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Appendix A

This appendix establishes the rate of convergence of the threshold estimate in the TAR
model of Caner and Hansen (1998) (henceforth, CH).

To simplify the notation, we use the TAR(1) model, which is their equation (1) with
1 = (g1t 1). It is assumed that the threshold variable U, 1 = g(Ay 1, ..., Ayt ) has
been transformed so that it has a marginal uniform distribution. The tests are invariant if

we replace x;_1 with

1
ﬁyt—l

t
T
1

Tri—1 =

and it will be convenient to make this switch. The model is hence

Ay = 01271, <up + 052711, (>up + € (1)

Partitioning ¢, = (p; (1 p1), and similarly 6,, we assume p; = 0 and p; = 0 to impose
the unit root, and impose the maintained assumption g; = (5. We assume 6 = us — g # 0,
so the threshold u is identified. Let uy # 0 denote the true value of the threshold. The test
statistic is invariant to o = Ee?, so we normalize o2 = 1.

The model is estimated by least squares. Let 6 (u) and 65(u) denote the conditional OLS
estimates given a value of u, let Sy (u) be the residual sum of squared errors given u, let

Qr(u) = Sp(ug) — Sr(u), and let

4 = argmax Qp(u)
T Sulmo

be the LS estimate of u. Let 6, = 6, (@) and 0y = 0, (@) be the LS estimate of 61 and 6.

To establish the rate of convergence of i, we first show that u is consistent.

Lemma 1 @ — up.

Proof:
Let zpy—1(u) = o1y—11y,_,<u}- Let e be the T'x 1 vector of the stacked e;, X be the T x 2
matrix of the stacked xr,_1, and similarly define X,. Let Xy = X, and let A, be stacked

L{ug<U,_,<u}- Standard linear algebra can show that

Qr(u) =€ (P, — P))e+280 (I —P)e—68 |AA, — ALXH(XIX) T XA,



where P, = X (X*X*) ™' X and X = (X X,). Since zppp, = (W(r) r 1) = X(r),
say, CH, Theorem 3 yields

TIXYX: =

TOXX TOXX, | XX uf XX
T'XIX T'X.X, wly XX u [l XX |

and CH, Theorem 2, yields

T2 X e =

T-12X"e . [ X (s)dW (s, 1)
T-12X"e [ X (s)dW (s,u) |
Using these results, some tedious calculations show that for uy < u < 4,
T1Qr(u) = —62 Ju — ugl {1 — M} :
u

Note that the right-hand-side is monotonically decreasing in w. Similarly, for u < u < ug, the
probability limit is monotonically increasing in w. Thus the maximizer of the limit function

is up. Since the convergence is uniform it follows that @ —, ug as desired. [
We next show that the regression estimates from model (1) are consistent.
Lemma 2 (él - «91) = 0p(1) and (52 - 02) = 0p(1).
Proof: We show the result for él. For u < uy,
(0u(w) = 01) = (T2 x1X,) " (T X L) = 0.
For u > wuy,

() =01) = (TXX) 7 (T Xle = T X,A,0)

1 -1
= — (u/ XX') / X |u — ugl 6.
0 0

Since the right-hand-side is continuous in u, equals zero at ug, and @ —, uo, it follows that
(él (u) — «91) = 0 as desired. [

We now can establish the rate of convergence of the estimator u.

Theorem 1 T'(u — up) = O,(1).



Proof: We appeal to the proof of Proposition 1 of Chan (1993). Chan showed this result for
a stationary TAR. The primary difference in our case is the presence of the non-stationary
variables x7;. Chan showed that under the consistency results of Lemmas 1 and 2 above,
T(a—ug) = Oy(1) follows from his three inequalities (4.4a)-(4.4c). The first two are identical
in our setting, implying that the Theorem holds if we verify an analog of Chan’s (4.4c).
Chan shows that this holds if for some A > 0, there is some H < oo such that for all
up < up < up < g+ A,

E ‘th—letl{u1<Ut_1§UQ}‘ < H(ugs —uyq) (2)
and
E (|ITt_1€t|2 Liuy <t 1 <us}) < H(up — ). (3)
The arguments for (2) and (3) are similar. We verify (2). Since e; is iid and |zp; 1| <
24 [T-1/2y, |,
B ‘th*letl{u1<Ut—1§u2}‘ = ElelE (]th,l\ 1{u1<Ut_1§u2})
b |el‘| E ((2 + }T_I/Qyt—l}) 1{u1<Ut—1§U2})
— 2B (w —w) + Eled T 2E (Jy 1| Lusvn )

IN

we simply need to to show that
T72E (lyea| Lwr<vr 1<usy) < H(uz — ua). (4)
Since y; is a random walk and F (Ay,) = 0% < oo, it follows that T-Y2E|y,_,,| < B for
some B < co. Since y; ., is independent of U; 1 = g(Ay; 1, ..., Ayi_m), it follows that
T 2E (|yeem| Lun<tior<ust) = T E [Ymm| Elfuy<v,_1<usy < Blua — uy).

Next, note that E (|e,—| L <t 1<us}) < Grl(uz — uq), where

d
Gr= sup —FE (|les—p| lqu,_ < 0
wo<u<ug+A AU (| t | {U: 1§u})
(the finiteness follows from the assumption that e, and U; have continuous distributions).

Hence

T-V2E (|yt—1| 1{U1<Ut—1§u2})

IN

T_I/QE (|yt—m| 1{U1<Ut—1§U2}) + T_I/QE |yt—1 - yt—m| 1{U1<Ut—1§U2}

< B(Ug — U1) + ZE (‘etfk‘ 1{U1<Ut71§u2})
k=1

< B—i‘ZGk (uz — u1),
k=1
as needed. We have established (4) and thus (2). O



Appendix B
In this Appendix, we derive equations (16) and (A.24) from the paper.

Let
Wi(s)

Wi(s)= [ Wa(s)

Ws(s)

be a vector Brownian motion with covariance matrix
1 0 &
EWOW L) T=1| 0 1 &
o 6y 1

(equation (A.21) in the paper). Define

a; = (1 — 6%)_1/2
ay = (1 — (53)71/2

and let

W1.3(8) = CL1W1 (8) - (1161W3(8) (5)
and
WQ.g(S) = CLQWQ(S) - CL262W3(8). (6)
Then
Wllg(S) ay 0 —(l161 W1 (S)
ngg(S) = 0 a9 —(1262 WQ(S)
W3(8) 0 0 1 Wg(S)
is a vector Brownian motion with covariance matrix
aq 0 —(1161 1 0 61 aq 0 0
0 a9 —a262 0 1 (52 0 a9 0
0 0 1 61 (52 1 —CL161 —CLQ(SQ 1
1 —(11&26162 0
- —a1a261(52 1 0
0 0 1
1 0921 0
= o;n 1 0 )
0 0 1




where
6169

VI -8)(1-8)

which is the definition given in equation (16) of the paper.

Thus the pair
W1.3(8)
W2.3(8)

. . . . . . 021 .
is a vector Brownian motion with covariance matrix ( ) , and is independent of
091 1

091 = —ala25152 = -

Wis(s). Rewriting (5) and (6), we have the decompositions

Wl(s) = CLI1W1.3(S) + (51W3(8)
= (1=8) " Wis(s) + 6. Wa(s)

and

WQ(S) = a51W2.3(8) + 62W3(S)
= (1 — 63)1/2 WQ.g(S) + 62W3(8),

which together are equation (A.24) in the paper.



