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ABSTRACT

These moments of the asymptotic distribution of the least-squares esti-
mator of the local-to-unity autoregressive model are computed using
computationally simple integration. These calculations show that conven-
tional simulation estimation of moments can be substantially inaccurate
unless the simulation sample size is very large. We also explore the mini-
max efficiency of autoregressive coefficient estimation, and numerically
show that a simple Stein shrinkage estimator has minimax risk which is
uniformly better than least squares, even though the estimation dimen-
sion is just one.
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1. INTRODUCTION

In a series of seminal contributions, Phillips (1987a, 1987b) and Phillips
and Perron (1988) developed an asymptotic theory of inference for unit
roots in autoregressive models. A core component of this theory is the
near-unit-root model which is parameterized by a localizing parameter c.
This model has been the foundation for nearly all subsequent work in non-
stationary time series econometric theory.

A key feature of this theory is that it yields simple expression for asymp-
totic distributions as functions of continuous-time Brownian motions and
diffusion processes indexed by ¢. An inconvenience is that analytic expres-
sions for the distributions are not available. The standard view is that this
is not a problem, as the distributions can always be simulated. And indeed
numerical calculation of nonstationary asymptotic distributions by simula-
tion is the standard approach. Important examples include MacKinnon
(1994)’s calculation of asymptotic critical values and Stock (1991)’s calcula-
tion of quantiles for confidence interval construction. A recent example is
of Phillips (2014) who examines confidence interval construction.

Following Nabeya (1999), we show that moments of the asymptotic dis-
tribution can be calculated by direct integration. This is computationally
much simpler (a matter of minutes) and more accurate. As a by-product of
our calculations, we find that simulation estimation of near-unit-root distri-
butions for large values of ¢ requires very large sample sizes, much larger
than those used in conventional practice.

We also explore the issue of efficient estimation in the near-unit-root
model. Ploberger and Phillips (2012) have recently argued that while the
OLS estimator is non standard, it is minimax efficient in a certain sense.
We argue that their argument is incomplete, that it ignores the unbounded
nature of estimation variance in the local-to-unit model. We show numeri-
cally that a standard Stein shrinkage estimator uniformly dominates the
OLS estimator and can be viewed as dominating OLS in a minimax sense.
This result suggests that efficiency is an open question ready to be
explored.

This paper is organized as follows. Section 2 introduces the local-to-unit
model, its asymptotic moments, and the main theoretical contribution of
the paper, which is an expression for the moments in terms of a simple inte-
gral. Section 3 presents numerical computation of the moments by both
integration and simulation. Section 4 presents a discussion of minimax
efficiency. Section 5 introduces the Stein-type shrinkage estimator and
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contrasts its asymptotic risk versus OLS by numerical simulation. Section 6
is a conclusion, and Section 7 contains the proof of Theorem 1.

A Gauss program which creates the numerical work reported in
this paper is available on the author’s webpage http://www.ssc.wisc.edu/
~bhansen/

2. MOMENTS OF THE ASYMPTOTIC
DISTRIBUTION

Take the classic AR(1) with a near unit root

Vi=Qnyi-1+é€ (1)

a,=1+c/n (2)

with e, zero mean white noise and yp=0. Let @, denote the OLS estimator
of a. As shown by Chan and Wei (1987) and Phillips (1987b)

. U,
n(an - an) —>d VL (3)

as n— oo, where U, = fol W.dW and V.= fol Wf. In this expression, W(r)
denotes a standard Brownian motion, and dW.(r)=cW.(r)dr +dW(r) is a
standard diffusion process.

Define the rth moment of the asymptotic distribution (3):

u,<c>=E(‘;§)r @

The main theoretical contribution of the paper is a convenient expres-
sion for p,(c) as a simple integral.

Theorem 1. For any integer r > 1 and ¢ <0,

r 1
n©=3" ( : )(—c)'—f /0 8/(x, €)dx 5)

j=0
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where
2123, ), ) = )~
(G- _x)zex/(Z—Zx)(l + e—ZA(x,c))l/2

L/ ) (- 1Y ~72¢ = DYy, c)’
X;o(f (L= ey, o) 2+

gj(xn C) =

with A(x,c)=x/(1-x)—c and w()=tanh (u)/u with w(0)=1. The
notation a!! is the double factorial defined as a!!=1-3--a with the
convention a!! =1 for a<O0. n

Theorem 1 restricts the near-unity parameter ¢ to be nonpositive, and thus
does not cover the locally explosive case. The technical reason for this
restriction is due to one of the change of variables used in obtaining Eq. (5);
it could be avoided by alternative manipulations. The representation Eq. (5)
is particularly convenient, however, as the functions gj(x, ¢) (with ¢ <0) are
free of poles on [0, 1] and thus numerical integration is well behaved.

Theorem 1 gives an integral representation for the exact moments of the
local-to-unity asymptotic distribution. This extends Nabeya (1999) who
provided an integral representation for the exact moments in the case ¢=0.

There is a long history of papers investigating asymptotic expansions for
asymptotic bias and variance of @,, including White (1961), Shenton and
Johnson (1965), and Shenton and Vinod (1995). Most recently, Phillips
(2012, Theorem 3) provides an integral representation of the finite sample
bias of &, and Phillips (2012, Theorem 4) provides asymptotic expansions for
the bias. Theorem 1 above is complementary to these results, as it provides an
exact integral representation for the asymptotic local-to-unity model.

3. CALCULATION OF ASYMPTOTIC MOMENTS

We calculated the integrals in Eq. (5) by numerical integration.! We divided
the interval [0, 1] into 100 intervals of length 1/100, and over each interval
numerically integrated using Gauss—Legendre quadrature with 40 grid-
points in each interval. We calculated the first four moments, and then
transformed into conventional cummulants, including the mean p(c),
variance
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02(0) =uy(c) —ﬂl(c)z

skewness

#3(c) = 3py(c)py () + 2/41(C)3
a3/2(c)

skew(c) =

and kurtosis

Ha(c) = dus(c)py () + 6/42(C)ﬂ1(0)2 - 3//‘1(C)4
o*(c)

kurtosis(c) =

These four cummulants are reported in Table 1 (for ¢=0 to ¢= —20 in
steps of 1) and in Table 2 (for c= —40 to ¢= —400 in steps of 20). The
values for ¢ =0 are identical to those reported in Nabeya (1999).

Table 1. Asymptotic Cummulants: ¢=0 to —20.

Mean Variance Skewness Kurtosis

c=0 —1.781 10.11 -2.270 11.37

c=-1 —1.882 11.76 —2.068 9.971
c=-2 —1.930 13.54 -1.901 8.887
c=-3 -1.954 15.41 -1.759 8.043
c=-4 —1.968 17.33 —1.640 7.385
c=— -1.976 19.27 —1.539 6.886
c=- —1.981 21.23 —1.453 6.451
c=-7 —1.985 23.20 -1.379 6.112
c=-8 —1.988 25.18 -1.315 5.831
c=-9 —1.990 27.16 —1.258 5.596
c=-10 —1.991 29.15 -1.208 5.395
c=-11 —1.992 31.13 -1.163 5.223
c=-12 -1.993 33.12 —1.123 5.073
c=-13 -1.994 35.11 —1.086 4.942
c=-14 —1.995 37.11 —-1.053 4.826
c=-15 —1.995 39.10 -1.023 4.723
c=-16 —1.996 41.09 —0.9947 4.631
c=-17 -1.996 43.09 —0.9689 4.548
c=-18 —1.997 45.08 —0.9449 4.473
c=-19 -1.997 47.08 -0.9226 4.405

c=-20 —1.997 48.07 —-0.9018 4.343
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Table 2. Asymptotic Cummulants: ¢ =—-40 to —400.

Mean Variance Skewness Kurtosis
c=-40 -1.997 89 —0.6546 3.711
c=-60 -1.999 129 —0.5390 3.483
c=-80 —2.000 169 —0.4687 3.365
c=-100 —2.000 209 —0.4203 3.294
c=-120 —2.000 249 —0.3843 3.246
c=-140 —2.000 289 —0.3562 3.211
c=-160 —2.000 329 —-0.3335 3.185
c=-180 —2.000 369 —0.3146 3.165
¢=-200 —2.000 409 —0.2986 3.148
c=-220 —2.000 449 —0.2848 3.135
c=-240 —2.000 489 -0.2728 3.124
¢=-260 —2.000 529 -0.2622 3.114
¢c=-280 —2.000 569 —0.2527 3.106
¢=-300 —2.000 609 —0.2442 3.099
c=-320 —2.000 649 —0.2365 3.093
c=-340 —2.000 689 -0.2295 3.088
c=-360 —2.000 729 -0.2230 3.083
c=-380 —2.000 769 -0.2171 3.079
¢=-400 —2.000 809 -0.2116 3.075

The exact moments can be compared to estimated moments from simu-
lations. The rth finite sample moment approximation to the asymptotic
distribution is

r

which approaches u,(c) as n— co. (This yields a better approximation to
the asymptotic distribution than using, say, E(n(&, —a,))", and thus is the
standard method for simulation estimation of the asymptotic distribution.)

Unit root distributions are typically calculated by simulation with large
values of n, including n=500 in early papers and n=1,000 in later papers.
We calculated the same moments (and cummulants) by simulation using
1,000,000 simulation replications and n=500, n=1,000, n=10,000, and
n=100,000. The results are presened graphically in Fig. 1 (for ¢ ranging
from —20 to 0) and in Fig. 2 (for ¢ ranging from —400 to 0).
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Fig. 1. Numerical Integration versus Numerical Simulation, —20 < ¢ <0.

Examining the figures, we can see that the simulation moment estimates
can be quite poor unless n is very large. The discrepancy is worst for the
low order moments. In particular, the simulation estimate of the mean with
n=500 and n=1,000 is far from accurate even for small values of ¢. The
simulation estimates of the variance are reasonably accurate for small c,
but are quite inaccurate for large ¢, unless n is very large. The simulation
estimates of skewness and kurtosis, however, are excellent even for small n.

The errors displayed in the figures show that for reasonable accuracy
(except for very small ¢), the simulation estimate requires setting
n=100,000. This is surprisingly large, and much larger than the values used
in existing studies. For example, Stock (1991) used n=1500 to calculate the
distributions for ¢ as large as ¢=-38. Phillips (2014) used »=10,000 to
calculate distributions for ¢ as large as ¢=—450. Our calculations suggest
that these values of n are much too small.

As an additional advantage, numerical integration is less computation-
ally time-consuming than simulation. All the results reported in this paper
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Fig. 2. Numerical Integration versus Numerical Simulation, —400 < ¢ <0.

were computed in just a few minutes on an office PC. In contrast, the simu-
lation results took six days to compute, though a referee has suggested
that more efficient programming can reduce the computation to a matter
of hours.

4. MINIMAX EFFICIENCY

Is the OLS estimator a, efficient for a,? Ploberger and Phillips (2012) argue
that it is in a certain sense. We re-investigate this question.

We start by reviewing the classic theory of estimation efficiency devel-
oped by Hajek (1970, 1972), Le Cam (1982), and van der Vaart (1998) in
the locally asymptotic normality (LAN) case. For concreteness and simpli-
city let’s consider a LAN model f(x,0) with 6 €©cR*. If 0, denotes the
MLE from a sample of size n, then
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(B, —0) ~4 Z~N(0, J(6))

where J(0) is the inverse of the Fisher information matrix. For any bowl-
shaped loss function £(u), the asymptotic risk of this estimator is

p(0,0)= tim Eot (Vn(0,~0)) = Est(2)

where Ey means expectation with respect to the model f(x, #). For example,
with quadratic risk £(u) = u'u, then p(8,0) =tr J(6).

In this setting, we might ask if there is an alternative estimator 8, with
smaller risk. This is a treacherous question. Consider the estimator 6, =#.
Then p(@, 0) =p(0, ) is minimized and &, has smaller risk than the MLE.
This seems disingenuous, as we have constructed an estimator which uses
knowledge of the true value of the parameter. But it points to the need to
be more careful about what we mean by “smaller risk.”

A classic solution to this problem is the minimax criterion: we say an
estimator is minimax efficient if it minimizes the maximum risk over
(a region of) the parameter space. For I'C®, we define the maximum
asymptotic risk of an estimator 8, as

sup p(0,0)= sup lim E,£(/n(0, - 0))
del delr =

This definition escapes the superefficiency paradox. So long as I" is not a
singleton (contains more than one value of 8) then we cannot artificially set
the maximum risk to zero. Essentially, the minimax criterion requires effi-
cient estimators to have uniformly low risk.

There is another difficulty, however. This maximum risk can easily be
infinite. For example, suppose X~N(u,0°) so that 0=(u,6?) and
©=RxR™, and consider quadratic loss on u, #(0—0)=(i—u)>. Then
p(0,0)=c> and sup,cg p(f,60)=sup,.-, 0> =co. The problem is that the
“worst-case” risk is dominated by the extreme parameter values, and
cannot be compensated by good estimation methods.

The solution to this difficulty is to define the maximal risk over a
local neighborhood of a parameter value 6. An elegant formulation (see
van der Vaart (1998), Chapter 8) reparameterizes using a local parameter
space. Define the parameter sequence

0,=0+n"""n
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where 6€© and heR*. We then consider the sequence of probability
models indexed by 6,. In this local reparameterization, for any A€ R* the
MLE satisfies

(0, —6,) =4 Z ~N(0, J(0))

and the asymptotic risk equals
p(0.0)= lim Ey, £(\/n(0, — 0,)) = Eot(Z)

Since the limit is independent of /4, the maximal (local) risk of the MLE
is thus

sup  lim Ey, £(v/n(0, —0,)) = Eo?(Z)

herF "7

Furthermore, the famous minimax theorem due to Hajek (see van der
Vaart (1998), Theorem 8.11) shows that Eyl(Z) is a lower bound on
the maximal risk for any estimator sequence, showing that the MLE is
minimax efficient.

Now let’s apply this theory to the local-to-unity model (1)—(2) which is
parameterized in terms of the local-to-unity parameter ¢ <0 and is local to
a=1. The asymptotic risk of the OLS estimator is

p(&a a) =lim, . & Ea,, f(l’l(&n - an))
U.

=E7C| —
V.

=p,(c)
the final equality in the case of quadratic risk, and p,(c) is the second

moment defined in Eq. (4). It follows that the maximal risk of the OLS
estimator is

sup lim E, £(n(a, —a,)) = sup p(c)

c<(Q n— o™ c<0

But this is infinite! The second moment p,(c) is larger than the variance of
U./V., which as shown in panel (b) of Figs. 1 and 2, diverges to infinity as
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¢— —oo. Since the maximal risk is unbounded, it is not possible to define
efficiency in terms of minimizing the maximal risk.

The solution pursued by Ploberger and Phillips (2012) is to restrict the
loss function #(u) to be bounded, in which case the maximal risk is necessa-
rily finite. However, the fact that the risk is increasing as ¢ - — oo means
that the maximal risk will be determined by the extreme values of ¢. In
other words, efficiency improvements for small ¢ will not be captured by a
theory that computes maximal risk over unbounded c.

A solution to this dilemma was proposed by Hansen (2013) in the
context of LAN models. Instead of defining the maximal risk over all
values of ¢, it can be defined over bounded sets, creating a maximal risk
function. Specifically, define the maximal risk function of a sequence of
estimators &, as

p(C,a,a)= sup lim E, Z(n(a, —ay))

CSCSO n— oo

The maximal risk function of the OLS estimator is

p(C,a,a)= SUPOﬂz(C)=ﬂ2(C)

C<c<

the second equality since u,(c) is monotonic in ¢. (As shown in Figs. 1 and 2,
both the squared mean and variance are monotonically increasing as c
decreases.)

The maximal risk function p(C, &, @) can be used to rank the efficiency of
estimators. If we have two estimators &; and &, and we can show that
p(C, a1, a)<p(C,a,,a), this means that the maximum risk of @; is less than
that of @, for —C <c<0. If this holds for all C then clearly &; is more
efficient than a,.

Furthermore, we can define an estimator &, of a, as minimax efficient
if its maximal risk function p(C, &, a) is the smallest possible for all values
of C. Unfortunately this lower bound is unknown, and it is unknown if
such an estimator exists.

5. STEIN-TYPE SHRINKAGE ESTIMATOR

In LAN models, Stein-type estimators can achieve efficiency improvements
relative to MLE when the estimation dimension is three or greater



14 BRUCE E. HANSEN

(Stein, 1956, 1981; James & Stein, 1961). The local-to-unity model (1)—(2)
only has one parameter and is not LAN, so we should not expect such
improvements to hold, but it is intriguing to see what happens.

A Stein-type estimator that shrinks the MLE toward unity is

A N2
& =14 @[ 1- @)

(@, — 1)
+
1 ki P
s(Q,)
= . R
PR VMY Tl R
(an_l) S(an)

where

. 1/2
S(&)— % ;1=1(yt_anyr—1)2
) =
Z?:ﬂzz—l

is the conventional standard error for &,. The notation (a) . =1(a>0) is
the positive-part operator, so that the estimator & takes the “positive-
part” form introduced by Baranchick (1964).

The asymptotic distribution of &, in the local-to-unity model (1)—(2) is
simple to calculate from Eq. (3). The maximal risk function is then a
function of the asymptotic distribution.

Proposition 1.

s U, |%
—a, Ye 1= — Ve
n(@, — a,) =4 V. +c U+ V.Y ¢
+
2
s U, Ve
p(C,a",a)= SUPc<ce<o E (VL +C> - (UC+CVc)2

n
The asymptotic risk is not a simple function of the moments of (U, V),
so it cannot be calculated by the exact methods of Theorem 1. Instead, we
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calculate it by simulation. The results of Section 3 suggest that to obtain
accurate results we need to use samples of size n= 100,000, and as before,
we used 1,000,000 simulation replications.

As we are interested in the relative performance of the Stein estimator
relative to OLS, we define the relative maximal risk

* A% (C a)

P (C,a%,a)= AC.aa)
Values less than one indicate improved risk relative to OLS, values over
one indicate higher risk than OLS.

The results are presented graphically in Fig. 3. The panel on left is
shown for C ranging from —20 to 0 and the right panel for C ranging from
—400 to 0. As can be seen, the Stein estimator has uniformly decreased risk
relative to OLS. The risk reduction is greatest at C =0. (At ¢=0, the risk of
the Stein estimator is 51% of that of the OLS estimator). The risk reduc-
tion remains quite substantial for small C (20% at C=-4 and 10% at
C=-10), but asymptotes to zero. The fact that the relative risk function
lies strictly below one for all C below —400 means that there is no value of
¢ for which the Stein estimator does not have lower risk than OLS.
Uniformly in the local-to-unity model, the Stein estimator dominates OLS.

This finding is quite surprising given that this is a one-dimensional
problem and classic Stein theory only applies when the dimension is three
or higher. It may not be that surprising, however, given that Ploberger
(2008) shows that OLS-based unit root tests are not admissible.

1.2 1.2
10f - - mm - - — - - - - 10— = - - -4
0.8 0.8 ﬁ
0.6 0.6
0.4 0.4
0.2 0.2
— Stein)
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0.0 0.0
-20 -18 -16 =14 -12 =10 -8 -6 4 -2 0 —400 —-300 —200 —-100 0
(a)—20=<C=<0 (b) 400<C<0

Fig. 3. Relative Asymptotic Risk of Stein Estimator.
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It should be emphasized that our finding is numerical; we do not have a
formal proof. Given the large number of simulation replications (1 million)
and the large range of the local-to-unity parameter explored, the finding
appears quite robust. However, based on the numerical evidence alone
we cannot exclude the possibility that the relationship will invert for
values of C below —400. Such a numerical exercise does not appear to be
fruitful. First, the sample size n would likely need to be increased. We set
n=100,000 based on our earlier calculations which showed that this
value was needed to obtain good approximations for the mean and var-
iance of the OLS estimator for local-to-unity parameters up to —400. For
values beyond this point this numerical comparison would need to be
repeated.

It also should be emphasized that our results concern the asymptotic
local-to-unity model; the Stein estimator dominates the OLS estimator in
the asymptotic limit, not in finite samples for values of @ which are not
close to 1.

The results of this section are meant to be suggestive, and not guidance
for empirical work. We have shown intriguing evidence that a simple
shrinkage adjustment can provide major reductions in estimation risk when
the local-to-unity parameter is small. This suggests that further research
into optimal shrinkage methods could prove fruitful.

6. CONCLUSION

Many papers have been written about the AR(1) model, and many have
used the local-to-unity framework of Chan and Wei (1987) and Phillips
(1987b). Implementation of the theory typically requires numerical evalua-
tion, and most of the latter uses simulation methods. We have extended
earlier work on the exact moments of the unit root model to the local-to-
unity framework, and have shown that the moments of the distribution
can be easily calculated by numerical integration. Comparing these exact
moments with moments from simulated distributions, we have shown that
conventional sample sizes are far too small to provide good approxima-
tions. For large local-to-unity parameters, we suggest n= 100, 000.

We have also explored the theory of efficient estimation in the context of
the local-to-unity model. We suggest that the minimax risk should be evalu-
ated locally, as a function of the localizing parameter, and have introduced
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a simple Stein shrinkage estimator that has lower (numerical) minimax risk
than the OLS estimator. This suggests that improvements over OLS are
potentially important and feasible.

7. PROOF OF THEOREM 1

The method of proof is a straightforward generalization of the method
introduced by Nabeya (1999). It will be useful to start by defining the ran-

dom variables (U, V)= ( fol Wdw, j;)l W2>, and let f(u,v) denote their joint

density function. White (1958) showed that their moment generating func-
tion equals

@(s,t) =Eexp(sU +1V)= [exp (su+tv) f(u,v) dudv

-1/2
=52 [ cosy/2t — sm«/—
Tl
Making the substitutions
V2t=iv =21,

cosv/2t =cos(iv/ — 21) = cosh/ — 21

and

tany/2t _ tan(iv/—21) _ —itan(iv/ - 21) tanh(«/ ) (v =20)
Var - - V=2

we find the alternative expression

$(s.)=e™"(coshy/ =207 (1 sy (v =207 (©)

Define U} = fo W.dW,.=U.+cV.. Crump (2008) showed the joint den-
sity of (U;‘,V) equals f.(u,v) =exp(cu—c?v/2) f(u,v). It follows that their
moment generating function equals
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do(s,1) = [exp(su+1v)fo(u,v) dudv

= [exp| (s+cu+ (t— C;) v)f(u, v) dudv

=¢(s+c,t— C—;)

Eq. (7) can alternatively be derived from the moment generating func-
tion for (U,,V,) derived by Phillips (1987b). See also Proposition A.l1 of
Phillips, Magdalinos, and Giraitis (2010). It turns out that the form of
expression (7) is convenient for our calculations.

By the binomial expansion

Uc " U:‘F V_ . r r—j U: g
() =(5 <) ‘jzzo(j)(‘c) (5 ®

Following Nabeya (1999) and Sawa (1972), the moments in Eq. (8) can
be expressed as

ury o1 © 0
A5 ) =g e

Using Eq. (7) and then making the change of variables 7= ((z —¢)* — ¢?)/2
we find that Eq. (9) equals

1 /°° o 2 ’
. P 1 gl s+ec, —t-% dr
G-D! Jo = o ( 2>S=o

i} (]—1;'21_1/0 z—c)(z—c) =)} a0

x%(p(s—i—c, - —(1_2”) )

Note that this change of variables is appropriate when ¢ <0 for the
transformation is invertible for ¢ >0, but it would not be invertible for ¢>0.

@)

dr 9)

s=0

dz

s=0
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Using Eq. (6) and
(cosh(z — )~ V/2 =/2e ¢~ 9/2(] 4 ¢~ 2e=9)~1/2

we can see that

2
¢ (s+c, - %) =e "+ 2(cosh (z—¢)) " (1 = (s+w(z—c) ™"/
/2

= ez/z(l + e—2(z_c))1/2

e 2 (1= (s+ow(z—c) ™2

Therefore

J e=c? V2
aS]qﬁ(s+c 5 >

5=0 e/2(1 +e~2-)l/2

xa%{e_s/z(l —(S+c)w(z—c))_1/2}
91/2-j
e?/(1 +e2em)!/2
/ j>(—1y"f(2f—1>”w(z—c)f
X;::O(f (1—cy (z—c)'/>+

s=0

Substituted into Eq. (10), and then making the change of variables
z=x/(1 —x), we obtain

A A Rk CRto (Gt it AN
E<7> - (,'—1)!/ e7/2(1 +e~2:-0)!/2

-1y~ - Dly(z—c)f
XZ( ) l—ct//(z—c))l/2+”ﬂ d

_ ey /1 A%, ), ) =) !
TEA (l_x)zex/(2—2x)(1+e—2/1(x,c))1/2

XZ( ) (= 1Y~72¢ = D)yw(Ax, ) &

— cp(Alx, o))/ 2+
1
=/ g_,-(x, C) dx
0

Substituted into Eq. (8) we obtain Eq. (5). [
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NOTE

1. The computation was done in Gauss using the intquadl command.
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