θjxji�(2)

E(ei|xi)= 0�(3)

E(e2
i |xi) = σ2�(4)

We assume Eµ2
i < ∞ and that (2) converges in mean square. The linearity

of (2) is not essential to the idea of model averaging, but it greatly simplifies
the algebraic calculations. Because the elements of xi may be terms in a series
expansion, (2) includes nonparametric regression.

Consider a sequence of approximating models m = 1�2� � � � � where the mth
model uses the first km elements of xi, where 0 ≤ k1 < k2 < · · ·. The mth ap-
proximating model is

yi =
km∑
j=1

θjxji + bmi + ei�(5)

where the approximation error is bmi = ∑∞
j=km+1 θjxji. In matrix notation, Y =

XmΘm + bm + e, where Y = (y1� � � � � yn)
′, Xm is the n × km matrix with ijth

element xji, Θm = (θ1� � � � � θkm)
′, bm = (bm1� � � � � bmn)

′, and e= (e1� � � � � en)
′.

Lurking behind (5) is an explicit ordering of the regressors xji. In some cases
(such as a series expansion) this may not be troubling, but in other cases a
natural ordering of the regressors may not be obvious. In practice, it may be

www.ssc.wisc.edu/~bhansen
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feasible to order the regressors by groups, and this may be a common applica-
tion of model averaging.

Let M = Mn ≤ n be an integer for which X ′
kM

XkM is invertible. For all
m ≤ M , the least squares estimate of Θm is Θ̂m = (X ′

mXm)
−1X ′

mY . Let W =
(w1� � � � �wM)

′ be a weight vector in the unit simplex in R
M :

Hn =
{
W ∈ [0�1]M :

M∑
m=1

wm = 1

}
�(6)

A model average estimator of ΘM is

Θ̂=
M∑

m=1

wm

(
Θ̂m

0

)
�(7)

A model average estimator bears some resemblance to a shrinkage estima-
tor. This can be seen most plainly when the regressors are orthogonal. In this
case, the jth element of the model average estimator Θ̂ is the jth element of
the unconstrained estimator Θ̂M multiplied by

∑M

m=j wm. Thus the coefficient
estimates shrink toward zero, with the degree of shrinkage increasing with j.
However, in the standard case where the regressors are not orthogonal, such a
simple representation is not possible.

In the mth approximating model (5), let µm = XmΘm so that µ = µm + bm,
where µ = (µ1� � � � �µn)

′. The estimate of µ in the mth approximating model
is µ̂m = XmΘ̂m = PmY , where Pm = Xm(X

′
mXm)

−1X ′
m. The model average esti-

mate of µ is µ̂(W ) = XMΘ̂ = P(W )Y , where P(W ) = ∑M

m=1 wmPm is the im-
plied “hat” matrix.

Because the matrix P(W ) plays an important role in the algebraic structure
of the model average estimator, we discuss here some of its properties. Note
that P(W ) is symmetric but generally not idempotent. Let λmax(A) denote the
largest eigenvalue of A and define

ΓM =



k1 k1 k1 · · · k1

k1 k2 k2 · · · k2

k1 k2 k3 · · · k3
���

���
���

� � �
���

k1 k2 k3 · · · kM


 �(8)

LEMMA 1: We have:
(i) tr(P(W )) = ∑M

m=1 wmkm ≡ k(W );
(ii) tr(P(W )P(W )) = ∑M

m=1

∑M

l=1 wmwl min(kl�km)= W ′ΓMW ;
(iii) λmax(P(W )) ≤ 1.
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3. SQUARED ERROR

Define the average squared error Ln(W ) = (µ̂(W ) − µ)′(µ̂(W ) − µ) and
conditional squared error Rn(W ) = E(Ln(W )|X), where X = {x1� � � � � xn}.

LEMMA 2: We have

Rn(W ) = W ′(An + σ2ΓM)W �(9)

where ΓM is defined in (8),

An =




a1 a2 a3 · · · aM

a2 a2 a3 · · · aM

a3 a3 a3 · · · aM

���
���

���
� � �

���
aM aM aM · · · aM


 �(10)

and am = b′
m(I − Pm)bm. Furthermore, al ≥ am for l ≤ m, and An + σ2ΓM > 0 if

a1 > 0.

Lemma 2 shows that the conditional squared error Rn(W ) is a quadratic
function in the weight vector W , an ellipsoid in R

M centered at the zero vector.
It is interesting to observe that the optimal weight vector W , which minimizes
Rn(W ), necessarily puts non-zero weight on at least two models, except in the
special case that a1 = aM . To see this, suppose that M = 2, in which case Rn(W )
is uniquely minimized by w1 = (1 + (a1 − a2)/σ

2(k2 −k1))
−1, which is in (0�1)

unless a1 = a2.

4. THE MALLOWS CRITERION

The Mallows criterion for the model average estimator is

Cn(W ) = (Y −XMΘ̂)′(Y −XMΘ̂)+ 2σ2k(W )�(11)

where k(W ) defined in Lemma 1 is the effective number of parameters. Defi-
nition (11) depends on the unknown σ2. We discuss below the replacement of
σ2 with an estimate.

The Mallows criterion may be used to select the weight vector W . Define

Ŵ = arg min
W ∈Hn

Cn(W )�(12)

the empirical Mallows selected weight vector. Because there is no closed-form
solution to (12), the weight vector must be found numerically. For this calcu-
lation, it is convenient to write (11) in the following form. Let êm be the n× 1
residual vector from the mth model, let ē = (ê1� � � � � êM) be the n × M matrix
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collection of these residuals, and let K = (k1� � � � �kM)
′ be the M × 1 vector of

the number of parameters in the M models. Then (11) equals

Cn(W ) =W ′ē′ēW + 2σ2K′W�(13)

which is linear-quadratic in W . The solution (12) minimizes (13) subject to
the nonnegativity and summation constraints (6). This is a classic quadratic
programming problem for which numerical algorithms are readily available.
(For example, in the Gauss programming language, the procedure QPROG is
appropriate.) The solution may be a unit vector or an interior value. If M is
moderately large, a typical solution Ŵ can put zero weight on many of the in-
dividual models. The Mallows model average estimator is (7) using the weight
vector Ŵ .

We present two justifications for the Mallows criterion. Our first is the classic
observation that Cn(W ) is an unbiased estimate of the expected squared error
plus a constant.

LEMMA 3: We have

ECn(W )=ELn(W )+ nσ2�(14)

Our second justification is that if the weights are restricted to a discrete set,
the empirical Mallows weight vector asymptotically minimizes the squared er-
ror. Specifically, for some integer N , let the weights wm be restricted to the
set {0� 1

N
� 2
N
� � � � �1} and let Hn(N) be the subset of Hn restricted to this set of

weights. Let

ŴN = arg min
W ∈Hn(N)

Cn(W )

be the Mallows weight vector, the choice obtained by minimizing the Mallows
criterion over the discrete weight set Hn(N).

The following result is an application of Theorem 2.1 of Li (1987), who
showed the asymptotic optimality of Mallows’ criterion for model selection.

THEOREM 1: As n → ∞, if

ξn = inf
W ∈Hn

Rn(W ) → ∞(15)

almost surely and for some fixed integer N <∞,

E(|ei|4(N+1)|xi)≤ κ < ∞�(16)

then

Ln(ŴN)

infW ∈Hn(N) Ln(W )
→p 1�(17)
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Note that the theorem places no restriction on M , the largest model included
in the model average (other than the requirement that X ′

kM
XkM is invertible).

Thus M may be fixed as n → ∞ or M = Mn may diverge to infinity.
Theorem 1 shows that the squared error obtained using the Mallows weight

vector ŴN is asymptotically equivalent to the infeasible optimal weight vector.
This means that the MMA estimator is asymptotically optimal in the class of
model average estimators (7) where the weight vector W is restricted to the set
Hn(N).

The restriction of Hn to Hn(N) can be made less binding by picking N large,
which can be done as long as the conditional moment bound (16) holds. This
restriction is imposed because the proof of (17) requires that Cn(W ) is as-
ymptotically equivalent to Ln(W ) uniformly over W . The trouble is that the
dimension of the set Hn is unbounded when Mn → ∞ as n → ∞, rendering
conventional proof methods inapplicable.

Theorem 1 requires condition (15), which specifies that there is no finite
approximating model m for which the bias is zero. This assumption is conven-
tional for nonparametric regression. For example, if γm ∼ m−α, then we have
the explicit rate ξn ∼ n1/(1+2α). If (15) fails, then MMA will not satisfy the opti-
mality (17).

In practice, σ2 is unknown, so (11) needs to be computed with a sample esti-
mate. One choice is σ̂2

K = (n−K)−1(Y −XKΘ̂K)
′(Y −XKΘ̂K), where kK = K

corresponds to a “large” approximating model. Other estimators for σ2 have
been proposed in the nonparametric regression literature. Lemma 3 continues
to hold if σ̂2

K is unbiased for σ2, which holds if bK = 0, so the Kth approximat-
ing model has no bias. Theorem 1 holds as stated as long as σ̂2

K is consistent
for σ2, which is valid as shown next.

THEOREM 2: If K → ∞ and K/n → 0 as n→ ∞, then σ̂2
K →p σ

2 as n → ∞.

5. FINITE SAMPLE INVESTIGATION

We now investigate the finite sample mean squared error of the our model
average estimator in a simple simulation experiment. The setting is the infinite-
order regression yi = ∑∞

j=1 θjxji + ei. We set x1i = 1 to be the intercept; the
remaining xji are independent and identically distributed N(0�1). The er-
ror ei is N(0�1) and independent of xi. (Other experiments, not reported,
showed that the results are not sensitive to alternative distributions for the
regressors and regression error.) The parameters are determined by the rule
θj = c

√
2αj−α−1/2. The population R2 = c2/(1 + c2) is controlled by the para-

meter c.
The sample size is varied between n = 50, 150, 400, and 1�000. The parame-

ter α is varied between 0�5, 1.0, and 1�5. The larger α implies that the coeffi-
cients θj decline more quickly with j. The number of models M is determined
by the rule M = 3n1/3 (so M = 11, 16, 22, and 30 for the four sample sizes).
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The coefficient c was selected to control the population R2 to vary on a grid
between 0.1 and 0�9.

We consider five estimators: (1) AIC model selection (AIC), (2) Mallows’
model selection (Mallows), (3) smoothed AIC (S-AIC), (4) smoothed BIC
(S-BIC), and (5) Mallows’ model averaging (MMA). The AIC criterion for
model Θm is AICm = n ln σ̂2

m + 2m. The AIC model selection estimator is Θ̂m̂,
where m̂ minimizes AICm. S-AIC was introduced by Buckland, Burnham, and
Augustin (1997) and embraced by Burnham and Anderson (2002) and Hjort
and Claeskens (2003). It is the least squares model average estimator (7) with
the weights wm = exp(− 1

2 AICm)/
∑M

j=1 exp(− 1
2 AICm). S-BIC is a simplified

form of Bayesian model averaging. It is the least squares model average es-
timator (7) with the weights wm = exp(− 1

2 BICm)/
∑M

j=1 exp(− 1
2 BICm), where

BICm = n ln σ̂2
m + ln(n)m.

To evaluate the estimators, we compute the risk (expected squared error).
We do this by computing averages across 100,000 simulation draws. For each
parameterization, we normalize the risk by dividing by the risk of the infeasible
optimal least squares estimator (the risk of the best-fitting model m).

The risk calculations are displayed in Figures 1–3 for α = 0�5, 1.0, and 1.5,
respectively. In each figure, the four panels display sample sizes. In each panel,
risk (expected squared error) is displayed on the y axis and the population R2 is
displayed on the x axis. The two dotted lines correspond to AIC and Mallows
selection. The dashed, dash-dotted, and solid lines correspond to S-AIC, S-
BIC, and MMA, respectively.

In each panel, the AIC and Mallows selection methods have quite similar
risk. The smoothed AIC estimator achieves a lower risk than AIC model selec-
tion, which is consistent with the findings in the earlier literature. The S-AIC
and MMA estimators are nearly equivalent for the case α = 1�5 and large n;
otherwise, MMA achieves a lower risk than S-AIC. In many cases, its normal-
ized risk is less than 1, meaning that it is lower than that of infeasible optimal
model selection.

It is also instructive to contrast the performance of the MMA and S-BIC
estimators. The MMA estimator achieves lower risk in most cases, but S-BIC
has lower risk when n and R2 are small, and its relative performance improves
when α is large. In particular, S-BIC has much lower risk when α = 1�5 and
n = 50. Their relative performance depends strongly on sample size, with the
S-BIC estimator showing increasing relative risk and the MMA showing de-
creasing relative risk, as n increases. In many cases, however, the risk of the
S-BIC estimator is quite poor relative to the other methods.

Dept. of Economics, University of Wisconsin, 1180 Observatory Drive, Madison,
WI 53706, U.S.A.; bhansen@ssc.wisc.edu.

Manuscript received January, 2006; final revision received August, 2006.
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FIGURE 1.—α = 0�5.

APPENDIX

PROOF OF LEMMA 1: Parts (i) and (ii) follow from the facts that tr(Pm) =
km, tr(PmPl) = tr(Pmin(kl�km)) = min(kl�km), and simple algebra. Part (iii) uses
the fact that Pm is idempotent so that

λmax(P(W )) = max
η

η′P(W )η

η′η
≤

M∑
m=1

wm max
η

η′Pmη

η′η
= 1�

Q.E.D.

PROOF OF LEMMA 2: Note that µ − µ̂(W ) = (I − P(W ))µ − P(W )e and
thus

Ln(W ) = µ′(I − P(W ))(I − P(W ))µ(18)

− 2e′P(W )BnW + e′P(W )P(W )e�

Lemma 1 and assumption (4) imply that

E(e′P(W )P(W )e|X)= σ2 tr(P(W )P(W )) = σ2W ′ΓMW �
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FIGURE 2.—α = 1�0.

Taking conditional expectations of (18), we obtain

E(Ln(W )|X)= µ′(I − P(W ))(I − P(W ))µ+W ′σ2ΓMW �

Define b∗
m = (I − Pm)µ= (I − Pm)bm and Bn = [b∗

1� � � � � b
∗
M]. Then

(I − P(W ))µ=
M∑

m=1

wmb
∗
m = BnW �(19)

Note that for l ≤m, PlPm = Pl and (I − Pm)bl = (I − Pm)bm. Then

b∗′
l b

∗
m = b′

l(I − Pl)(I − Pm)bm = b′
l(I − Pm)bm = b′

m(I − Pm)bm = am

and thus B′
nBn =An. It follows that µ′(I −P(W ))(I −P(W ))µ =W ′B′

nBnW =
W ′AnW and we obtain (9). Furthermore, for l ≤m note that

b′
m(I − Pm)bm = b′

l(I − Pm)bl = b′
l(I − Pl)bl − b′

lPm(I − Pl)Pmbl

≤ b′
l(I − Pl)bl

and thus am ≥ al as claimed.
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FIGURE 3.—α = 1�5.

We now show that An + σ2ΓM > 0, which holds if, for all α �= 0, α′(An +
σ2ΓM)α > 0. If α= ι1 is the first unit vector, then α′(An+σ2Γ )α = a2

1 +σ2k2
1 >

0. Otherwise, if α �= ι1, note that α′Anα = α′B′
nBnα ≥ 0, and by the definition

of Γ and some algebraic manipulations,

α′ΓMα = k1

(
M∑

m=1

αm

)2

+ (k2 − k1)

(
M∑

m=2

αm

)2

+ · · · + (kM − kM−1)α
2
M

> 0�

Thus α′(An + σ2ΓM)α > 0 as required. Q.E.D.

PROOF OF LEMMA 3: By straightforward algebra,

Cn(W )−Ln(W ) = e′e+ 2e′(I − P(W ))µ− 2(e′P(W )e− σ2k(W ))�(20)

Lemma 1 and assumption (4) imply that

E(e′P(W )e|X)= σ2 tr(P(W )) = σ2k(W )�(21)
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Taking expectations of (20), Equation (14) follows directly. Q.E.D.

PROOF OF THEOREM 1: Theorem 2.1 of Li (1987) established (17) for a
broad class of linear estimators. It is sufficient to verify that his equations (A.1),
(A.2), and (A.3) hold almost surely, conditional on X . Indeed, (A.1) is implied
by part (iii) of Lemma 1, and (A.2) holds by (16). It remains to show (A.3),
which in our notation is∑

W ∈Hn(N)

Rn(W )−(N+1) → 0(22)

almost surely as n→ ∞.
For integers 1 ≤ j1 ≤ j2 ≤ · · · ≤ jN , let Wj1�j2�����jN be the weight vector that sets

wjl = 1/N for l = 1� � � � �N , and the remainder zero. We can write

Hn(N) = {Wj1�j2�����jN : 1 ≤ j1 ≤ j2 ≤ · · · ≤ jN ≤M}�
The restriction of the weights to the form 1/N is without loss of generality,
because the weak ordering of the integers jk allows ties. We then have

∑
W ∈Hn(N)

Rn(W )−(N+1) ≤
∞∑

jN=1

jN∑
jN−1=1

· · ·
j2∑

j1=1

Rn(Wj1�j2�����jN )
−(N+1)�(23)

Now break the sum into two groups based on whether kjN < ξn or kjN ≥ ξn. For
the first group (which has less than ξN

n elements), use the bound Rn(W ) ≥ ξn

from (15) and for the second group, use the simple bound

Rn(Wj1�j2�����jN )≥ σ2W ′
j1�j2�����jN

ΓMWj1�j2�����jN ≥ σ2

N2
kjN ≥ σ2

N2
jN�

where the first inequality is implied by (9) and the second uses the definitions
of ΓM and Wj1�j2�����jN .

Using these bounds,

∞∑
jN=1

jN∑
jN−1=1

· · ·
j2∑

j1=1

Rn(Wj1�j2�����jN )
−(N+1)

≤ ξ−1
n +

∞∑
jN=ξn

jN∑
jN−1=1

· · ·
j2∑

j1=1

(
σ2

N2
jN

)−(N+1)

≤ ξ−1
n +

(
σ2

N2

)−(N+1) ∞∑
jN=ξn

j−2
N
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≤ ξ−1
n +

(
σ2

N2

)−(N+1)

ξ−1
n

→ 0

almost surely as n → ∞. Together with (23), this establishes (22) as de-
sired. Q.E.D.

PROOF OF THEOREM 2: Since êK = Y − XKΘ̂K = (I − PK)e + (I − PK)bK ,
we see that

σ̂2
K = 1

n−K
e′(I−PK)e+ 1

n−K
b′
K(I−PK)bK +2

1
n−K

e′(I−PK)bK�(24)

We examine the terms on the right side of (24). First, because Ee′(I − PK)e =
σ2(n−K), by Theorem 2 of Whittle (1960),

E|e′(I − PK)e− σ2(n−K)|2 ≤ C2κ
1/(N+δ) tr((I − PK)(I − PK))

= C2κ
1/(N+δ)(n−K)�

Thus for any δ > 0, by Markov’s inequality,

P

(∣∣∣∣ 1
n−K

e′(I − PK)e− σ2

∣∣∣∣ > δ

)
≤ E|e′(I − PK)e− σ2(n−K)|2

δ2(n−K)2

≤ C2κ
1/(N+δ)

δ2(n−K)
→ 0

so (n−K)−1e′(I − PK)e→p σ
2. Second,

1
n−K

E(b′
K(I − PK)bK)≤ n

n−K
Eb2

Ki → 0

since K → ∞ as n→ ∞ and the square integrability of µi implies Eb2
Ki → 0 as

K → ∞. This implies (n − K)−1b′
K(I − PK)bK →p 0. Similarly, the third term

on the right side of (24) is op(1) and we conclude that σ̂2
K →p σ

2. Q.E.D.
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