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Abstract

This paper makes a case for the use of jackknife methods for standard error, p-value, and confidence

interval construction for difference-in-difference (DiD) regression. We review cluster-robust, bootstrap,

and jackknife standard error methods, and show that standard methods can substantially underperform

in conventional settings. In contrast, our proposed jackknife inference methods work well in broad con-

texts. We illustrate the relevance by replicating several influential DiD applications, and showing how

inferential results can change if jackknife standard error and inference methods are used.
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1 Introduction

Difference-in-difference (DiD) regression is one of the most common empirical tools in current ap-

plied economic practice. The vast majority of applications report standard errors clustered at the level

of treatment. These standard errors, however, are biased towards zero, and the magnitude of bias can be

arbitrarily severe. As a consequence, conventionally reported standard errors, p-values, and confidence

intervals are unreliable.

In this paper, we argue that two simple changes can greatly alleviate these problems. First, standard

error calculation should be made by the jackknife. If the jackknife is implemented as proposed, the

variance estimator is guaranteed to be never downward biased. Jackknife variance estimation is simple

to implement, and is computationally efficient when there are a moderate number of clusters, which is

typical in applications.

The second change we recommend is the use of adjusted student t p-values and confidence inter-

vals based on a finite-sample distributional approximation. These p-values and confidence intervals are

typically more conservative than conventional methods, and provide more accurate inferences in sim-

ulations. The adjusted student t approximation is computationally simple to implement, allowing for

routine default use.

To illustrate the methods, we investigate a set of results from four influential DiD applications: Card

and Krueger (1994), Bailey (2010), MacKinnon and Webb (2020), and Rao (2019). Using the original data

from these papers, we calculate standard errors, p-values, and confidence intervals both by conventional

cluster-robust and our proposed jackknife methods. We find that some results change considerably,

while other results are unaffected. These examples illustrate the magnitude of the changes due to our

proposed changes in relevant applications.

Heteroskedasticity-robust covariance matrix estimation was introduced to econometrics by White

(1980), building on the work of Eicker (1963) and Huber (1967). This family of estimators is often ab-

breviated as HC (for heteroskedasticity-consistent). This class of estimators includes HC0 (White, 1980),

HC1 (Hinkley, 1977), HC2 (MacKinnon and White, 1985), and HC3 (MacKinnon and White, 1985). (For

definitions of these estimators, see Section 8.1.)

In the context of heteroskedasticity-robust variance estimation, a substantial literature has devel-

oped investigating the poor performance of HC0 and HC1. This literature includes MacKinnon and White

(1985), Chesher and Jewitt (1987), Chesher (1989), Chesher and Austin (1991), Long and Ervin (2000), and

Young (2019). This literature has coalesced on the recommendation to switch to HC3/jackknife standard

errors, which are simple to calculate, never-downward-biased, and robust to a variety of regressor set-

tings.

There is also a literature exploring unbiased or approximately unbiased variance estimators, includ-

ing Bera, Suprayitno, and Premaratne (2002), Cattaneo, Jansson, and Newey (2018), and Kline, Saggio,

and Solvsten (2020). These estimators can be computationally prohibitive in large samples, are not nec-

essarily non-negative, and have not yet been generalized to cluster-robust estimation.

Cluster-robust variance estimation was introduced by Liang and Zeger (1986) and Arellano (1987) as

a natural extension of the heteroskedasticity-robust variance estimator. The common implementation

2



codified by the Stata cluster variance option adds an ad hoc degree-of-freedom correction as an ana-

log to the HC1 estimator. Since the influential work of Bertrand, Duflo, and Mullainathan (2004), this

estimator has become the ubiquitous approach for standard error construction for DiD regression.

An analog of HC2 was proposed by Bell and McCaffrey (2002), endorsed by Imbens and Kolesár

(2016), and codified in Stata 18. An analog of HC3 was proposed and evaluated by MacKinnon, Nielsen,

and Webb (2023abc). MacKinnon, Nielsen, and Webb (2023b) develop an efficient jackknife computa-

tional implementation. Hansen (2024) analyzed the statistical properties of this estimator with some

modifications, and showed that this is the only known cluster-robust variance estimator which is never

downward biased.

A number of papers investigate the poor performance of cluster-robust methods in regressions with

a small number of clusters and/or a small number of treated clusters. This includes Ibragimov and

Müller (2016), Rokicki, Cohen, Fink, Salomon, and Landrum (2018), Ferman and Pinto (2019), Hage-

mann (2019), and Niccodemi and Wansbeek (2022).

The jackknife estimator of variance was introduced by Tukey (1958) and was developed in the mono-

graphs of Efron (1982) and Shao and Tu (1995). Efron and Stein (1981) examined its statistical properties,

and showed that a version of the jackknife estimator is never downward biased in certain settings.

A modified student t distributional approximation to t-ratios constructed with the Bell-McCaffrey

standard error was proposed by Bell and McCaffrey (2002), Imbens and Kolesár (2016), and Pustejovsky

and Tipton (2018), and a related method for the conventional cluster-robust t-ratio was proposed by

Young (2016). Inference based on the wild bootstrap was proposed by Cameron, Gelbach, and Miller

(2008), and its statistical properties investigated by Djogbenou, MacKinnon, and Nielsen (2019) and

Canay, Santos, and Shaikh (2021). Randomization inference was proposed by MacKinnon and Webb

(2020).

The performance of cluster-robust methods deteriorates when there are a small number of treated

clusters. In the extreme case of one treated cluster, conventional inference methods fail. In contrast, as

shown by Hansen (2024), a properly-constructed jackknife variance estimator remains never-downward-

biased in this context, resulting in conservative inference (100% coverage). Other methods have been

developed for inference with a single treated cluster under somewhat stronger assumptions by Conley

and Taber (2011) and Hagemann (2023).

A Stata and R program jregress which calculates our recommended jackknife method is available

on the author’s website users.ssc.wisc.edu/~bhansen/, in addition to data and code for full replica-

tion of all numerical results reported in this paper.

2 Framework

The ubiquitous difference-in-difference equation (DiD) is the clustered twoway fixed effect regres-

sion

Yi g t = θDi g t +γ′Zi g t +αg +φt +ei g t (1)
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where g = 1, ...,G denotes group/cluster, i denotes individual, and t denotes the time period. The vari-

able Y is the outcome, the binary variable D is treatment status, the vector Z contains a set of possible

controls, αg is a group-level fixed effect, φt is a time-level fixed effect, and e is a regression error. Typi-

cally, the treatment D applies to a subset of groups (the treated groups) for a subset of time periods (the

treatment period). The coefficient θ is often the primary parameter of interest, and equals the Average

Treatment Effect on the Treated (ATT) under a set of widely-studied conditions1. The observations are

typically assumed to be cluster dependent within each group and independent across groups.

In the model (1), it is possible for the same individuals to be observed each time period, or for dif-

ferent individuals to be observed in each period. The “time” index can also be a stand-in for other sub-

groupings, such as different classrooms within a school.

While the classic DiD model (1) specifies fixed effects coincident with the level of clustering, many

applications deviate from this structure. Some applications, for example, include a smaller set of fixed

effects, presumbly for small sample considerations. Other applications may include more extensive in-

teractive fixed effects. To allow these possibilities, we generalize (1) by allowing general fixed effects

specifications, absorbing all fixed effects into the control vector Zi g t by inclusion of a suitable set of

fixed effect dummy variables, and notationally omitting αg and φt from the regression.

Notationally, let Xi g t = (Di g t , Z ′
i g t )′ denote the k full set of regressors including all fixed effects, and

let β be the full set of coefficients. Stacking the observations by cluster, this regression model can be

written at the cluster level as

Y g = X gβ+eg . (2)

The coefficients of (2) are typically estimated by least squares. This equals

β̂=
(

G∑
g=1

X ′
g X g

)−1 (
G∑

g=1
X ′

g Y g

)
. (3)

In the classic DiD model (1) with group and time fixed effects, this corresponds to the twoway fixed effects

estimator. The least squares estimator (3) is the dominant estimator of DiD regressions in empirical

applications, and therefore is our focus. However, the general ideas should be generalizable to other

estimators.

We are interested in standard error construction and inference on the coefficients in (2).

We illustrate our goals with a well-known application. Card and Krueger (1994) estimated the effect

of the 1992 increase of the New Jersey minimum wage on worker hours, by surveying fastfood restau-

rant employee hours both before the wage increase (February-March 1992) and after the wage increase

(November-December 1992) in a sample of restaurants in New Jersey and eastern Pennsylvania. Their

estimate can be calculated by a linear regression of restaurant hours on three variables: (1) treatment

(a binary indicator for New Jersey after the wage increase); (2) state (a binary indicator for New Jersey);

and (3) time (a binary indicator for the post-increase period). We calculate and report these regression

1This paper is not concerned with identification; there is a large literature focusing on the conditions under which θ equals
the ATT, conditions under which this equality fails, and alternative estimation strategies which can be employed in such con-
texts.

4



estimates in Table 1 below, along with conventional clustered standard errors.

Table 1: Card and Krueger (1994)
Effect of Minimum Wage on Employment

Coefficient Std Err t pv 95% interval

Treatment 2.75 1.34 2.05 .041 [0.12, 5.38]
State −2.95 1.48 −1.99 .047 [−5.86, −0.04]
Time −2.28 1.25 −1.83 .068 [−4.74, 0.17]
Intercept 23.38 1.38 16.92 .000 [20.66, 26.10]
Clusters Store (384)

Observations 768

We present the output as commonly displayed by regression packages. This is a list of all variables in-

cluded in the regression. For each variable is displayed its coefficient estimate, standard error, t-ratio, p-

value (for the test of the hypothesis that the coefficient equals zero), and a 95% confidence interval. Each

of these pieces is useful to the researcher in their evaluation of the regression estimates, even though

only a subset of this information is typically reported in a research paper.

After the coefficient estimate itself, the second most important statistic reported is the standard er-

ror. It is a direct measure of precision, and is also the foundation for the reported t-ratio, p-value, and

confidence interval.

Our contention is that all statistics displayed in this table are important, as all are examined by an

empirical researcher in the course of their investigation. It is desirable for all default reported statistics

to be accurate in broad settings without user intervention. There should be default choices for their

calculation which are reasonably accurate in any regression setting. It is important that these default

methods apply to all coefficient estimates (not just a single estimate of interest), as the full regression

output is often studied by researchers, even if the full model is not reported in their paper. Finally, it is

important that default methods are computationally efficient, as users require quick results for routine

calculations. These goals motivate our proposals.

3 Variance Matrix Estimation

The most common method for variance matrix estimation for (3) is the cluster-robust variance esti-

mator (CRVE) of Liang and Zeger (1986) and Arellano (1987) with a degree of freedom correction. This

equals

V̂ 1 = G (n −1)

(G −1)(n −k)

(
X ′X

)−1

(
G∑

g=1
X ′

g êg ê ′
g X g

)(
X ′X

)−1 , (4)

where êg = Y g − X g β̂ is the least squares residual vector for the g th cluster, n is the total number of ob-

servations, and k is the total number of regressors. We call the estimator (4) CRVE1. The CRVE1 estimator

(4) is the natural cluster-dependence generalization of the heteroskedasticity-robust estimator HC1 (see

equation (16)).

The CRVE1 estimator is simple and intuitive. However, it can be highly downward biased. Indeed,
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Hansen (2024) shows that the downward bias of V̂ 1 can be arbitrarily large. One consequence of this

downward bias is that confidence intervals constructed using CRVE1 standard errors can have coverage

rates arbitrarily close to zero.

An alternative is the variance estimator of Bell and McCaffrey (2002), promoted by Imbens and Kolesár

(2016). It is motivated as an unbiased estimator under the auxiliary assumption that the errors ei g t are

i.i.d. Define the partial projection matrices

M g = I ng −X g
(

X ′X
)−1 X ′

g , (5)

let A1/2 denote the symmetric square root of the matrix A, and let A+ denote the Moore-Penrose gener-

alized inverse of A. Their estimator is

V̂ 2 =
(

X ′X
)−1

(
G∑

g=1
X ′

g M+1/2
g êg ê ′

g M+1/2
g X g

)(
X ′X

)−1 . (6)

We call the estimator (6) CRVE2. The use of the generalized inverse in (6) was introduced by Kolesár

(2023) so that CRVE2 is defined even when M g is non-invertible. This is a potentially important gen-

eralization, as the matrix M g is not invertible in many important contexts, including when treatment

is applied to only a single cluster. The CRVE2 estimator is available in Stata 18 through its vce(hc2

clustvar) option. The CRVE2 estimator (6) is the natural cluster-dependence generalization of the

estimator HC2 (see equation (17)).

As mentioned above, the CRVE2 estimator has the attractive feature that it is unbiased when the

errors are i.i.d. However, unbiasedness can fail when the errors have within-cluster correlation, are con-

ditionally heteroskedastic, or one of the M g matrices is non-invertible. Indeed, as shown by Hansen

(2024), the downward bias of V̂ 2 can be arbitrarily large. This implies that confidence intervals con-

structed using CRVE2 standard errors can have coverage rates arbitrarily close to zero.

A bootstrap variance estimator can be obtained by nonparametric pairs clustered resampling. Each

bootstrap sample is constructed by resampling G clusters (Y g , X g ) with replacement from the original

sample of clusters. Least squares estimation is applied to the bootstrap sample, producing the bootstrap

estimator β̂∗. This is repeated B times, yielding the bootstrap replications
{
β̂∗

1 , ..., β̂∗
B

}
. The bootstrap

variance estimator is their empirical covariance matrix

V̂ boot =
1

B −1

B∑
b=1

(
β̂∗

b − β̂
∗)(

β̂∗
b − β̂

∗)′
. (7)

A complication is that it is possible that in some bootstrap samples the regressor matrix will not be full

rank, implying that the bootstrap least squares estimator will not be uniquely defined. (This will occur

with high probability if the number of treated clusters is small, for then it is possible to draw an entire

bootstrap sample with no treated clusters.) It is typical (e.g., the Stata implementation) to discard these

bootstrap samples and calculate the bootstrap variance only on the subset of bootstrap samples which

have full rank regressor matrices. This seemingly technical workaround may be inconsequential if the
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frequency of discarded bootstrap samples is small, but if the frequency is high then this implementa-

tion induces selection bias. Consequently, we should not expect bootstrap variance estimation to be

generically well-behaved.

The final variance matrix estimator we consider is the jackknife. There are several implementations;

our recommendation is

V̂ jack =
G∑

g=1

(
β̂−g − β̂

)(
β̂−g − β̂

)′
(8)

where

β̂−g =
(

X ′X −X ′
g X g

)+ (
X ′Y −X ′

g Y g

)
(9)

is a generalized delete-one-cluster estimator. By defining the jackknife variance estimator this way the

estimator (9) is uniquely defined2 and the sum (8) includes all clusters. In contrast, the most common

implementation of the jackknife discards clusters from the sum (8) if the delete-one-cluster least squares

estimator is not uniquely defined, which occurs, for example, when treatment is applied to a single clus-

ter. This can severely downward bias the variance estimator. Two other differences between the defini-

tion (8) and some other definitions of the jackknife are that (8) does not use a degree-of-freedom cor-

rection3, and (8) centers the delete-one-cluster estimators at the full-sample estimator β̂ rather than at

the mean of β̂−g . We do not use either modification as either leads to violation of the “never-downward-

biased” property of (8) discussed below. The jackknife estimator (8) is the natural cluster-dependence

generalization of the estimator HC3 (see equations (18)-(19)).

Hansen (2024) established two important properties of the jackknife estimator (8). First, V̂ jack is

never downward biased, in the sense that the expected value of V̂ jack is never less than (in a positive

definite sense) the true variance matrix. This holds under broad conditions, including arbitrary cluster

sizes, number of treated clusters, regressor leverage, within-cluster correlation, and heteroskedastistic-

ity. Second, if the errors are normally distributed (but potentially heteroskedastic and within-cluster

correlated) and the matrices X ′X −X ′
g X g are all invertible, then the finite sample distribution of a t-ratio

constructed with the jackknife standard error is bounded by the Cauchy distribution. This implies that

confidence intervals constructed with jackknife standard errors have guaranteed coverage rates, unlike

intervals constructed with CRVE1 and CRVE2 standard errors.

The most common purpose of covariance matrix estimation is standard error construction. Let R be

the k ×1 vector which selects the coefficient of interest, e.g. for θ, R = (1,0, ....,0)′. Then a standard error

for θ̂ = R ′β̂ based on the covariance matrix estimator V̂ is ν̂=
√

R ′V̂ R. Let ν̂1, ν̂2, ν̂boot, and ν̂jack denote

the standard errors constructed using (4), (6), (7), and (8), respectively.

Calculation of (8) is somewhat more computationally demanding than computation of (4) due to

the need to calculate the G estimators (9). In Appendix 8.3 we present numerical evidence that this

computational cost is minor in a variety of sample sizes and regressor dimensions.

2The theoretical properties of the jackknife variance estimator (8) described in this paper hold if (9) is constructed with
any generalized inverse. We recommend the Moore-Penrose inverse as it is the unique minimum-length minimizer of the
least-squares criterion, and thus tends to produce variance estimators (8) which are less excessively conservative, relative to
estimates constructed with other generalized inverse formulae.

3In contrast, a common degree-of-freedom correction is to multiply (4) by (G −1)/G .
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4 Adjusted P-Values and Confidence Intervals

Current empirical practice, as exemplified by the output displayed in Table 1, is to construct p-values

and confidence intervals for individual coefficients based on the student tG−1 distribution, or the tn−k

distribution in the absence of clustering. These approximations can be very poor in practice as cluster-

robust t-ratios do not in general have these distributions. An alternative simple student t approximation

was introduced by Bell and McCaffrey (2002) for the HC2 and CRVE2 t-ratios, extended to CRVE1 standard

errors by Young (2016), and to jackknife t-ratios by Hansen (2024). This approximation can be used to

produce adjusted p-values and confidence intervals which are simple to calculate and, in general, have

excellent finite sample coverage. We now describe this approximation and adjusted inference methods.

Consider the t-ratio for θ constructed with the jackknife standard error,

T = θ̂−θ
ν̂jack

.

Under the assumption that the regression error vector e ∼ N (0,Σ) is jointly normally distributed (allow-

ing for heteroskedasticity and arbitrary correlation), the coefficient estimator satisfies θ̂− θ ∼ N (0,ν2)

where ν2 is the finite-sample variance of θ̂. Furthermore, with a little algebra, the variance estimator can

be written as a quadratic function in the regression errors, ν̂2
jack = e ′B e , where B is a known (function of

the regressors X ) positive-semi-definite matrix of rank at most G . It follows that ν̂2
jack has the exact finite-

sample distribution ν̂2
jack/ν2 ∼ ∑G

j=1λ jχ
2
j where χ2

j are independent chi-square random variables with

one degree of freedom and λ j ≥ 0 are the eigenvalues of BΣ/ν2. The widely-studied Satterthwaite (1946)

approximation states that this weighted sum of chi-squares can be reasonably approximated by a single

scaled chi-square, where the scale and degree-of-freedom are selected to match the first two moments.

This approximation is
G∑

j=1
λ jχ

2
j ≈ a2χ

2
K

K

where

a =
√√√√ G∑

j=1
λ j (10)

K =
(∑G

j=1λ j

)2

∑G
j=1λ

2
j

. (11)

Substituting this approximation into the expression for the t-ratio, we obtain the distributional approxi-

mation

T ≈ N (0,1)

a
√

χ2
K

K

≈ tK

a
(12)

where tK is distributed student t with K degrees of freedom. The second approximation in (12) holds

with equality when the numerator and denominator are independent, which holds when Σ= I nσ
2. The
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approximation (12) leads to the suggestion to use the scaled student t distribution tK /a in place of the

conventional tG−1 distribution for p-value calculation and confidence interval construction. The ap-

proximation is not exact, but it is much improved relative to the conventional tG−1 distribution.

This suggestion requires the calculation of the adjustment coefficients a and K , which are functions

of the eigenvalues of the matrix BΣ/ν2. While B is known, the covariance matrix Σ is unknown, so the

true values of a and K cannot be calculated. Bell and McCaffrey (2002) suggested to use a reference

model (akin to a rule-of-thumb), in particular Σ = I nσ
2. Using this reference model the coefficients

a and K are straightforward functions of the regressor matrix X . Explicit expressions are provided in

equations (20) and (21) of Appendix 8.2, and computation is discussed in Appendix 8.3. The expressions

depend on the specific coefficient (or, more generally, the specific linear combination R) and therefore

need to be calculated separately for each coefficient. However, as documented in Appendix 8.3, these

calculations are not computationally demanding.

Based on the distributional approximation (12) using (20) and (21), we propose adjusted confidence

intervals and p-values for θ. The adjusted 1−α confidence interval for θ is

Jack* = θ̂± t 1−α/2
K

a
ν̂jack (13)

where t 1−α/2
K is the 1−α/2 quantile of the student t distribution with K degress of freedom. The difference

with the standard confidence interval is that (13) calculates the critical value using K degrees of freedom

instead of G −1, and scales down the critical value by a.

Similarly, our proposed adjusted p-value for a test of θ = θ0 is

p∗ = 1−F

(
a2

(
θ̂−θ0

ν̂jack

)2

;1,K

)
(14)

where F (x;1,K ) is the F distribution with degrees of freedom (1,K ). The difference with the standard p-

value is that (14) scales the t-statistic by a, and calculates significance using K degrees of freedom instead

of G −1.

The adjusted degree-of-freedom K satisfies 1 ≤ K ≤ G . Its value will reflect the degree of leverage

and nonhomogeneity among the regressors and cluster sizes, with K equaling 1 in the most unbalanced

cases. Small values of K are most likely to occur when the regressor of interest has high leverage, meaning

that there are a small number of observations or clusters which dominate the variance of θ̂. Common

contexts where this occurs include models with cluster-level fixed effects, treatment indicators when

there are a small number of treated clusters, and/or dummy variables which are non-zero for only a small

number of observations or clusters. Small values of the degree-of-freedom K can also occur when regres-

sors are leptokurtotic or when cluster sizes are highly unbalanced. These are the contexts (as discussed

by MacKinnon, Nielsen, and Webb (2023a), Section 4.1) where conventional cluster-robust inference is

known to be highly unreliable. Thus, if we see a small value of K for an estimated coefficient of interest,

this is not only a signal to adjust the degree-of-freedom for jackknife standard errors, but it is a signal to

avoid CRVE1-based inference.
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The scale a satisfies a ≥ 1 and reflects the proportional bias of the jackknife standard error, calculated

under the assumption of the reference model. Since the jackknife estimator is never downward biased,

this constant satisfies a ≥ 1.

The adjusted confidence interval (13) and p-value (14) will typically be more conservative than the

intervals and p-values calculated with the conventional tG−1 distribution, but they are not necessarily

so, as the adjustments K and a work in opposite directions. If desired, more conservative inference can

be achieved by two possible modifications. First, the adjustment a could be omitted from (13) and (14),

meaning that inference would be based on the jackknife t-ratio with the adjusted degree-of-freedom K .

I do not recommend this modification as it appears to lead to excessively conservative inference under

high leverage. Second, the confidence interval and p-value can be calculated in two ways, by (13)-(14),

and by using the tG−1 distribution (or tn−k distribution for non-clustered observations) conventionally,

and reporting the more conservative of the two. This latter modification is ad hoc, but ensures that the

adjusted intervals are always more conservative than conventional intervals. The impact of this modifi-

cation, however, appears to be minor in practice. For our reported simulations, empirical applications,

and programs, we use (13)-(14) without modification.

5 Simulation

5.1 Potential Outcome Framework

We investigate the proposed methods in a simple simulation experiment.

The observations are {Yi g t ,Dg t , Z j i g t } for g = 1, ...,G , t = 1,2, j = 1, ..., J , and i = 1, ...,ng , where ng

is cluster size. The observations are generated from potential outcomes Yi g t (Dg t ) where Dg t ∈ {0,1}

is treatment status. The clusters are divided into G0 untreated clusters and G1 treated clusters, with

G0 +G1 = G . Treatment (Dg t = 1) is applied only in period t = 2 to the treated clusters. We vary the

number of clusters among G ∈ {10,20,50,200} and the number of treated clusters among G1 ∈ {4,3,2}. In

our baseline model the cluster sizes are homogeneous, ng = 10 for all g .

We generate the potential outcomes using a cluster-dependent framework. In our baseline model

they are generated as:

Yi g t (0) = ei g t +ug +hi g vg

ei g t ∼ N (0,1)

ug ∼ N (0,1)

vg ∼ N (0,1)

Yi g t (1) = Yi g t (0)+θi g

θi g ∼ N (θ,σ2
θ).

The coefficient hi g is set to equal +1 for one-half of the individuals i in each cluster, and to equal −1 for

the others. This specification creates cluster-level dependence in Yi g t (0) which is not fully eliminated by
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the within transformation.

Notice that the model specifies that the treatment effect θi g is heterogeneous with ATT θ. We vary

treatment effect heterogeneity by varying σθ ∈ {1,10}.

The variables Z j i g t are auxiliary regressors, generated as i.i.d. Z j i g t ∼ N (Dg t ,1) with J = 2 in the

baseline model.

For each simulation replication we estimate the coefficients of the regression model (1) by least

squares. This is a least squares regression4 of the observed outcome Yi g t on treatment Dg t , the regres-

sors Z j i g t , a time dummy, and group fixed effect dummies. The coefficient θ̂ on Dg t is the estimated

ATT. We calculate the four standard errors ν̂1, ν̂2, ν̂boot, and ν̂jack discussed in Section 3, the bootstrap

using B = 999 replications.

We evaluate eight confidence intervals for the ATT θ. The first four intervals combine the four stan-

dard errors with conventional student t critical values. Thus, given a standard error ν̂ we form the inter-

val θ̂± t 0.975
G−1 ν̂ where t 0.975

G−1 is the 0.975 quantile of the tG−1 distribution. We use the t 0.975
G−1 critical value as

this is the current implementation in Stata for cluster-robust inference.

The fifth and sixth intervals are the wild cluster bootstrap symmetric percentile-t interval calculated

with the CRVE1 and jackknife standard errors and 999 bootstrap replications. This (using CRVE1) is the

method proposed by Cameron, Gelbach, and Miller (2008) for hypothesis testing5, and in principle could

be used to construct confidence intervals by test inversion. First6, the coefficients are re-estimated im-

posing the hypothesized value of θ to obtain restricted estimates β̃ and residuals ẽg = Y g − X g β̃. Next,

the clusters, regressors X g , and restricted residuals ẽg are held fixed. The bootstrap samples are gen-

erated as Y ∗
g = ξg ẽg where ξg is an independent Rademacher variable (equals +1 and −1 each with

probability 1/2). The bootstrap sample then consists of the observations (Y ∗
g , X g ). On each bootstrap

sample we calculate the least squares estimate θ̂∗ and its CRVE1 and jackknife standard errors ν̂∗1 and

ν̂∗jack. From the 999 bootstrap samples we calculate the 95% quantiles ĉ∗1 (θ) and ĉ∗jack(θ) of the statistics∣∣θ̂∗∣∣/ν̂∗1 and
∣∣θ̂∗∣∣/ν̂∗jack. The wild bootstrap confidence intervals7 equal Wild1 = {

θ :
∣∣θ̂−θ∣∣/ν̂1 ≤ ĉ∗1 (θ)

}
and WildJ =

{
θ :

∣∣θ̂−θ∣∣/ν̂jack ≤ ĉ∗jack(θ)
}

.

Our seventh confidence interval is the adjusted CRVE2 interval proposed by Bell and McCaffrey

(2002). This is BM = θ̂± t 0.975
K ν̂2 where ν̂2 is the CRVE2 standard error and K is a non-standard degree-

of-freedom8 calculated similar to (11).

Our final confidence interval Jack∗ is our proposed adjusted jackknife interval (13).

By simulation with 20,000 replications, we compute the empirical coverage probability of these nom-

inal 95% intervals.

4Computationally we use the within estimator to eliminate the group-level fixed effects, as this is algebraically equivalent to
the full least squares regression yet computationally more efficient.

5MacKinnon, Nielsen and Webb (2023b) review several variants of the wild cluster bootstrap. Our implementation corre-
spond to their WCR-C and WCR-V methods.

6We describe here a conceptual implementation of the wild bootstrap algorithm. For our actual calculation we use the fast
computation algorithm described in MacKinnon (2023).

7To assess the coverage rate, it is sufficient to do the calculation for the true value of θ.
8See Kolesár (2023) for efficient computation.
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Table 2: Baseline Model: Coverage of Nominal 95% Confidence Intervals

G σθ G1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack*
10 1 4 0.93 0.94 0.93 0.96 0.93 0.93 0.95 0.95
10 1 3 0.91 0.92 0.91 0.95 0.93 0.93 0.96 0.96
10 1 2 0.85 0.88 0.84 0.92 0.96 0.96 0.99 0.99
10 10 4 0.89 0.90 0.89 0.93 0.89 0.90 0.91 0.91
10 10 3 0.83 0.86 0.84 0.90 0.83 0.84 0.90 0.91
10 10 2 0.70 0.76 0.69 0.83 0.69 0.69 0.91 0.94
20 1 4 0.91 0.92 0.91 0.94 0.94 0.94 0.96 0.96
20 1 3 0.87 0.89 0.88 0.92 0.95 0.94 0.96 0.97
20 1 2 0.79 0.82 0.78 0.87 0.99 0.99 1.00 1.00
20 10 4 0.85 0.88 0.87 0.91 0.90 0.90 0.92 0.93
20 10 3 0.79 0.83 0.81 0.88 0.81 0.81 0.92 0.93
20 10 2 0.65 0.73 0.66 0.80 0.69 0.70 0.93 0.95
50 1 4 0.87 0.89 0.89 0.92 0.94 0.93 0.96 0.96
50 1 3 0.82 0.85 0.84 0.89 0.98 0.98 0.97 0.97
50 1 2 0.70 0.77 0.71 0.83 1.00 1.00 1.00 0.99
50 10 4 0.84 0.87 0.86 0.90 0.89 0.89 0.94 0.94
50 10 3 0.78 0.82 0.80 0.87 0.80 0.81 0.94 0.94
50 10 2 0.63 0.71 0.64 0.79 0.76 0.77 0.95 0.95

200 1 4 0.83 0.87 0.86 0.90 0.94 0.94 0.95 0.95
200 1 3 0.78 0.82 0.80 0.87 1.00 1.00 0.96 0.96
200 1 2 0.64 0.72 0.65 0.79 1.00 1.00 0.99 0.98
200 10 4 0.83 0.86 0.86 0.89 0.89 0.89 0.95 0.95
200 10 3 0.76 0.81 0.79 0.86 0.84 0.84 0.95 0.95
200 10 2 0.61 0.70 0.63 0.78 0.93 0.93 0.95 0.95
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Table 3: Asymmetric Cluster Sizes: Coverage of Nominal 95% Confidence Intervals

G σθ G1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack*
10 1 4 0.87 0.93 1.00 0.98 0.93 0.94 0.98 1.00
10 1 3 0.85 0.93 0.99 0.98 0.95 0.94 0.99 1.00
10 1 2 0.79 0.90 0.95 0.98 0.97 0.97 0.99 0.99
10 10 4 0.63 0.81 0.99 0.94 0.68 0.85 0.89 0.97
10 10 3 0.59 0.79 0.97 0.94 0.68 0.81 0.90 0.97
10 10 2 0.50 0.76 0.87 0.94 0.65 0.72 0.90 0.96
20 1 4 0.81 0.91 1.00 0.97 0.97 0.95 0.99 1.00
20 1 3 0.78 0.90 0.99 0.97 0.98 0.97 1.00 1.00
20 1 2 0.69 0.87 0.94 0.97 0.99 0.99 1.00 0.99
20 10 4 0.56 0.78 0.99 0.93 0.68 0.87 0.94 0.97
20 10 3 0.52 0.76 0.97 0.93 0.68 0.82 0.94 0.97
20 10 2 0.42 0.73 0.85 0.93 0.69 0.74 0.93 0.95
50 1 4 0.72 0.88 1.00 0.97 0.99 0.96 1.00 0.99
50 1 3 0.69 0.87 0.99 0.97 1.00 0.99 1.00 0.99
50 1 2 0.58 0.83 0.91 0.96 1.00 1.00 1.00 0.98
50 10 4 0.51 0.77 0.99 0.93 0.75 0.90 0.97 0.97
50 10 3 0.47 0.75 0.97 0.93 0.77 0.85 0.97 0.97
50 10 2 0.39 0.72 0.85 0.93 0.78 0.81 0.95 0.95

200 1 4 0.65 0.85 1.00 0.96 1.00 0.97 1.00 0.99
200 1 3 0.62 0.84 0.98 0.96 1.00 1.00 1.00 0.98
200 1 2 0.50 0.80 0.89 0.95 1.00 1.00 0.99 0.97
200 10 4 0.49 0.76 0.99 0.93 0.88 0.91 0.98 0.97
200 10 3 0.45 0.74 0.96 0.93 0.88 0.92 0.98 0.96
200 10 2 0.36 0.70 0.84 0.93 0.94 0.95 0.95 0.95
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Table 4: Geometrically Distributed Cluster Sizes: Coverage of Nominal 95% Confidence Intervals

G σθ G1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack*
10 1 4 0.91 0.93 0.97 0.96 0.94 0.94 0.96 0.97
10 1 3 0.89 0.92 0.95 0.95 0.94 0.94 0.97 0.98
10 1 2 0.82 0.87 0.88 0.94 0.96 0.96 0.99 0.99
10 10 4 0.85 0.88 0.93 0.92 0.87 0.86 0.92 0.93
10 10 3 0.79 0.84 0.90 0.91 0.82 0.83 0.92 0.94
10 10 2 0.65 0.76 0.76 0.87 0.73 0.75 0.91 0.95
20 1 4 0.88 0.90 0.95 0.93 0.94 0.94 0.97 0.98
20 1 3 0.84 0.88 0.92 0.92 0.96 0.96 0.98 0.99
20 1 2 0.74 0.82 0.81 0.90 0.99 0.99 0.99 0.99
20 10 4 0.80 0.85 0.91 0.90 0.86 0.85 0.93 0.95
20 10 3 0.74 0.81 0.87 0.88 0.79 0.80 0.93 0.96
20 10 2 0.60 0.73 0.72 0.85 0.74 0.75 0.94 0.95
50 1 4 0.83 0.87 0.93 0.91 0.95 0.96 0.98 0.98
50 1 3 0.78 0.84 0.89 0.90 0.99 0.99 0.98 0.99
50 1 2 0.66 0.78 0.76 0.87 1.00 1.00 0.99 0.99
50 10 4 0.78 0.83 0.91 0.89 0.87 0.86 0.95 0.96
50 10 3 0.71 0.79 0.86 0.87 0.81 0.82 0.95 0.97
50 10 2 0.56 0.71 0.70 0.84 0.81 0.82 0.95 0.95

200 1 4 0.80 0.85 0.92 0.90 0.96 0.97 0.97 0.98
200 1 3 0.74 0.82 0.88 0.88 1.00 1.00 0.98 0.98
200 1 2 0.61 0.74 0.73 0.85 1.00 1.00 0.99 0.97
200 10 4 0.78 0.83 0.91 0.88 0.88 0.88 0.96 0.97
200 10 3 0.70 0.79 0.86 0.86 0.87 0.88 0.96 0.97
200 10 2 0.55 0.71 0.69 0.83 0.94 0.94 0.95 0.95

5.2 Baseline Model

We report the results for the baseline model in Table 2. Ideally, all entries should equal 0.95. How-

ever, many of the actual entries are far from this ideal. The CRVE1 interval undercovers in all designs,

and in many settings quite severely, with a worst-case coverage of 61%. Undercoverage is increasing as

the asymmetry in the number of treated clusters and/or treatment effect heterogeneity is increased. Un-

dercoverage is also increasing as the number of clusters increases, because this increases the asymmetry

between treated and untreated clusters.

The CRVE2 interval has improved coverage relative to CRVE1, but also undercovers in all designs. As

for CRVE1, undercoverage is increasing in treatment asymmetry, treatment effect heterogeneity, and as

the number of clusters increases. Its worst-case coverage is 70%.

The bootstrap interval has similar coverage to CRVE1 and thus severely undercovers. Its worst-case

coverage is 63%.

The jackknife interval with conventional critical values has better coverage relative to CRVE1, CRVE2,

and the bootstrap, but undercovers under asymmetry in the number of treated clusters and under treat-

ment effect heterogeneity. Its worst-case coverage is 78%.
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The Wild bootstrap confidence intervals have mixed results. First, we observe that in this baseline

specification, the Wild1 and WildJ intervals have essentially identical results. Their coverage rates are not

strictly ranked relative to CRVE1, CRVE2, the bootstrap, or the jackknife. Their coverage rates generally

improve as G increases. They have excellent coverage when treatment effect heterogeneity is mild, but

have poor coverage when treatment effect heterogeneity is large. Their worst-case coverage is 69%.

The Bell-McCaffrey and adjusted jackknife confidence intervals both have generally good coverage,

and both dominate the other six intervals. In most cases the two have similar coverage rates, but in

some designs the adjusted jackknife interval has better coverage. In some cases they are conservative

with coverage rates as high as 100%. Their worst-case coverage rates are 90% (Bell-McCaffrey) and 91%

(adjusted jackknife).

5.3 Non-Homogeneous Cluster Sizes

We next investigate the impact of non-homogeneous cluster sizes. We modify the treated clusters

only, by setting one treated cluster to have size n1 = 1+9G1 with the remaining treated clusters with size

ng = 1. All untreated cluster sizes are set at ng = 10. This design maximizes nonhomogeneity among

treated cluster sizes while maintaining the same number (10G1) of treated observations. The simulation

estimates of the coverage rates are presented in Table 3. We find that the coverage rates of CRVE1 and

CRVE2 are uniformly worse than in the baseline model, with worst-case coverage of 36% (CRVE1) and

70% (CRVE2). The bootstrap performs better than in the baseline model, and performs better than CRVE1

and CRVE2, but undercovers in some designs, with a worst-case coverage of 84%. The jackknife interval

with conventional critical values also performs better than in the baseline model, with very good cov-

erage rates, and worst-case coverage of 93%. In this specification the two wild bootstrap methods have

significantly different performance under treatment effect heterogeneity, with WildJ generally perform-

ing much better than Wild1. However, both methods still under-cover, with worst-case coverage rates

of 65% (Wild1) and 72% (WildJ). The Bell-McCaffrey interval has mixed performance, with worst-case

coverage of 89%. The adjusted jackknife interval has excellent coverage, uniformly 95% or higher.

5.4 Random Cluster Sizes

To explore the impact of varied cluster sizes, for our next experiment we use a random cluster size

design. We generate the cluster sizes as 1 plus an i.i.d. draw from the geometric distribution with pa-

rameter 0.1. This process implies that the average cluster size is 10 with a standard deviation of about

9.5. This sampling framework technically lies outside the “fixed cluster size” distributional framework,

though the latter obtains by conditioning on the cluster sizes, similar to a regression model with exoge-

nous regressors. The simulation estimates of the coverage rates are presented in Table 4. The results

are similar to those obtained in the baseline model, with worst-case coverage rates of 55% (CRVE1), 71%

(CRVE2), 69% (bootstrap), 83% (jackknife with conventional critical values), 73% (wild bootstrap), 91%

(Bell-McCaffrey), and 93% (adjusted jackknife). Again, the adjusted jackknife has the best performance.
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Table 5: Skewed Heavy-Tailed Errors: Coverage of Nominal 95% Confidence Intervals

G σθ G1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack*
10 1 4 0.94 0.94 0.94 0.96 0.94 0.94 0.95 0.95
10 1 3 0.92 0.93 0.92 0.95 0.93 0.93 0.96 0.96
10 1 2 0.86 0.88 0.85 0.92 0.96 0.96 0.99 0.99
10 10 4 0.88 0.90 0.89 0.92 0.89 0.89 0.91 0.91
10 10 3 0.83 0.86 0.84 0.90 0.83 0.83 0.90 0.91
10 10 2 0.70 0.76 0.70 0.82 0.69 0.70 0.90 0.93
20 1 4 0.91 0.92 0.92 0.94 0.94 0.94 0.96 0.96
20 1 3 0.87 0.89 0.88 0.92 0.95 0.95 0.97 0.97
20 1 2 0.78 0.82 0.78 0.87 0.99 0.99 1.00 1.00
20 10 4 0.85 0.87 0.87 0.91 0.89 0.89 0.92 0.93
20 10 3 0.79 0.83 0.81 0.88 0.81 0.81 0.91 0.93
20 10 2 0.65 0.72 0.65 0.80 0.69 0.70 0.93 0.95
50 1 4 0.87 0.89 0.89 0.92 0.93 0.93 0.96 0.96
50 1 3 0.82 0.85 0.84 0.89 0.98 0.98 0.97 0.96
50 1 2 0.70 0.77 0.71 0.83 1.00 1.00 1.00 0.99
50 10 4 0.83 0.86 0.86 0.89 0.88 0.88 0.93 0.94
50 10 3 0.77 0.82 0.80 0.86 0.80 0.80 0.93 0.94
50 10 2 0.62 0.71 0.63 0.79 0.75 0.76 0.95 0.95

200 1 4 0.84 0.87 0.86 0.90 0.94 0.94 0.95 0.95
200 1 3 0.78 0.83 0.81 0.88 1.00 1.00 0.96 0.96
200 1 2 0.65 0.73 0.66 0.80 1.00 1.00 0.99 0.98
200 10 4 0.82 0.85 0.85 0.89 0.88 0.88 0.94 0.94
200 10 3 0.75 0.81 0.79 0.86 0.84 0.84 0.94 0.95
200 10 2 0.61 0.70 0.62 0.78 0.93 0.93 0.95 0.95
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5.5 Non-Normal Errors

We next investigate the robustness of the results to the assumption of normal errors. For this inves-

tigation we draw the errors for Yi g t (0) and θi g from a skewed heavy-tailed distribution9. The simulation

estimates of the coverage rates are presented in Table 5. The results are almost identical to those under

normal errors.

5.6 Binary Dependent Variable

Many difference-in-difference applications concern binary dependent variables in a linear proba-

bility model. Our third model for potential outcomes treats this case directly with a probit generating

process. The potential outcomes are generated as follows. For some α≥ 0,

Yi g t (0) = 1{ei g t +ug +hi g vg >α}

Yi g t (1) = 1{ei g t +ug +hi g vg > 0}

where ei g t , ug , vg , and hi g are generated as in the baseline model. In this model the treatment effect

is θi g = 1{0 < ei g t +ug +hi g vg ≤ α} with ATT θ = Φ(α/
p

3)−Φ(0). Treatment effect heterogeneity is

increasing in α. We vary α ∈ {0.1,3}.

The simulation estimates of the coverage rates are presented in Table 6. For most of the designs and

methods, the results are quite similar to those obtained under normal errors. The adjusted jackknife has

worst-case coverage of 92%.

5.7 Fixed Effects

While the classic difference-in-difference framework includes group fixed effects at the same level

as clustering, in many applications (including those presented in the following section) there is a diver-

gence between the fixed effect and clustering level. The typical deviation is that there are fewer included

fixed effects than the level of clustering; or, equivalently, clustering is done at a finer level than the fixed

effects. This is done, typically, to conserve estimation degrees-of-freedom. As an example, the Card and

Krueger estimates of Table 1 include state-level fixed effects but cluster at the restaurant level.

To explore the impact of differential fixed effect inclusion, we group our clusters into N = G/5 large

groups, and replace the cluster-level fixed effects with these N large-group fixed effects. Specifically, as

we vary cluster sizes as G = {10,20,50,200} we include N = {2,4,10,40} large-group fixed effects.

We present the results in Table 7. The methods perform qualitatively similarly as in the baseline

model.

9We use the “strongly skewed” distribution displayed in Figure 3.7(b) of Hansen (2022), which is a 9-component normal
mixture distribution with a skew of 1.34 and kurtosis of 6.7.
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Table 6: Binary Dependent Variable: Coverage of Nominal 95% Confidence Intervals

G α G1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack*
10 0.1 4 0.94 0.95 0.94 0.97 0.94 0.94 0.95 0.95
10 0.1 3 0.93 0.94 0.93 0.96 0.94 0.94 0.97 0.97
10 0.1 2 0.88 0.90 0.88 0.94 0.97 0.97 0.99 1.00
10 3 4 0.89 0.90 0.89 0.93 0.90 0.91 0.91 0.92
10 3 3 0.84 0.86 0.85 0.90 0.85 0.85 0.90 0.92
10 3 2 0.72 0.77 0.72 0.84 0.73 0.74 0.92 0.94
20 0.1 4 0.92 0.93 0.92 0.95 0.95 0.94 0.96 0.97
20 0.1 3 0.89 0.91 0.89 0.94 0.96 0.96 0.98 0.98
20 0.1 2 0.82 0.86 0.81 0.90 1.00 1.00 1.00 1.00
20 3 4 0.85 0.88 0.87 0.91 0.90 0.90 0.92 0.93
20 3 3 0.80 0.83 0.82 0.88 0.82 0.82 0.93 0.94
20 3 2 0.67 0.74 0.67 0.81 0.78 0.79 0.94 0.95
50 0.1 4 0.88 0.90 0.90 0.92 0.95 0.94 0.97 0.97
50 0.1 3 0.84 0.87 0.85 0.91 0.99 0.99 0.98 0.98
50 0.1 2 0.74 0.80 0.74 0.85 1.00 1.00 1.00 1.00
50 3 4 0.84 0.87 0.86 0.90 0.89 0.89 0.94 0.94
50 3 3 0.78 0.81 0.80 0.87 0.83 0.83 0.94 0.94
50 3 2 0.63 0.71 0.64 0.79 0.90 0.91 0.95 0.94

200 0.1 4 0.84 0.87 0.87 0.91 0.95 0.95 0.96 0.96
200 0.1 3 0.79 0.84 0.82 0.89 1.00 1.00 0.97 0.97
200 0.1 2 0.68 0.76 0.69 0.82 1.00 1.00 0.98 0.97
200 3 4 0.83 0.85 0.85 0.89 0.88 0.88 0.94 0.94
200 3 3 0.77 0.80 0.79 0.85 0.93 0.93 0.94 0.94
200 3 2 0.60 0.69 0.61 0.78 1.00 1.00 0.94 0.93
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Table 7: Large-Group Fixed Effects: Coverage of Nominal 95% Confidence Intervals

G σθ G1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack*
10 1 4 0.93 0.96 0.96 0.99 0.94 0.94 0.97 0.98
10 1 3 0.90 0.93 0.93 0.97 0.92 0.92 0.96 0.97
10 1 2 0.85 0.90 0.87 0.94 0.91 0.91 0.98 0.99
10 10 4 0.88 0.91 0.90 0.94 0.91 0.91 0.92 0.93
10 10 3 0.85 0.88 0.86 0.92 0.87 0.88 0.90 0.92
10 10 2 0.73 0.79 0.74 0.86 0.77 0.77 0.90 0.93
20 1 4 0.92 0.96 0.95 0.98 0.94 0.94 0.98 0.98
20 1 3 0.88 0.93 0.92 0.97 0.92 0.92 0.98 0.98
20 1 2 0.82 0.88 0.84 0.93 0.92 0.91 0.99 1.00
20 10 4 0.85 0.89 0.88 0.92 0.92 0.92 0.92 0.93
20 10 3 0.80 0.85 0.83 0.90 0.86 0.87 0.91 0.92
20 10 2 0.69 0.76 0.70 0.84 0.78 0.78 0.93 0.95
50 1 4 0.91 0.95 0.94 0.97 0.94 0.94 0.98 0.99
50 1 3 0.86 0.92 0.91 0.96 0.92 0.92 0.99 0.99
50 1 2 0.80 0.87 0.82 0.92 0.92 0.92 1.00 1.00
50 10 4 0.84 0.88 0.87 0.91 0.91 0.92 0.93 0.94
50 10 3 0.79 0.84 0.82 0.89 0.87 0.87 0.92 0.93
50 10 2 0.66 0.75 0.68 0.82 0.81 0.80 0.95 0.96

200 1 4 0.90 0.94 0.94 0.97 0.94 0.94 0.98 0.99
200 1 3 0.86 0.92 0.91 0.96 0.92 0.92 0.99 0.99
200 1 2 0.78 0.86 0.81 0.92 0.92 0.92 1.00 1.00
200 10 4 0.83 0.87 0.87 0.91 0.91 0.92 0.94 0.94
200 10 3 0.77 0.83 0.81 0.88 0.86 0.87 0.93 0.93
200 10 2 0.65 0.74 0.67 0.81 0.84 0.83 0.95 0.96

19



Table 8: Ten Auxillary Regressors: Coverage of Nominal 95% Confidence Intervals

G σθ G1 CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack*
10 1 4 0.95 0.95 0.95 0.97 0.94 0.94 0.95 0.95
10 1 3 0.94 0.94 0.94 0.96 0.94 0.94 0.96 0.96
10 1 2 0.91 0.92 0.91 0.95 0.95 0.95 0.98 0.99
10 10 4 0.91 0.91 0.92 0.94 0.90 0.91 0.92 0.92
10 10 3 0.86 0.88 0.88 0.92 0.86 0.87 0.90 0.91
10 10 2 0.76 0.80 0.77 0.86 0.77 0.78 0.89 0.93
20 1 4 0.93 0.94 0.94 0.95 0.94 0.94 0.96 0.96
20 1 3 0.91 0.92 0.92 0.94 0.95 0.94 0.97 0.97
20 1 2 0.86 0.89 0.86 0.92 0.98 0.98 0.99 1.00
20 10 4 0.86 0.88 0.88 0.91 0.90 0.90 0.91 0.92
20 10 3 0.81 0.84 0.83 0.89 0.84 0.84 0.90 0.92
20 10 2 0.68 0.75 0.69 0.82 0.72 0.74 0.91 0.94
50 1 4 0.90 0.91 0.91 0.93 0.95 0.94 0.96 0.96
50 1 3 0.86 0.89 0.88 0.92 0.96 0.96 0.98 0.97
50 1 2 0.78 0.82 0.78 0.87 1.00 1.00 1.00 1.00
50 10 4 0.84 0.87 0.86 0.90 0.90 0.90 0.92 0.93
50 10 3 0.78 0.82 0.80 0.87 0.82 0.82 0.92 0.93
50 10 2 0.63 0.72 0.64 0.79 0.74 0.75 0.94 0.95

200 1 4 0.86 0.88 0.88 0.91 0.94 0.94 0.96 0.96
200 1 3 0.80 0.84 0.83 0.89 1.00 1.00 0.97 0.97
200 1 2 0.68 0.75 0.69 0.82 1.00 1.00 1.00 0.99
200 10 4 0.82 0.85 0.85 0.89 0.88 0.88 0.94 0.94
200 10 3 0.76 0.81 0.79 0.86 0.82 0.83 0.94 0.94
200 10 2 0.62 0.70 0.63 0.78 0.89 0.89 0.95 0.95

5.8 Many Auxiliary Regressors

Our baseline regression included two auxiliary regressors (J = 2). To explore the impact of varying

this specification we repeat the exercise including ten auxiliary regressors (J = 10).

The results are reported in Table 8. The coverage rates are qualitatively similar to those in the baseline

model. The difference is that many of the methods have somewhat improved coverage rates for small G .

Overall, the impact of varying the number of auxiliary regressors is minor.

5.9 One Treated Cluster

For our final simulation we investigate performance in a model with one treated cluster (G1 = 1). It

should be emphasized that this is a treacherous context where it is well known that standard methods

fail. Regardless, we believe that investigating performance in this context sheds insight concerning ro-

bustness to extreme situations. We repeat our analysis using the baseline model with normal innovations

as in Table 2, but now set G1 = 1. We report the results in Table 9.

As might be expected, the confidence interval methods have poor performance. The CRVE1, CRVE2,

bootstrap, and BM methods have similar dramatic undercoverage. All have worst-case coverage of 2%-
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Table 9: One Treated Cluster: Coverage of Nominal 95% Confidence Intervals

G σθ CRVE1 CRVE2 Boot Jack Wild1 WildJ BM Jack*
10 1 0.59 0.58 0.55 1.00 1.00 0.99 0.58 1.00
20 1 0.43 0.42 0.41 1.00 1.00 1.00 0.42 1.00
50 1 0.28 0.27 0.27 1.00 1.00 1.00 0.27 1.00

200 1 0.14 0.13 0.13 1.00 1.00 1.00 0.13 1.00
10 10 0.17 0.17 0.15 1.00 0.60 0.59 0.17 1.00
20 10 0.10 0.10 0.09 1.00 0.69 0.68 0.10 1.00
50 10 0.05 0.05 0.05 1.00 0.85 0.85 0.05 1.00

200 10 0.03 0.02 0.02 1.00 0.99 0.99 0.02 1.00

3%. The Wild bootstrap displays undercoverage when there is high treatment effect heterogeneity, with

worst-case coverage of 58%. Essentially, all of these methods produce confidence intervals which are

much too small.

In contrast, the jackknife and adjusted jackknife intervals are conservative, with 100% coverage. What

happens is that when there is one treated cluster we find that ν̂jack ≃ ∣∣θ̂∣∣, the jackknife standard error

approximately equals the coefficient estimate θ̂, and thus its t-ratio is always close to 1 and never “sig-

nificant”. Essentially, robust inference on the treatment effect when there is one treated cluster is similar

to inference on the mean when there is a single observation with an unknown variance. The jackknife

interval is not informative about the treatment effect, but is also not misleading regarding significance.

5.10 Summary of Simulation Evidence

Comparing the eight feasible confidence interval methods across Tables 2-9, the only method with

reasonable coverage control in all contexts is the adjusted jackknife. The simulation evidence strongly

supports our recommended procedure: use jackknife standard errors and base inference on the adjusted

student t distribution.

These results are largely consistent with previous simulation studies, including that of MacKinnon,

Nielsen, and Webb (2023b). One difference between our simulation and theirs is our investigation of

the impact of treatment effect heterogeneity (which induces conditional heteroskedasticity), as MacK-

innon, Nielsen, and Webb (2023b) only investigate homoskedastic designs. This explains the divergence

between our findings and theirs concerning the Wild bootstrap. our results show that the Wild boot-

strap performs well under low treatment effect heterogeneity (e.g., homoskedasticity) but not under high

treatment effect heterogeneity (e.g., heteroskedasticity).

It is worthwhile to discuss in greater detail the contrast between the performance of the Bell-McCaffrey

and adjusted jackknife intervals. Why should we prefer one over the other? The Jack* interval has three

distinct advantages. First, it is robust to the context of a single treated cluster, while BM is not. In this

context, the matrix M g is not invertible for the treated cluster, and the CRVE2 estimator uses its general-

ized inverse as an ad hoc workaround. A consequence is that the CRVE2 variance estimator is downward

biased. This problem extends to inference on any regression coefficient which suffers from “delete-one-

21



Table 10: Card and Krueger (1994)
Effect of Minimum Wage on Employment

Coefficient Std Err t pv 95% interval K a

CRVE1 2.75 1.34 2.05 .041 [0.12, 5.38]
Jackknife 2.75 1.35 2.04 .043 [0.89, 5.41] 112 1.01
Fixed Effects: State (2), Time (2)

Clusters Store (384)

Observations 768

cluster” invertibility failure, which arises frequently in applications. In these contexts, the CRVE2 stan-

dard errors and BM intervals will be misleadingly small. The second advantage of the Jack* interval is

that it is built from the t-ratio with the jackknife standard error, which by itself produces confidence in-

tervals with better coverage than t-ratios with CRVE2 standard errors. Therefore, the joint display of ν̂jack

with the adjusted p-values and confidence intervals is more internally consistent than the joint display

of ν̂2 with the BM p-values and confidence intervals. Third, the simulation results explored show that

Jack* has uniformly better coverage control than BM.

6 Illustrations

We illustrate the application of the jackknife standard errors and adjusted inference methods by ap-

plication to multiple datasets. Our purpose is to demonstrate how inferences can meaningfully change

in some contexts, while being unaltered in others.

6.1 Card and Krueger (1994)

For our first application we return to the Card and Krueger (1994) investigation of the impact of the

minimum wage on employment hours. In the first line of Table 10 we repeat the estimated treatment

effect coefficient from Table 1, and in the second line of Table 10 present the analogous result computed

with jackknife standard errors, together with p-values and confidence intervals calculated using the stu-

dent t adjustment. What we can see in this case is that there are only very minor changes in the standard

errors, p-values, and confidence intervals.

We also display the data-based degree-of-freedom (K = 112) and scale adjustment (a = 1.01) for the

jackknife inference adjustment. We can see that their values are consistent with essentially no meaning-

ful adjustment being made. The reason, in this case, is because of the large number of clusters (G = 384)

with a high degree of homogeneity.

To illustrate the fragility of inference we change the clustering level. In most current applications,

clustering is done at a broad level of aggregation; indeed, most applications cluster at the level of treat-

ment. In this example this would implying clustering by state, but this is infeasible as there are only two

states in the sample. However, there is an intermediate case. The dataset includes an indicator for region,

separating the New Jersey and eastern Pennslyvanian stores into three and two regions, respectively, for a
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Table 11: Card and Krueger (1994)
Effect of Minimum Wage on Employment

Coefficient Std Err t pv 95% interval K a

CRVE1 2.75 1.17 2.35 .079 [−0.51, 6.01]
Jackknife 2.75 2.09 1.31 .255 [−6.98, 12.48] 1.42 1.41
Fixed Effects: State (2), Time (2)

Clusters Region (5)

Observations 768

total of five regions. We repeat the analysis, clustering by region. While this is a small number of clusters,

it is not unusual in reported applications.

We report the results in Table 11. The first line reports the estimated treatment effect using CRVE1

standard errors; the second line reports jackknife standard errors with adjusted p-values and confidence

intervals. Examining the first line and comparing with Table 10, the changes are minimal, with the stan-

dard error decreasing somewhat. A researcher may be lulled into the false sense that “the results are

robust to clustering by region”. However, this interpretation vanishes when we examine the second line

of Table 11. The jackknife standard error is nearly twice the magnitude of the CRVE1 standard error, its

p-value far from significant, and its 95% confidence interval extremely wide. The results are qualitatively

different.

We also report (for the jackknife estimates) the degree-of-freedom K and scale a adjustment param-

eters for the distribution of the treatment effect t-ratio. In this setting we see that the degree-of-freedom

equals K = 1.4, which is considerably smaller than the conventional degree-of-freedom G −1 = 4. This

is a signal that the conventional student t distribution approximation is poor, as the sample exhibits re-

gressor leverage and heterogeneity. We also see that the scale adjustment a = 1.41 is considerably above

1, indicating that the jackknife standard error is likely biased upwards. Examining these two adjustment

coefficients can be used to signal that conventional inference is unreliable.

It is not my purpose to take a stand on the level of clustering. Rather, my goal is for regression pack-

ages to report valid measures of precision for any regression a researcher might estimate. In the present

application, it is my contention that the CRVE1 standard error, p-value, and confidence interval pre-

sented in the first line of Table 11 are misleading, while the jackknife analogs in the second line are more

reliable.

6.2 Bailey (2010)

Our second illustration is taken from Bailey (2010), who estimates the effect of sales bans on birth

control use from surveys10 of married women in 1965 and 1970, exploiting the 1965 U.S. Supreme Court

Griswold decision which legalized contraceptives in the United States. I focus on her baseline regres-

sion, reported in her Table 2 column (1). A replication11 of her regression (with CRVE1 standard errors,

10This is an example where different individuals are sampled in the two time periods.
11Our results are slightly different from those reported in Bailey (2010) for two reasons. First, her replication dataset has

21 fewer observations than the one used in her published paper. Second, Bailey reports average marginal effects from probit
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Table 12: Bailey (2010) Table 2, Column (1)
Effect of Sales Ban on Birth Control Use

Coefficient Std Err t pv 95% interval K a

CRVE1

Sales Ban −.055 .020 −2.71 .010 [−.095, −.014]
Sales Ban×1970 .039 .029 1.37 .177 [−.018, .097]
Jackknife

Sales Ban −.055 .028 −1.98 .046 [−.108, −.001] 7.95 1.19
Sales Ban×1970 .039 .035 1.13 .214 [−.027, .105] 10.1 1.17
Fixed Effects: Region×Year (8)

Clusters State (47)

Observations 6929

clustered by state) is reported in the top panel of Table 12. We follow Bailey (2020) and report only two

coefficients, that for the indicator for the Sales Ban, and that for its interaction with an indicator for

1970. In addition, the regression includes indicators for states with physician exceptions and its inter-

action with 1970, as well as census region-by-year fixed effects. Of these estimates, Bailey (2010) paid

particular attention to the coefficient on the Sales Ban, which is negative and significant at the 1% level,

arguing that this means that “women in states with sales bans were significantly less likely to have used

oral contraception before the 1965 Griswold decision”.

We repeat the estimation in the bottom panel of Table 12 using our jackknife methods. Both standard

errors increase significantly; that for the key Sales Ban variable by 40%. Its p-value increases from 1% to

4.6%. This change arises despite the fact that there are a reasonably large (G = 47) number of clusters

and a very large (n = 6929) number of observations. While the jackknife methods do not reverse Bailey’s

conclusions, they moderate their significance.

It is also useful to examine the reported degree-of-freedom K and scale adjustment a coefficients. In

this application the value of K for the two reported coefficients (K = 8 and K = 10) are moderately small,

and lower than the conventional G − 1 = 46. The scale adjustments a = 1.2 are also moderate. These

values indicate that we should expect only minor distributional deviation from conventional.

6.3 MacKinnon and Webb (2020)

Our investigation next follows in the footsteps of MacKinnon and Webb (2020)12. We augment the

regression of Table 12 with a dummy variable indicating if a state repealed their sales ban in 1961, four

years before the Griswold decision. There are two such states (Illinois and Colorado). We repeat an

analog13 of their regression in the top panel of Table 13, and then repeat the analysis using our jackknife

methods in the bottom panel.

regression, while Table 12, following MacKinnon and Webb (2020), reports linear probability estimates.
12Their purpose was to illustrate inference based on randomization methods.
13In Table 1 of MacKinnon and Webb (2020) they add two dummy variables rather than just one, interacting the “Repeal in

1961” indicator with year dummies. We do not do so as this regression suffers from poor identification (the coefficients are not
identified if Illinois is omitted, as there are no observations for Colorado in 1970.) This is a “one treated cluster” context. While
our inference methods are valid in this case, we did not want this to be the focus of this illustration.
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Table 13: MacKinnon and Webb (2020), Table 1
Effect of Early Repeal on Birth Control Use

Coefficient Std Err t pv 95% interval K a

CRVE1

Sales Ban −.046 .016 −2.81 .007 [−.079, −.013]
Sales Ban×1970 .036 .028 1.30 .200 [−.020, .092]
Repeal in 1961 −.082 .019 −4.23 .000 [−.121, −.043]
Jackknife

Sales Ban −.046 .023 −2.06 .039 [−.090, −.003] 8.29 1.19
Sales Ban×1970 .036 .033 1.09 .230 [−.027, .099] 10.1 1.17
Repeal in 1961 −.082 .106 −0.77 .178 [−.373, .209] 1.02 4.38
Fixed Effects: Region×Year (8)

Clusters State (47)

Observations 6929

The results in the top panel indicate that the coefficient on “Repeal in 1961” is negative and statis-

tically significant, with a p-value of 0.000. This appears to suggest the counter-intuitive finding that the

early repeal resulted in a lower probability of birth control use. However, if we examine the bottom panel

we find that the standard error for “Repeal in 1961” increases fivefold when the jackknife is used, and the

reported p-value increases to 0.178. The “significance” of the result disappears.

It is instructive to examine the degree-of-freedom K and scale adjustment a. We see that for the “Re-

peal in 1961” coefficient, K = 1 and a = 4.4, which are extreme values. Seeing this, we should investigate

the cause, and uncover that this regression coefficient is poorly identified. The value of K indicates that

conventional inference will be invalid, and the conventional CRVE1 t-ratio unreliable. This helps explain

why the conventional t-ratio spuriously indicates a “significant” effect.

Our message is that a researcher who uses conventional CRVE1 methods could easily be misled by

regressions such as that in the top panel of Table 13, but will not be as easily misled if they use jackknife

methods as presented in the bottom panel. As shown by MacKinnon and Webb (2020), similar infer-

ences can be obtained by randomization methods. An important difference is that the jackknife can be

a computationally simple default method for calculation of standard errors, p-values, and confidence

intervals, not just as a specialized robustness check.

6.4 Rao (2019)

Our third and fourth illustrations are from Rao (2019). He investigates the impact of the integration

of poor children into elite private schools on the social behaviors of rich students, using a combination of

administrative data and field experiments. His paper reports many regressions; I report two. I start with

the first reported in his paper, from column 1 of his Table 2, which measures the effect of integration on

whether a rich student volunteers for charity. I repeat his regression in the top panel of Table 14, which

reports a linear regression of an indicator for volunteering on treatment (the presence of poor children

in a student’s classroom), four demographic controls, and school and grade fixed effects. Clustering is
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Table 14: Rao (2019), Table 2, Column 1
Effect of Integration on Volunteering for Charity

Coefficient Std Err t pv 95% interval K a

CRVE1

Treated classroom .130 .026 5.05 .000 [.079, .182]
Age .029 .035 0.84 .407 [−.041, .010]
Male .010 .018 0.56 .576 [−.026, .046]
Family Owns Car .038 .026 1.47 .146 [−.014, .100]
Private Driver .015 .025 0.61 .541 [−.034, .065]
Jackknife

Treated classroom .130 .038 3.43 .000 [.066, .195] 20.1 1.23
Age .029 .036 0.82 .407 [−.041, .010] 58.8 1.01
Male .010 .018 0.55 .577 [−.026, .046] 61.1 1.02
Family Owns Car .038 .026 1.45 .146 [−.014, .091] 48.9 1.02
Private Driver .015 .025 0.61 .539 [−.034, .065] 56.6 1.01
Fixed Effects: School (17), Grade (4)

Clusters School×Grade (68)

Observations 2364

done at the school-by-grade level, so there are G = 68 clusters and n = 2304 observations. The coefficient

of interest is that for treatment.

We repeat the analysis using our jackknife methods in the bottom panel. The standard error on treat-

ment increases by 46%, while the standard errors on the other estimates do not change. The p-value

for treatment in both regressions is highly significant, so the conclusion that integration affects behavior

is not altered, but the fact that the standard error increases by nearly 50% illustrates how conventional

inference is potentially fragile.

As a second example I take Rao’s regression reported in column 2 of his Table 6, which measures

the effect of integration on a discriminatory behavior (choosing a lower-ability wealthy student over a

higher-ability poor student as a teammate in an athletic contest). In this regression, in addition to the

primary treatment indicator there are four other coefficients of interest (two indicators of higher prize

money, and interactions of these indicators with the treatment indicator) as well as school and grade

fixed effects. In this example there are G = 8 clusters and n = 342 observations.

We repeat Rao’s results in the top panel of Table 15 and present the jackknife results in the bottom

panel. Rao’s results appear to show that treatment has a significant negative effect on discriminatory

behavior, and so does the offer of higher prize money. The jackknife results, however, moderate these

inferences. The standard error on treatment triples, and its p-value increases from 0.006 to 0.121. The

impact of integration no longer appears to have a statistically significant impact on behavior. The stan-

dard errors and p-values for the prize levels, in contrast, increase more moderately.

Again it is useful to examine the degree-of-freedom coefficients K . In Table 14 they are all very large

(K ≥ 20 for all coefficients), raising no concerns. However, in Table 15 the values of K for the treatment

coefficients (especially the interaction effects) are very low. This should be taken as a signal that conven-
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Table 15: Rao (2019), Table 6, Column 2
Effect of Integration on Discriminatory Behavior

Coefficient Std Err t pv 95% interval K a

CRVE1

Treated classroom −.256 .065 −3.91 .006 [−.411, −.101]
Prize = Rs 200 −.137 .054 −2.54 .039 [−.265, −.009]
Prize = Rs 500 −.314 .050 −6.32 .000 [−.432, −.197]
Treated×Prize=200 .085 .067 1.28 .242 [−.072, .243]
Treated×Prize=500 .186 .094 1.99 .087 [−.035, .408]
Jackknife

Treated classroom −.256 .194 −1.32 .121 [−.655, .143] 2.42 1.78
Prize = Rs 200 −.137 .061 −2.26 .056 [−.279, .005] 4.98 1.10
Prize = Rs 500 −.314 .055 −5.69 .002 [−.445, −.184] 4.81 1.10
Treated×Prize=200 .085 .094 0.90 .377 [−.299, .470] 1.63 1.32
Treated×Prize=500 .186 .157 1.19 .280 [−.427, .800] 1.69 1.32
Fixed Effects: School (2), Grade (4)

Clusters School×Grade (8)

Observations 342

tional inference methods are misleading.

My view is that if results such as the bottom panel of Table 13 were routinely displayed, rather than

the results from the top panel, researchers would make more informed decisions.

7 Conclusion

Difference-in-difference regression is a standard tool in contemporary economics. The vast majority

of applications report cluster-robust standard errors, but the conventional formula produces estimates

which can be highly biased towards zero, resulting in spurious levels of statistical significance. Two sim-

ple changes can alleviate this problem: the use of jackknife variance estimation, and adjusted student t

critical values. These alternatives are computationally efficient, and could be set for default use.

A Stata and R program jregress which calculates the recommended methods is available on the

author’s website users.ssc.wisc.edu/~bhansen/.

8 Appendix

8.1 Heteroskedasticity-Robust Covariance Estimators

For reference, we list the common heteroskedasticity-robust covariance matrix estimators for the lin-

ear model Yi = β̂′Xi + êi under assumed cross-sectional independence, n observations, and k regressors.

The HC0 estimator of Eicker (1963), Huber (1967), and White (1980) is

V̂ 0 =
(

X ′X
)−1

(
n∑

i=1
Xi X ′

i ê2
i

)(
X ′X

)−1 . (15)
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The HC1 estimator of Hinkley (1977) is

V̂ 1 = n

n −k

(
X ′X

)−1

(
n∑

i=1
Xi X ′

i ê2
i

)(
X ′X

)−1 . (16)

The HC2 estimator of MacKinnon and White (1985) is

V̂ 2 =
(

X ′X
)−1

(
n∑

i=1
Xi X ′

i

ê2
i

1−hi

)(
X ′X

)−1 , (17)

where hi = X ′
i

(
X ′X

)−1 Xi . The HC3/jackknife estimator of MacKinnon and White (1985) is

V̂ 3 =
(

X ′X
)−1

(
n∑

i=1
Xi X ′

i

ê2
i

(1−hi )2

)(
X ′X

)−1 (18)

=
n∑

i=1

(
β̂−i − β̂

)(
β̂−i − β̂

)′
, (19)

where β̂−i =
(

X ′X −Xi X ′
i

)−1 (
X ′Y −Xi Yi

)
is the leave-one-out estimator of β.

8.2 Adjusted Jackknife Inference Formula

The following formula for the constants K and a for the confidence interval (13) and p-value (14) are

taken from Hansen (2024):

a =
√

tr [L]

R ′ (X ′X
)−1 R

, (20)

and

K = (tr [L])2

tr [LL]
, (21)

with

tr[L] =
G∑

g=1
Sg − tr

[
U ′V

]
,

and

tr[LL] =
G∑

g=1
S2

g + tr
[

X ′X U ′U X ′X U ′U
]+2tr

[
V ′UV ′U

]
−2tr

[
V ′W

]−4tr
[
U ′U X ′X U ′V

]+2tr
[
U ′UV ′V

]
,
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where

U g =
(

X ′X −X ′
g X g

)+
X ′

g X g
(

X ′X
)−1 R

V g = X ′
g X g

((
X ′X

)−1 R +U g

)
Sg = R ′ (X ′X

)−1 V g +U ′
g V g

W g =U g Sg

U =


U ′

1
...

U ′
G

 , V =


V ′

1
...

V ′
G

 , W =


W ′

1
...

W ′
G

 .

8.3 Computational Considerations

Calculation of both the variance estimator (8) and the correction coefficients (20)-(21) requires loop-

ing over clusters, and the latter also require looping over individual coefficients (in order to calculate

standard errors for each coefficient estimate). The major computational burden in each loop is the gen-

eralized inverse
(

X ′X −X ′
g X g

)+
. It is efficient if each of these is calculated just once and the inverse

matrices stored.

In our R program we use the following method to compute the Moore-Penrose inverse. First, calcu-

late the eigenvaluesλ1 ≥λ2 ≥ ·· · ≥λn ≥ 0 and associated eigenvalues h1, ...,hn of X ′X −X ′
g X g , which sat-

isfy the spectral decomposition X ′X − X ′
g X g = HΛH ′ where Λ= diag{λ1, ...,λn} and H = [h1, ...,hn]. For

some threshold ϵ> 0 (close to machine zero) calculate the trimmed eigenvalue inverses λ+
j = λ−1

j 1{λ j ≥
ϵ} and setΛ+ = diag{λ+

1 , ...,λ+
n }. The numerical Moore-Penrose inverse is then found as

(
X ′X −X ′

g X g

)+ =
HΛ+H ′. For small to moderate k this is computationally reasonable. However, as the dimension k in-

creases the eigenvalue calculation becomes computationally burdensome. Consequently, for computa-

tion with for very large k a faster implementation of the Moore-Penrose inverse would be desirable.

In the standard DiD regression (1), it is common that the regression includes a large number of group-

level fixed effects dummies. When these fixed effects correspond to the level of clustering, these regres-

sors can be eliminated by application of the within transformation to all regressors. Whether the full

regression is estimated or the regression after the within transformation is applied, the remaining re-

gression coefficient estimates, jackknife covariance matrix estimator, and correction coefficients K and

a are all identical. This can dramatically reduce the number of effective regressors k, and this reduces

the computation time. Therefore, if the fixed effect coefficients themselves are not of interest, it is com-

putationally advised to first eliminate the fixed effect dummy variables by applying the within transfor-

mation. However, if the fixed effects are different than the level of clustering (which is true, for example,

in the empirical examples of this paper), then this equivalence is not valid, and estimation and inference

should be done by explicit inclusion of all fixed effects using dummy variables as regressors.

To investigate computation cost of our proposed jackknife methods and our specific jregress pro-

grams we report computation times on randomly generated data sets. All variables (the dependent vari-
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Table 16: Computation Time (Seconds)

R 4.4.1 Stata SE 18
G ng k CRVE1 Jackknife CRVE1 Jackknife

20 100 10 0.006 0.096 0.005 0.024
20 100 50 0.028 0.029 0.011 0.111
20 100 100 0.014 0.173 0.020 0.361
20 100 200 0.036 1.394 0.067 1.954
20 1000 10 0.023 0.013 0.018 0.036
20 1000 50 0.047 0.1000 0.038 0.222
20 1000 100 0.120 0.316 0.087 0.650
20 1000 200 0.375 1.782 0.273 2.912

200 100 10 0.019 0.031 0.011 0.043
200 100 50 0.040 0.216 0.046 0.392
200 100 100 0.135 1.053 0.090 1.700
200 100 200 0.320 6.591 0.268 10.59
200 1000 10 0.280 0.225 0.116 0.246
200 1000 50 0.646 0.823 0.330 1.361
200 1000 100 1.527 2.543 0.702 4.690
200 1000 200 4.574 11.23 2.101 20.15

Computation performed under Windows 11 on an i7-12700 processor with 32 GB of RAM.

able and k regressors) were generated as i.i.d. N (0,1), and the observations organized into G clusters

each with ng observations. We vary ng ∈ {100,1000}, G = {20,200}, and k = {10,50,100,200}. Notice that

the total number of observations range among n = {2000,20000,200000}, so these computations are for

large to very large samples. We do calculations in both R (version 4.4.1) and Stata SE 18, on a standard

office PC. In R, the computation of CRVE1 is done by the lm_robust application from the estimatr

package. The computation of the jackknife is done with our jregress program. In Stata, the computa-

tion of CRVE1 is done by regress with the cluster option, and the jackknife is done with our jregress

program. The Stata calculations are done quietly to emphasize calculation rather than screen display.

All calculate the least squares estimates, standard errors, p-values, and confidence intervals (with ad-

justments for the jackknife method). We perform each calculation once for each configuration.

In Table 16 we report the elapsed computation time in seconds. We make the following general ob-

servations:

1. In all contexts the jackknife calculation times are reasonable for default implementaion. In most

cases, computation time is a fraction of a second. In models with a large number of observations

and regressors, jackknife computation time can take multiple seconds, but this is also the case for

CRVE1 estimation.

2. While the jackknife is generally more computationally costly than CRVE1, it is not uniformly more

costly, and in most cases the differences are minor.

3. Computation speeds are generally similar between the R and Stata packages. Stata, however, has
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a faster default implementation of CRVE1 than the R lm_robust package; and our R jregress

package is somewhat faster than our Stata jregress package.

4. Computation cost is increasing in k (the number of regressors), G (the number of clusters), and ng

(the number of observations per cluster). To get a rough understanding of these impacts, we fitted

regressions of log computation time on log inputs, and found that, roughly, the computational cost

of the jackknife methods is O
(
G0.7n0.3

g k1.3
)
. Thus, computation time is most strongly affected by

the number of regressors k, and secondly by the number of clusters G .

Overall, the calculations demonstrate that the proposed jackknife methods are computationally rea-

sonable to implement on standard office computers, at least for data sets up to 200,000 observations and

200 regressors.
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