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1 Introduction

The bootstrap of Efron (1979) is a powerful nonparametric method to approximate the

sampling distributions of estimators and test statistics. For dependent data, nonparametric

versions of the bootstrap have been implemented by dividing the sample into blocks and

sampling the blocks independently with replacement. The blocks, whose lengths increase

with sample size, may be nonoverlapping (Carlstein (1986)) or overlapping (Kunsch (1989))

and may have random lengths (Politis and Romano (1994)). The method of nonoverlapping

blocks was extended by Hall and Horowitz (1996) to the case of Generalized Method of

Moments (GMM) estimation (Hansen (1982)). In the absence of a structural model that

reduces the data-generation process to a transformation of independent random variables, a

blocking scheme is the dominant bootstrap method for dependent data.

There are a number of reasons, however, to expect a blocking bootstrap to be ineffi-

cient. First, the block bootstrap does not impose on the bootstrap distribution any of the

information contained in the given econometric model. For example, in overidentiÞed GMM

estimation, as argued by Brown and Newey (1995) in the case of independent observations,

the data generated by the Hall-Horowitz bootstrap distribution does not satisfy the moment

conditions implied by the estimating equations. The solution proposed by Hall-Horowitz is to

re-center the bootstrap moments at their sample values. As Brown and Newey (1995) show,

however, this solution is inefficient, pointing out a generic inefficiency with blocking methods.

Second, the block bootstrap creates a bootstrap time-series process with serial dependence

patterns which are quite different from the original time-series, and this discrepancy does not

disappear as the sample size increases. To see this, consider the one-step-ahead conditional

distribution of a bootstrap observation, conditional on its past history, in a blocking scheme

with blocks of Þxed length b. We see that the one-step-ahead conditional distribution is

degenerate for (b − 1) out of every b observations, and for the remaining observations the
one-step-ahead conditional distribution is independent of the past history. This one-step-

ahead conditional distribution is obviously quite distinct from the one-step-ahead conditional

distribution of the actual data, and this difference suggests that the bootstrap distribution

may be an inefficient estimate of the sampling distribution.
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In some GMM contexts, such as autoregressions (ARs) or vector autoregressions (VARs),

time-series econometricians routinely use bootstrap methods which exploit the recursive

structure of the model, by treating the model errors as an independent series. An inherent

problem with this approach is that its usefulness depends on the accuracy of the auxiliary

assumption about the independence of the model errors. In most applications, it is probably

more accurate to view the AR or VAR errors as martingale differences, leaving higher-

order dependencies unspeciÞed. In particular, time-varying conditional heteroskedasticity

appears quite prevalent in many economic time-series, and the treatment of such errors as

independent necessarily leads to inaccurate distributional approximations.

This paper introduces a new non-parametric dependent-data bootstrap which incorpo-

rates conditional moment restrictions. It may be viewed as an extension of the recent pro-

posal of Brown and Newey (1999) for a the case of independent data. Our bootstrap employs

the smoothed empirical likelihood estimator of Ahn, Kitamura and Tripathi (1999) which

efficiently incorporates information contained in a conditional moment restriction.

Section 2 describes the bootstrap problem. Section 3 describes the method to estimate

the conditional distribution. Section 4 describes how to use the conditional distribution to

generate a bootstrap sample by recursion. Section 5 presents a numerical simulation study.

2 The Bootstrapping Problem

The data yt ∈ Rp is a strictly stationary and weakly dependent time series, observed over
t = −m + 1, ..., n for some Þnite integer m. Let xt = (yt−1, ..., yt−m) . The time-series is

known to satisfy the conditional moment restriction

E (g (yt, xt; θ0) | Ft−1) = 0 (1)

where g is a known Rs−valued function, θ0 is an unknown Rq−valued parameter, and Ft =
σ(yt, yt−1, ...) is the Borel sigma-Þeld generated by the history of the series through time t.

A simple example is an AR(1) with martingale difference errors:

yt = µ+ αyt−1 + et, E (et | Ft−1) = 0. (2)

Here, θ = (µ,α) and g (yt, xt; θ) = yt − µ− αyt−1.
Given (1), there are standard GMM methods to estimate θ and conduct asymptotic

inference. In this paper we are not concerned with the choice of estimators and test

2



statistics, we simply suppose that there is some estimator �θ for θ and some test statis-

tic tn = tn (y1, ..., yn; θ0) . The test statistic tn can take the form tn = �θ, or alternatively

tn = �θ − θ0, but most likely takes a studentized form, e.g. tn =
³
�θ − θ0

´
/�s, where �s is

an asymptotic standard error for �θ. The purpose of tn is that if the distribution of tn were

known, then the distribution can be inverted to yield conÞdence statements about θ.

For concreteness, we now give three examples of how the choice of statistic tn yields

different conventional conÞdence intervals for θ. For any choice of tn, let qα denote the α

quantile of the distribution of tn (e.g., P (tn ≤ qα) = α). If tn = �θ , then a 90% percentile-

type conÞdence interval for θ is formed as [q.05, q.95]. If tn = �θ−θ0, then Hall�s percentile-type
interval takes the form [�θ−q.95, �θ−q.05]. If tn =

³
�θ − θ0

´
/�s, then the percentile-t-type interval

takes the form [�θ − �sq.95, �θ − �sq.05].
In principle, the distribution of tn can be calculated from F (y1, ..., yn) , the joint dis-

tribution of the data, but F is generally unknown. The bootstrap method approximates

the distribution of tn by that of t
∗
n = tn

³
y∗1, ..., y

∗
n;
�θ
´
where the random sample (y∗1, ..., y

∗
n)

has some joint distribution F ∗ which is designed to mimic the data distribution F. The so-

called bootstrap distribution F ∗ is thus an approximation (or estimate) of F. One difference

between alternative bootstrap procedures is the choice of estimate F ∗.

Brown and Newey (1995, 1999) argue that bootstrap inference will be efficient when the

distribution estimate F ∗ is efficient. Intuitively, bootstrap inference can be made exact if we

set F ∗ = F, and inferential error (the deviation of Type I error from the nominal level) only

arises through the deviation of F ∗ from F. The larger this deviation, the larger the potential

inferential error.

3 Non-Parametric Estimation of Conditional Distribu-

tion

We saw in the previous section that the problem of bootstrap inference reduces to the problem

of selecting an estimate F ∗ of F, the unknown data distribution, and that it is desirable for

this estimate to be efficient. Since all that is known about F ∗ is the conditional moment

restriction (1), the problem appears to reduce to the problem of efficient non-parametric

estimation subject to a conditional moment restriction. Brown and Newey (1999) consider
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the case of independent observations; we propose here an analog for the case of dependent

observations.

It is helpful to decompose F using the conditional factorization

F (y1, ..., yn) =
nY
t=1

G (yt | Ft−1)F0 (x1)

where G (y | Ft−1) = P (yt ≤ y | Ft−1) denotes the one-step-ahead conditional distribution
function and F0 denotes the distribution of the initial condition x1. Thus if we have non-

parametric estimates G∗ and F ∗0 of G and F0, respectively, we can form the natural non-

parametric estimate of F :

F ∗ (y1, ..., yn) =
nY
t=1

G∗ (yt | Ft−1)F ∗0 (x1) .

We now turn to the problem of non-parametric estimation of the one-step-ahead condi-

tional distribution G. Supposing that G depends only on the most recent m lags1 of the

series, we can write as G (y | Ft−1) = G (y | xt) . Then (1) can be written asZ
g (y, xt; θ0) dG (y | xt) = 0. (3)

Observe that (3) is a restriction on the one-step-ahead conditional distribution function G.

In the context of independent observations, Brown and Newey (1999) argue that efficient

estimation of G requires that the estimate G∗ satisfy the empirical analog of (3):

0 =
Z
g
³
y, xt; �θ

´
dG∗ (y | xt) . (4)

Independently, Brown and Newey (1999) and Ahn, Kitamura and Tripathi (1999) have

proposed similar asymptotically efficient estimators2 which satisfy (4).

This estimator G∗ is a hybrid mixture of non-parametric density and empirical likelihood

estimation. The estimator can be described brießy as follows. For any given value of xt, Þnd

a multinomial distribution on the support points (y1, y2, ..., yn) described by the probabilities

p = (p1, p2, ..., pn) such that the distribution satisÞes the conditional moment restriction (4),

yet is close, in the sense of locally weighted empirical likelihood distance, to a non-parametric

kernel estimator of the distribution.
1If G depends on k lags of the series, and the function g depends on l lags of the series, then without loss

of generality we can set m = max(k, l).
2We follow the treatment of Ahn, Kitamura and Tripathi (1999) since their estimator is guaranteed to

produce non-negative probability weights.
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More precisely (again xt is held Þxed), for some non-negative kernel K (·) and bandwidth
h, deÞne the kernel weights

wi =
K
³
xi−xt
h

´
Pn
j=1K

³
xj−xt
h

´ , i = 1, ..., n, (5)

and local empirical likelihood estimator

�p = (�p1, ..., �pn) = argmax
p1,...,pn

nX
i=1

wi log(pi)

where the pi are constrained to satisfy

pi ≥ 0,
nX
i=1

pi = 1,
nX
i=1

g
³
yi, xt; �θ

´
pi = 0. (6)

The estimator G∗ (y | xt) is the multinomial conditional probability distribution such that
P (y∗t = yi | xt) = �pi, i = 1, ..., n. The constraint (6) ensures that this is a valid probability

distribution and the conditional moment restriction (4) is satisÞed.

Numerically, a convenient method to obtain the estimator is via a Lagrange multiplier

technique. Ahn, Kitamura and Tripathi (1999) show that the solution satisÞes

�pi =
wi

n+ λ0g
³
yi, xt; �θ

´ (7)

where λ solves
nX
i=1

g
³
yi, xt; �θ

´
wi

n+ λ0g
³
yi, xt; �θ

´ = 0. (8)

The multiplier λ can be found by numerically solving the s nonlinear equations in (8),

yielding the probabilities (7).

Relevant issues for empirical implementation include the choice of kernel and bandwidth.

For the kernel, a convenient choice is the multivariate normal

K(u) = exp
³
−
³
u0Σ−1u

´
/2
´

(9)

(normalizing constants are irrelevant because of the deÞnition (5)), where

Σ = n−1
nX
t=1

(xt − x) (xt − x)0 ,

the sample covariance matrix of the conditioning variables xt. This scaling by Σ results in an

estimator which is invariant to linear transformations of xt. The choice of normal kernel is
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convenient because it technically precludes the possibility that for some x, K
³
xi−x
h

´
= 0 for

all i, which can happen for kernels with bounded support if x is unusual and the bandwidth

h is small.

Neither Ahn, Kitamura and Tripathi (1999) nor Brown and Newey (1999) give a rule to

select the bandwidth h. Since the estimation problem is very similar to that of m-variate

density estimation (see (5) above), we use the plug-in rule suggested by Silverman (1986, p.

45, 86-87) for multivariate density estimation:

h = cmn
−1/(4+m) (10)

where cm is determined by the choice of kernel. For the normal kernel,

c1 = 1.06

c2 = 0.96

cm =
µ

4

1 + 2m

¶1/(4+m)
, m > 2.

It would be useful in the future to investigate alternative rules for selection of h, including

cross-validation.

4 Bootstrap Recursion

For a given initial condition x∗1 =
³
y∗0, ..., y

∗
−m+1

´
, the conditional probability distribution G∗

described in the previous section deÞnes a non-parametric bootstrap distribution F ∗. Namely,

given x∗1, the probability weights �pi, i = 1, ..., n are calculated from (5), (7) and (8), then

a random draw is made from (y1, y2, ..., yn) with each receiving probability (�p1, �p2, ..., �pn),

yielding y∗1. Then set x
∗
2 =

³
y∗1, ..., y

∗
−m+2

´
, recalculate the probability weights �pi, i = 1, ..., n,

and draw from (y1, ..., yn) with these weights to yield y
∗
2. This deÞnes a Markov chain on the

points (y1, y2, ..., yn) and creates a bootstrap time series (y
∗
1, y

∗
2, ..., y

∗
n). As discussed above,

given this bootstrap time series, the statistic of interest, namely t∗n = tn
³
y∗1 , ..., y

∗
n;
�θ
´
can be

calculated. Since the distribution of (y∗1, y
∗
2, ..., y

∗
n) can be described by this Markov recursion,

the distribution of t∗n can be calculated by simulation.

This Markov recursion requires a choice for initial condition x∗1. One option is to set it

to the values in the sample, vis., x∗1 = (y0, ..., y−m+1) . This has the natural advantage of

conditioning on relevant information, as argued by Sims and Zha (1999). Another option is
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to draw x∗1 from the unconditional distribution of (y∗t , y
∗
t−1, ..., y

∗
t−m) deÞned by the Markov

recursion. While intuitively attractive, it is unclear how this could be calculated, or even

how to easily and generically verify that such a distribution exists. We propose a simplifying

shortcut, and draw x∗1 as a random m−block from the original data series.

Simulating bootstrap samples via this recursion requires considerably greater compu-

tation time than conventional bootstrap methods. Table 1 shows the computation time

(in minutes using Gauss32 on a 300Mhz Pentium II processor) required to calculate 90%

conÞdence intervals using 999 bootstrap simulations, on AR(k) models, for a variety of lag

orders k and sample size n. For these calculations, we set m = k. These computation times

should only be taken as rough guidelines, since the actual time will depend on the number of

iterations required to solve the equations (8). What is apparent from Table 1 is that the com-

putation time depends quite strongly on the sample size n, and more mildly on the Markov

order m. For small samples, computation time is quite modest, for example, for a sample

of size n = 50, computation time was approximately a half-minute, and for a sample of size

100, computation time ranged from one to two minutes. But for large samples, computation

time can be quite demanding, as illustrated by the case n = 500, where computation time

ranged from 18 to 49 minutes.

Table 1: Computation Time for Non-Parametric
Bootstrap ConÞdence Intervals

(Minutes Using Gauss32 on a 300Mhz Pentium II Processor)
m = 1 2 4 6 8 12

n = 50 0.5 0.5 0.6 0.6 0.7 0.7
n = 100 1.1 1.3 1.5 1.6 1.8 2.4
n = 250 4.6 5.2 6.5 8.0 9.1 12
n = 500 18 20 26 32 37 49

5 Monte Carlo Evidence

We explore the behavior of alternative bootstrap methods in a simple sampling experiment.

The model is an AR(1)

yt = µ+ αyt−1 + et, E (et | Ft−1) = 0.
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or constrained AR(2)

yt = µ+ αyt−2 + et, E (et | Ft−1) = 0

where the martingale difference errors et are generated by an ARCH(1) process with student-t

innovations (with degree of freedom parameter 5):

et = zt
q
ω + γe2t−1

zt ∼ iid t5

We normalize ω = 1 and set µ = 0. We vary γ among {.1, .3, .5, .7} to assess the effect of
conditional heteroskedasticity, and vary α among {0, .5,−.5, .8,−.8} to assess the effect of
serial correlation. In this experiment, we consider samples of size n = 30, 60 and 120, and

generate 3000 Monte Carlo replications.

We are primarily interested in the comparison of our non-parametric bootstrap with the

non-parametric block bootstrap. To implement the latter, we used overlapping blocks (as

in Kunsch (1989)), and tried three choices of block-length b ∈ {4, 6, 8}. (for the n = 120

case we used b ∈ {6, 8, 10}.) Because the qualitative results were not very sensitive to the
selection of block-length, we only report the results for b = 6 for n = 30 and 60, and b = 8

for n = 120. To implement our non-parametric bootstrap we set m = 1 for the AR(1) and

m = 2 for the AR(2), and used the kernel (9) with bandwidth determined by the Silverman

rule (10).

The parameter of interest is taken to be the autoregressive parameter α.We consider tests

of H0 : α = α0, and report results for tests of nominal size 5%. We report results for two-

sided tests and one-sided tests (against both alternatives, since the sampling distributions

are asymmetric). These results can alternatively be interpreted as coverage probabilities of

bootstrap conÞdence intervals, constructed via either the symmetric two-sided or asymmetric

equal-tailed methods.

Following the recommendation of Hall (1992), we consider tests based on the percentile-t

method. That is, our selected test statistic is tn = (�α− α0) /�s, where �s (with one exception
discussed below) is the Eicker-White heterskedasticity-consistent standard error for �α. In

this model, tn is asymptotically distributed as N(0, 1).

For the one exception to this rule, we report results for the model-based autoregressive

bootstrap using conventional standard errors (for the AR(1) model only). We report this
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case merely because this method is widely used in practice, and we wish to emphasize

the distortions from using nonpivotal methods. This method uses the OLS estimates and

independent draws from the OLS residuals {�e1, ..., �en} to generate bootstrap samples, and
conducts inference using the percentile-t method using a conventional OLS standard error.

In addition to the above method, we report two baseline model-based bootstrap methods.

The Þrst is identical to the model-based bootstrap method described above, except that infer-

ence is based on the percentile-t method using the Eicker-White heterskedasticity-consistent

standard error. This might be viewed as a naive hybrid bootstrap, as the test statistic

is explicitly robust to heteroskedasticity, yet the bootstrap algorithm explicitly generates

bootstrap time-series which are conditionally homoskedastic (with iid errors).

For the second baseline model-based bootstrap, we use an estimated AR/ARCH model.

An ARCH(1) is Þt to the AR residuals �et by Gaussian quasi-likelihood, yielding Þtted con-

ditional variances and normalized residuals �zt = �et/
q
�ω + �γ�e2t−1. The bootstrap algorithm

proceeds by iid resampling from the empirical normalized residuals {�z2, ..., �zn}, and the
AR/ARCH process is then generated (using the estimated parameters) as speciÞed by the

model. We report this bootstrap as a baseline comparison, not because it is a realistic

method for empirical practice, (as it requires correct knowledge of the conditional variance

equation) but to illustrate the �best-case� for comparison with the non-parametric methods.

As stated above, our tests are based on a t-statistic tn. Each bootstrap method generates

a bootstrap distribution for the t-statistic which we can denote by t∗n with conditional proba-

bility measure P ∗. Then the bootstrap p-value for a symmetric two-sided test of H0 : α = α0

against H1 : α 6= α0 is p1 = P ∗ (|t∗n| > |tn|) , the bootstrap p-value for a one-sided test of
H0 : α = α0 against H1 : α > α0 is p2 = P ∗ (t∗n > tn) , and the bootstrap p-value for a

one-sided test of H0 : α = α0 against H1 : α < α0 is p3 = P
∗ (t∗n < tn) . For each Monte Carlo

sample and bootstrap method, these bootstrap p-values are calculated by simulation using

399 bootstrap replications. The test rejects at the 5% nominal level if the bootstrap p-value

is smaller than 0.05.

We report the frequency of rejection (across the 3000 Monte Carlo samples) in Tables 2,

3, and 4 for the AR(1) model for the cases n = 30, 60, and 120, respectively, and in Tables

5 and 6 for the AR(2) model for the cases n = 30 and n = 60.

The results in all tables tell essentially the same story. As expected, the naive model-based

bootstrap using conventional standard errors has quite poor performance when the ARCH
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parameter γ is large. The modiÞed naive model-based bootstrap, using White standard

errors, performs surprisingly well, but does show meaningful size distortion when the ARCH

parameter γ is large. For n = 30, the AR/ARCH bootstrap performs only slightly better,

but there is a more noticeable improvement for larger sample sizes. The blocking bootstrap

does not do well in any experiment. The results for the two-sided tests are often reasonable,

but the one-sided tests have enormous size distortions. More disturbingly, the extent of the

size distortion does not seem to diminish as the sample size increases.

Our non-parametric bootstrap, however, does quite well in most cases. The size distor-

tion is typically no worse than the (infeasible) bootstrap based on the correct model, and

in some cases has less size distortion. A notable exception, however, is the one-tailed test

of H0 : α = α0 against H1 : α < α0 for the case of negative AR parameters, α = −.5 and
α = −.8. In these cases, the non-parametric bootstrap does less well than the baseline model-
based bootstrap methods. The performance is dramatically better than the block boot-

strap,however. Another exception is the one-tailed test of H0 : α = α0 against H1 : α > α0

for the AR(2) model with n = 30 and α = .8, where the non-parametric bootstrap is notably

undersized. Overall, the numerical evidence shows that the non-parametric bootstrap does

reasonably well even in very small samples, at least in the simple class of models considered.
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Table 2: Size of 5% Bootstrap Tests, AR(1), n = 30
P (p1 < .05) P (p2 < .05) P (p3 < .05)

γ = .1 .3 .5 .7 .1 .3 .5 .7 .1 .3 .5 .7
α = 0

AR/OLS .086 .137 .183 .204 .083 .130 .144 .165 .095 .120 .155 .165
AR/White .075 .073 .088 .091 .078 .099 .101 .107 .082 .077 .088 .083
AR/ARCH .074 .069 .077 .080 .076 .090 .087 .088 .084 .074 .085 .080

Block .096 .084 .078 .075 .140 .178 .179 .199 .167 .166 .200 .199
Non-Par .059 .055 .053 .045 .095 .094 .101 .113 .087 .088 .093 .112
α = .5

AR/OLS .086 .116 .155 .186 .081 .100 .124 .149 .100 .128 .152 .177
AR/White .070 .070 .084 .088 .079 .086 .102 .110 .076 .084 .088 .094
AR/ARCH .066 .066 .072 .070 .077 .076 .089 .092 .070 .082 .082 .085

Block .081 .074 .077 .078 .210 .224 .234 .247 .103 .109 .119 .140
Non-Par .065 .064 .065 .065 .072 .092 .081 .116 .085 .089 .097 .104
α = −.5
AR/OLS .080 .128 .150 .181 .087 .121 .141 .163 .086 .109 .116 .126
AR/White .072 .078 .075 .076 .081 .090 .099 .098 .075 .086 .078 .073
AR/ARCH .063 .074 .062 .063 .079 .077 .080 .079 .072 .082 .076 .070

Block .096 .081 .071 .062 .095 .115 .122 .139 .262 .258 .254 .260
Non-Par .052 .048 .054 .046 .081 .098 .097 .097 .081 .091 .116 .122
α = .8

AR/OLS .106 .143 .152 .172 .072 .096 .108 .120 .114 .150 .160 .176
AR/White .082 .094 .092 .095 .072 .094 .102 .110 .090 .102 .096 .101
AR/ARCH .078 .086 .081 .081 .067 .085 .088 .087 .090 .096 .089 .088

Block .091 .090 .081 .067 .237 .251 .236 .253 .101 .103 .100 .099
Non-Par .078 .077 .077 .073 .060 .068 .078 .085 .094 .092 .092 .099
α = −.8
AR/OLS .054 .089 .114 .133 .072 .101 .130 .132 .063 .078 .085 .113
AR/White .045 .064 .073 .082 .062 .083 .091 .092 .065 .065 .069 .079
AR/ARCH .042 .058 .060 .066 .062 .074 .075 .072 .062 .074 .075 .072

Block .060 .067 .056 .063 .063 .079 .088 .092 .353 .341 .339 .341
Non-Par .050 .052 .053 .057 .074 .095 .098 .097 .095 .109 .125 .136
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Table 3: Size of 5% Bootstrap Tests, AR(1), n = 60
P (p1 < .05) P (p2 < .05) P (p3 < .05)

γ = .1 .3 .5 .7 .1 .3 .5 .7 .1 .3 .5 .7
α = 0

AR/OLS .118 .181 .235 .301 .093 .150 .176 .201 .105 .132 .168 .210
AR/White .077 .076 .083 .099 .074 .096 .090 .103 .076 .068 .066 .085
AR/ARCH .069 .062 .070 .067 .072 .082 .071 .070 .069 .064 .059 .073

Block .075 .060 .055 .054 .133 .158 .171 .183 .146 .148 .159 .185
Non-Par .058 .055 .049 .047 .072 .089 .096 .109 .083 .091 .088 .109
α = .5

AR/OLS .098 .155 .221 .260 .085 .120 .151 .176 .101 .137 .178 .210
AR/White .069 .079 .078 .080 .073 .080 .093 .108 .074 .075 .074 .078
AR/ARCH .065 .065 .058 .055 .072 .068 .079 .079 .072 .069 .066 .062

Block .058 .054 .042 .046 .262 .253 .274 .278 .071 .076 .086 .101
Non-Par .057 .054 .053 .041 .066 .082 .086 .100 .071 .076 .084 .076
α = −.5
AR/OLS .098 .157 .216 .280 .088 .128 .172 .205 .086 .120 .150 .166
AR/White .066 .074 .084 .098 .065 .075 .092 .096 .070 .074 .074 .078
AR/ARCH .061 .065 .066 .067 .063 .064 .075 .068 .064 .071 .066 .073

Block .054 .052 .047 .044 .054 .069 .091 .106 .282 .276 .286 .274
Non-Par .047 .047 .040 .043 .063 .078 .081 .093 .078 .090 .109 .123
α = .8

AR/OLS .089 .134 .175 .213 .088 .102 .117 .131 .099 .143 .174 .210
AR/White .067 .071 .075 .084 .082 .089 .091 .104 .074 .078 .085 .090
AR/ARCH .064 .060 .057 .058 .080 .083 .074 .079 .071 .068 .071 .072

Block .044 .040 .038 .040 .371 .375 .361 .338 .044 .047 .053 .062
Non-Par .052 .060 .054 .046 .065 .070 .087 .103 .069 .078 .072 .064
α = −.8
AR/OLS .064 .120 .153 .201 .072 .115 .142 .178 .069 .087 .109 .126
AR/White .056 .066 .068 .083 .057 .078 .083 .099 .061 .065 .068 .066
AR/ARCH .051 .056 .056 .062 .054 .063 .064 .067 .062 .064 .064 .061

Block .032 .030 .034 .035 .028 .034 .046 .058 .481 .460 .431 .419
Non-Par .045 .056 .043 .044 .064 .074 .069 .082 .093 .122 .125 .141
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Table 4: Size of 5% Bootstrap Tests, AR(1), n = 120
P (p1 < .05) P (p2 < .05) P (p3 < .05)

γ = .1 .3 .5 .7 .1 .3 .5 .7 .1 .3 .5 .7
α = 0

AR/OLS .127 .229 .328 .412 .106 .173 .208 .235 .100 .155 .214 .264
AR/White .067 .076 .092 .109 .073 .080 .092 .098 .062 .069 .074 .080
AR/ARCH .062 .060 .061 .066 .069 .067 .063 .066 .063 .060 .063 .065

Block .066 .054 .047 .047 .128 .141 .162 .174 .123 .133 .159 .195
Non-Par .044 .046 .039 .033 .056 .072 .082 .099 .065 .075 .083 .097
α = .5

AR/OLS .108 .197 .304 .376 .093 .148 .175 .209 .096 .152 .224 .262
AR/White .063 .063 .088 .101 .068 .083 .090 .094 .064 .059 .077 .089
AR/ARCH .061 .054 .058 .063 .061 .067 .070 .070 .058 .052 .061 .071

Block .043 .033 .041 .038 .262 .266 .269 .273 .046 .057 .094 .103
Non-Par .046 .041 .044 .039 .073 .077 .097 .104 .057 .056 .071 .075
α = −.5
AR/OLS .105 .194 .282 .367 .095 .157 .202 .241 .081 .137 .165 .209
AR/White .060 .078 .078 .097 .067 .074 .081 .087 .055 .070 .071 .083
AR/ARCH .058 .063 .059 .061 .058 .060 .047 .051 .058 .065 .066 .077

Block .041 .040 .037 .040 .041 .066 .078 .103 .253 .265 .263 .276
Non-Par .048 .048 .029 .029 .060 .066 .065 .076 .066 .091 .101 .126
α = .8

AR/OLS .092 .148 .211 .278 .076 .126 .141 .166 .095 .138 .182 .233
AR/White .070 .067 .057 .073 .069 .093 .095 .102 .070 .069 .064 .080
AR/ARCH .064 .057 .044 .046 .068 .082 .074 .071 .069 .062 .053 .060

Block .031 .027 .019 .020 .447 .432 .408 .376 .030 .031 .036 .046
Non-Par .058 .047 .039 .036 .067 .089 .099 .122 .068 .062 .051 .062
α = −.8
AR/OLS .077 .158 .214 .284 .079 .137 .179 .226 .071 .104 .134 .153
AR/White .053 .061 .070 .080 .059 .076 .075 .090 .060 .063 .065 .064
AR/ARCH .049 .055 .054 .049 .057 .063 .049 .048 .058 .061 .061 .067

Block .017 .020 .021 .022 .016 .024 .033 .054 .524 .476 .446 .412
Non-Par .039 .044 .038 .030 .055 .071 .063 .069 .092 .116 .131 .163
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Table 5: Size of 5% Bootstrap Tests, AR(2), n = 30
P (p1 < .05) P (p2 < .05) P (p3 < .05)

γ = .1 .3 .5 .7 .1 .3 .5 .7 .1 .3 .5 .7
α = 0

AR/White .054 .057 .057 .067 .068 .076 .075 .084 .071 .064 .063 .073
AR/ARCH .056 .056 .051 .064 .065 .075 .069 .080 .073 .064 .065 .076

Block .055 .046 .041 .042 .133 .154 .160 .176 .166 .164 .179 .201
Non-Par .041 .038 .040 .038 .069 .068 .079 .078 .069 .076 .083 .083
α = .5

AR/White .060 .064 .059 .069 .069 .067 .082 .075 .068 .069 .067 .080
AR/ARCH .062 .057 .059 .061 .067 .064 .076 .069 .067 .067 .066 .081

Block .054 .051 .046 .048 .254 .251 .281 .287 .065 .070 .076 .091
Non-Par .046 .052 .046 .054 .040 .041 .043 .046 .060 .063 .064 .066
α = −.5

AR/White .052 .059 .059 .065 .068 .071 .077 .076 .060 .071 .061 .066
AR/ARCH .052 .052 .054 .062 .064 .066 .075 .067 .060 .068 .059 .069

Block .040 .045 .040 .037 .050 .064 .073 .078 .348 .345 .342 .365
Non-Par .041 .037 .046 .049 .062 .065 .070 .072 .069 .079 .094 .113
α = .8

AR/White .079 .064 .075 .071 .054 .052 .061 .066 .083 .071 .084 .081
AR/ARCH .076 .065 .075 .066 .052 .052 .055 .058 .084 .072 .083 .077

Block .047 .043 .052 .040 .352 .368 .349 .341 .049 .045 .060 .055
Non-Par .059 .058 .058 .063 .010 .012 .016 .018 .082 .077 .073 .081
α = −.8

AR/White .052 .056 .052 .056 .059 .063 .069 .073 .061 .068 .063 .052
AR/ARCH .053 .052 .051 .053 .058 .060 .063 .065 .063 .066 .061 .053

Block .037 .032 .033 .033 .031 .029 .040 .042 .537 .542 .531 .521
Non-Par .042 .035 .043 .041 .079 .076 .079 .073 .166 .168 .191 .187
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Table 6: Size of 5% Bootstrap Tests, AR(2), n = 60
P (p1 < .05) P (p2 < .05) P (p3 < .05)

γ = .1 .3 .5 .7 .1 .3 .5 .7 .1 .3 .5 .7
α = 0

AR/White .066 .056 .066 .072 .064 .068 .072 .086 .064 .058 .068 .065
AR/ARCH .062 .053 .061 .056 .065 .062 .062 .071 .060 .060 .070 .063

Block .040 .028 .018 .018 .126 .143 .180 .198 .152 .162 .177 .196
Non-Par .050 .040 .037 .029 .072 .077 .086 .106 .068 .074 .083 .084
α = .5

AR/White .053 .052 .059 .065 .057 .073 .071 .081 .053 .058 .065 .070
AR/ARCH .052 .049 .056 .053 .057 .067 .064 .068 .056 .054 .066 .068

Block .025 .023 .025 .024 .387 .392 .380 .390 .029 .031 .045 .050
Non-Par .041 .041 .043 .041 .039 .053 .047 .056 .040 .043 .044 .046
α = −.5

AR/White .060 .059 .062 .070 .058 .063 .067 .075 .063 .055 .064 .072
AR/ARCH .061 .056 .056 .062 .052 .061 .061 .061 .066 .057 .065 .070

Block .025 .024 .018 .015 .024 .031 .037 .043 .452 .457 .456 .452
Non-Par .048 .045 .042 .048 .047 .053 .046 .049 .079 .082 .105 .124
α = .8

AR/White .062 .053 .064 .067 .067 .064 .072 .079 .067 .062 .072 .072
AR/ARCH .060 .051 .053 .058 .064 .059 .064 .066 .067 .060 .066 .069

Block .016 .010 .010 .011 .614 .619 .601 .581 .015 .009 .011 .016
Non-Par .053 .046 .045 .043 .023 .021 .028 .026 .079 .069 .068 .062
α = .8

AR/White .051 .057 .055 .063 .054 .063 .067 .069 .058 .063 .062 .072
AR/ARCH .049 .055 .048 .057 .054 .059 .059 .057 .061 .065 .061 .064

Block .007 .006 .010 .008 .005 .007 .009 .015 .739 .723 .705 .690
Non-Par .030 .030 .031 .033 .065 .069 .069 .068 .181 .209 .229 .260
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