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ABSTRACT

This paper examines Lagrange multiplier tests for parameter instability for general
estimation problems, including maximum likelihood and generalized methods of moments.
It is shown that tests constructed for various specifications of the alternative hypothesis
have similar forms and sampling behavior. The two main alternatives utilized previously
in the literature — based upon (i) a single shift of unknown timing ; and (ii) random
walk coefficients — are studied for the first time in a unified framework. Striking
similarities are found among the test statistics. All the test statistics considered in this
paper are computationally simple, unlike many other tests suggested in the literature. This
is because the Lagrange multiplier tests only require estimation under the null hypothesis
of no parameter variation.

‘An asymptotic theory for the test statistics is developed under the null hypothesis.
The theory allows for a wide range of estimators and data processes. Complete yet simple
proofs of all results are provided. The distributions of the test statistics are non—standard,
and can be represented as functions of squared Brownian bridges, or, in some cases, an
infinite series of weighted chi—square random variables. Tables of critical values are

provided. A Monte Carlo experiment suggests that the tests perform well in small samples.
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1. Introduction

Testing for structural change and parameter instability has a long history in
econometrics and statistics, and for good reason. Parameters are frequently reduced forms
of unobservables. Although it may be reasonable to believe that these unobservables have
been roughly constant over the sample period, it is rarely a priori obvious. In many cases
it is desirable to subject parameter constancy to a specification test.

The most commonly applied test for parameter change is the sample split test, often
referred to as the Chow test (Chow, 1960). The procedure is to split the sample at some
predetefmined point, and compare the estimates obtained from the pre—split and post—split
samples via an F test. We call this a pointwise F test. The simplicity of the test is its
strongest attribute, and hence its wide application. On the other hand, the need for a
predetermined (exogenous) split point is a severe weakness. If the split is selected
conditional on the data (or real-world events), then the conventional distributional theory
is invalid and may be quite misleading. If the split point is chosen arbitrarily, for example
at the sample midpoint, then the test has low point against structural breaks which occur
early or late in the sample period.

There are two solutions to this problem which have received considerable attention
in the literature. The first treats the sample split point as an unknown parameter. The
likelihood ratio (LR) test for non—constancy is found to be the maximum of all pointwise
F tests. The second solution treats the parameter of interest as a random walk, and tests
the hypothesis that the variance of the random walk innovations is zero. It appears from
the literature and casual inspection that these approaches are distinct and produce different
tests. In this paper, we show that in fact these statistics bear striking similarities in
construction and performance. We also argue that Lagrange multiplier (LM) tests, rather
than LR or Wald tests, are appropriate in tests for parameter instability in non—linear

models. The theory is more elegant, and implementation much simpler.



The first approach mentioned above dates back to Quandt (1960). The asymptotic
theory was unknown until in a recent flurry of papers simultaneously solved the problem,;
see Kim and Siegmund (1989), Chu (1989), Andrews (1990b), and Banerjee, Lumsdaine
and Stock (1990). This test requires re—estimating the model for each sub—sample. In a
linear regression model, this is not particularly costly or difficult. This does not, however,
carry over to non—linear estimators. In many contexts, it may be prohibitively costly to
re—estimate the model over each sub—sample. It may in fact be nearly impossible in
problems which have ill-behaved likelihoods for which numerical convergence is a tricky
business.

There is no need, however, to use pointwise F tests when pointwise LM tests are
available. These have been studied in Andrews (1990b), but not particularly emphasized.
LM test statistics only require one estimation (under the null of no coefficient variation),
and therefore are cheap to compute, given that the model has been estimated anyway. The
distributional theory is also easier to derive for sequences of LM tests, for there is no need
to worry about uniform convergence of partial sample estimators.

The second approach to test for coefficient variation was first proposed by Gardner
(1969) as a Bayes test for structural change in the mean of normal random variables.
Several researchers later independently proposed the statistic as a test for the presence of
random walk coefficients in the linear regression model with independent normal
innovations. These were Pagan and Tanaka (1981), Nyblom and Makelainen (1983), and
King (1987). The statistic is also discussed in Tanaka (1983) and Nicolls and Pagan
(1985). Nyblom and Makelainen (1983) and Leybourne and McCabe (1989) found the
asymptotic distribution of the test statistic for location models. Nebeya and Tanaka
(1988) used fairly sophisticated mathematics to find the asymptotic distribution for linear
regression with deterministically trended regressors and iid errors. A fairly general theory
for maximum likelihood estimators is provided by Nyblom (1989).

We extend this literature to encompass general parametric econometric estimators,



including maximum likelihood (ML), ordinary linear squares (OLS), generalized least
squares (GLS), instrumental variables (IV), and generalized method of moments (GMM).
Tests for pure and partial parameter instability are allowed. One interesting finding is
that one version of this test is exactly the average of the pointwise LM tests for structural
change (which is in linear models the pointwise F test), providing a partial unification of
these two literatures.

The rest of this paper is organized as follows. Section 2 introduces the general
model and the test statistics. Section 2 develops an asymptotic distribution theory.
Central limit theorems are given which are not less restrictive than current results, but
with somewhat simpler conditions and proofs. Explicit conditions for satisfaction of the
general conditions are given. The limit theory for the stability tests are given. Section 4
reports a Monte Carlo study. The appendix contains the proofs of the theorems.

Regarding notation, we use "[-]" to denote "integer part" and "=" to denote

weak convergence of probability measures (as defined in Billingsley, 1968).



2. General Theory

2.1 A Unified Framework for Estimation

Consider estimation of an unknown parameter 6 € IRk by minimizing a criterion
function C_(6,7) with respect to 6. Denote the estimate of § by 0. The random
variable 7 is some preliminary estimate used to define #. Assume that C o(rs0) is
differentiable with respect to # so that @ is equivalently described as the solution to the

k first order conditions (FOC):
0 = FOC(8,7) .
Quite often?, the FOC can be written in the form
n
(1) FOC(0, 1) = Qn(oxT) 2i=1mi(0,'r)
where Q (-,-) is a sequence of k x q (q 2 k) functions of {x;,---,x }. The
variables m,(f,7) are functions of {x,,---,x}. We can write the FOC as

0 =3%_m . (87 , m.(67) = Q67 m(0,7).

In MLE , {m.} are known as the scores, and their sum constitutes the first—order
conditions for the estimator. In non—MLE problems the array {mni} play an identical
role. Denote m, = mi(@,%) y = mnj(f?,%) and Q = Qn(b,%).

It will be useful to define the partial sums of the FOC:

(2) S(m) = E:] m. (0., 7,)
S(r) = [gﬂ m,
i=1

2See Appendix A for examples of standard econometric estimators.



5,(m) = 31] m (0 ,7) = Qf,,7,)S(n)
[nn] .
S = 3 iy = Q80

and the variance of S_():

(3) V(r) = E[Sn(w)Sn(w)'] .
In a correctly specified MLE problem a natural estimator of V(7) is
) 2 .
V() = M9 105 £(B)
=1 9p0g- !

Similarly, in OLS regression with serially uncorrelated, homoskedastic errors, the choice is

Y _ 2 gn7],_ _,
V(r) = o %_ 'xx .

Such choices, however, have limited applicability due to a lack of robustness. An estimate

which is robust to heteroskedasticity in all models is simply

@ UCEREHENC N I S ST

while in the presence of potential autocorrelation as well a good choice is

. M
(5) V(r) = a=EM WaM 2;ig[mr] Mpita™ni

M

= Qna=EM WaM 2ig[mr] my i Q-
where WM is a kernel and M a lag truncation number selected to go to infinity slower
than sample size. See Newey and West (1987), and Andrews (1990a) for a detailed

discussion of choice of estimators (4)—(5) and conditions under which they are consistent.



2.2 LR and LM tests for structural change of unknown timing

Partition 0 = (01' , 02 #)’ . Throughout the paper, superscripts are used to
denote partitions conformable with §. We are interested in testing the constancy of the
parameter 01 over the sample period, and therefore maintain the constancy of 02 .
Andrews and Fair (1988) call this a test of partial structural change. If there is no ¢
they termed this a test of pure structural change. Consider the sequence {6’}}111=1 . A
simple structural break at time 7 (actually, the timeis [n7], but we will refer to the
timing of the split as 7 for convenience) may be parameterized:

o'+ B, i<n
(6) o =

6! , 1> [n7] .

HO: B=0
le B+0.

A sensible test of the null of constant coefficients against a structural change at
time 7 is the F test for the restriction § = 0. Denote this statistic by F(7). When =

is unknown, a suggestion dating back to Quandt (1960) is to use the test statistic

(7 supF = sup F(7)
mell

where II is some region in (0,1) . This is precisely the LR test of H against H, when
7 is known to liein II . It of course reduces to the pointwise F test when II contains
only a single point.

In linear models, use of the supF statistic is sensible and computationally
manageable. In non—linear models, however, this test may be computationally burdensome
or even impossible. Each pointwise F statistic requires reestimation of the model.
Obtaining reasonably accurate convergence for each 7 € II may be quite challenging in

many applications; almost certainly prohibitively costly for a casual specification test.



In the present context, however, it is more convenient to utilize a Lagrange
Multiplier (LM) test statistic, since LM tests only require estimation under the null
hypothesis, and hence do not require reestimation for each point of sample split. LM and
LR test statistics have identical asymptotic distributions under the null hypothesis and
sequences of local alternatives, and hence are expected to have similar sampling behavior.

Partition 1, m ., S(7), S_(m), S(x), én(w) and V() in conformity with 8. For

example
s (1) = (Sk(m), s¥(m)) .
\*,11(,”) v12(ﬂ,)

© 0= g 92

Consider the statistic

©) IM(r) = 83(n) [Vi'(m)]T8)(m
where
(10) V(m) = V(m) — V(m)V(1)™V(n)

is the natural estimator of E [S n(w)g Il(w)'] , and Vy(m) is partitioned as V() in (8).

For MLE problems and fixed 7, LM(7) is precisely the pointwise LM statistic,
and in non—MLE problems LM(7) is an "LM-like" statistic. We will refer to LM(7) as
the "pointwise LM statistic" for simplicity.

The LM analogue to the supF statistic (7) is

(11) supLM = sup LM(7) .
mell

In section three we derive a distributional theory for the supLM statistic.



2.8 LM tests for random parameter variation — General Case

An alternative approach is to treat the parameter variation as random. Then a test
for constancy reduces to a zero restriction on the variance of the innovations moving the
random parameters. Specifically, consider a parameter array {011ﬁ} , and some increasing

sequence of sigma—fields { % .} to which 0111i is adapted. Set

S |
Api = Oy = Oy
and assume
2
(12) E(Anil yni—l) =0, E[Am n1] =0 Gni—l’

for some known array {G_;} .

This martingale formulation, introduced by Nyblom (1989), allows for substantial
flexibility. It allows, for example, 01 to be a random walk as specified in many papers; or,
alternatively, a single structural break as pointed out by Nyblom.

The parameter 8! is constant if the variance of the innovations A nj 18 zero, ie., if

& = 0. Thus the null and alternative hypotheses are

H: =0 H1:62>0

()

For maximum likelihood problems, Nyblom (1989) has shown that the following statistic is

a good approximation to the LM test of H o against H1 :
n n—1 (i

(13) L = nl 3 [Eml]Gm_l[Eml] =ty [
i=1 Yj=i J j=i J i

The "LM-like" analogue to this statistic in non—MLE problems is given by the
same formula, replacing {ﬁl}} with {ﬁl;l} . This gives
(14 L = ot HEI $alla [5al] = 18 ) G (n) §i(x) dr
lj—ln-] nljan_On n n !

where G (7) = G[n7r] .
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2.4 LM tests for random parameter variation — Constant Hazard

The test statistic L given in (14) depends upon the covariance array {G_;} . This
array needs to be chosen carefully if the test is to have a convenient limiting distribution
and have power against alternatives of interest. Since Glli represents the uncertainty in
the parameter’s stability in the i’th period, we may think of Gni as the hazard associated
with parameter instability. The specification that an = G be constant across i —
which we may call constant hazard of instability — was implicitly assumed in Pagan and
Tanaka (1981), Nyblom and Makelainen (1983) and King (1987). Nyblom (1989) notes the

general model but emphasizes the constant hazard case. Then the statistic simplifies to
L. = tr{n ! n}flsl(i)él(i-)' gl = tffi8i(n8i(n)-dr G
c — j=1 B/ nn - 0"n n

. -1
A particularly useful choice for G is [Vll(l)] . Reasons for this choice are
articulated clearly in Nyblom (1989). Primarily, this renders the asymptotic distribution

of LC invariant to nuisance parameters. The statistic then becomes

(15) Ly = tr{j(l)glllﬁlll' \711(1)“1} .

2.5 LM tests for random parameter variation — Weighted Hazard

The intuitive argument for LC is that the statistic is constructed assuming that
the hazard of parameter instability is constant across observations. Examining (14),
however, we see that this results in a test statistic which places unequal weights across
slll(w)' G glll(w) . This is because the expectation of this variable varies over 7. It may
therefore be difficult to detect instability which arises near the beginning or end of the
sample. It seems reasonable to consider tests which select G () = Vil(w)_l, where
V() (given in (10)) is a natural estimator of Vi(7) = E[§ n(w)g o(m]- This specification

weights the early and late observations more heavily, increasing the probability of
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detecting parameter variation which occurs away from the middle of the sample. This

gives a new test statistic
—1 . . .
175 a1 ~11,i,]—1al 1al,y, [11,.4]-1al
(1) Ly = Elsn(%)r[v* (%)] sidy = jiskm [v* ('n')] §1(m) ar.

A connection arises with our earlier analysis of tests for structural change of

unknown timing. A comparison with (9) reveals that
1
Ly = o LM(r)dr .

That is, this LM statistic for random coefficient variation is the exactly the average
pointwise LM statistic for structural change. In contrast, the LM statistic for structural
change of unknown timing (10) is

supLM = sup LM(7) .

mell
Considering {LM(m)} as an element in the function space C[0,1], Ly, can be viewed as

the L1-norm of {LM(7)} , while supLM is (approximately) the L*—norm of {LM()}.
Hence the only difference between the statistics is the choice of norm. Although the two

tests were derived via different methods, we see that they share a common format.
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3. Inference

8.1 Central Limit Theory

Define J to be some neighborhood of To A 10 be some neighborhood of

(6,7,) > my0,1) = 0/80’ m(6,7), and m, (6,7) = 8/dr’ m,(6,7).

Al.  (a) 0, liesin the interior of 8, a bounded subset of R ;

(b) 0 —»p 00;

(©) VA—r) = 0(1);
(d) my(f7) = lim n_IEIIIE m, (0,7) exists uniformly over 4" and is
continuous in /£ ;

() m(7r) = lim n_IEIIIE m, (0,,7) exists uniformly over J andis

continuous in 7 ;

) m(r)=0;

(8) Q(6,r) = plim Q (f,7) exists uniformly over .4 and is continuous in 4';
. -1 . . .

() # =lim _ n E[Xlllmi(ao,ro) lelmi(l?o,ro)’] exists and is finite.

(1) Q(00,7'O)m0(00,1'0) > 0.

Set M = m0(0o"ro) , Q = Q(0O,To) , J=QM ,and V=Q Q" .
We use the following smoothness condition:

Definition. {A_(6):n21} is stochastically equicontinuouson 8 if: Ve >0 35> 0 such
that

sup [A_(0)—A_(0)] > e] <e,

I P [
5 %nt0 "L geh 0-eB(2,0)

where B(6,6) denotes a ball of radius § around 4.
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A2 () nMZ(1) -4 N
-1
(b) Forall (7)€ A, n Elllmia(O,'r) - m ,(0,7) ;
(c) {n_lfilllmi g(0:7)} is stochastically equicontinuous on /4';
-1
(d) Forall 7€ I, n ElllmiT((?o,T) - m (1) ;

(e) {n_lzlllmir( 6,,7)} is stochastically equicontinuous on J.

Theorem 1. Al and A2 imply that o (0— 0,) —4 N(O, J_1VJ_1’) .

Remark 1. Theorem 1 covers the estimators considered in Gallant (1987), Gallant and

White (1988) and Andrews and Fair (1988), but in a somewhat simpler fashion.

Remark 2. Al (f) is critical. This assumption allows 7 to enter as a preliminary nuisance
estimate, without affecting the limiting distribution of #. This of course does not hold for

all two—step estimators, although it holds for the examples given in Appendix A.

Remark 3. A2 (c)(e) impose stochastic equicontinuity, which is necessary for the
application of uniform laws of large numbers. This is essentially a smoothness condition

upon the functions. See Andrews (1990c) for a detailed discussion.

Remark 4. The CLT and WLLNs in A2 can be found from more primitive assumptions.
Consider

Condition SE: {x} is stationary and ergodic.

Condition MIX: {x;} is a—mixing (strong mixing), with mixing coefficients {aj}, and

mi(xl,...,xi;0,'r) = mi(xi_L,...,xi;ﬂ,T) for finite L.
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Set m, =m,(6 ,7.). A2 (a) is implied by any of the following conditions:

(i)  SE holds, and {m} is a square integrable martingale difference sequence.
(Billingsley, 1968, p. 206).

(ii) SE and MIX hold, and for some £ 1, Elmimilﬂ <o and E‘i’a‘li_l/zﬂ <.
(Hall and Heyde, 1980, chapter 5).

(iii) MIX holds, and for some > 1, suPiElmimilﬂ <o and g‘i’a}—l/ﬁ <w .
(Herrndorf, 1984).

Remark 5. The pointwise weak laws in A2(b) hold under any of the following conditions
for all (6,7) e A :

(i)  SEholds, and E|m,,(6,7)| <. (The Ergodic Theorem,; see, for example,
Stout, 1974, p. 181).

(ii)  m,(6,7) is uniformly integrable and an Ll—mjxinga,le. (Andrews, 1988).
(iii) MIX holds, and m, ,(,7) is uniformly integrable. (Andrews, 1988).

Remark 6. A2(d) holds under the conditions of remark 6 for m, (6 ,7), over J.

3.2 Asymptotic Distribution of the Test Statistics

We need the following strengthening of stochastic equicontinuity, introduced by

Andrews (1990c):

Definition. {A_(6):n21} is strongly stochastically equicontinuous on 8 if

{sup|A;(6)| :n 21} is stochastically equicontinuous on 8 .
i>n

We now strengthen assumption A2:



A3. () 1 Y2§(r) = B(n) = BM(J);
-1
(b) Forall (67)€ A, n EIllmia((),T) —, ¢ m07) ;
(c) {n_lf}lllmi g(0,7)} is strongly stochastically equicontinuous on 4’;
-1
(d) Foral 7€ I, n E)Illmi,r(l?o,r) —as (1)
(e) {n—lzlllmiT( 0,,7)} is strongly stochastically equicontinuous on J';

The symbol BM(J) in A3(a) denotes a vector Brownian motion with covariance

matrix J.

We first give a useful pair of lemmas.

0, then sup |n 1EJ[IW]X] - 0.

Lemma 1. If n_'li‘.lllXi —
0<7<1

a.8.

Lemma 2. IfX(«p) is indezed by @ € ¥, and sup |n i— X((p)| ag 0o then
peY '

sup sup |n 1)3[117r]X(<,o)| - 0.
0<m<1 e
Remark 7. Note that if n‘lzlllxi s B Lemma 1 implies that

n_lzi[:_;r] X, =p T, uniformly in .

We now derive the distribution of the partial sum of first order conditions.

~1/2;

Theorem 2. Al and A3 imply that n ~/°S (m) = v/ 2W(7r)

where W(r) = W(r)—7W(1) , W(r) = BM(I,);

This allows us to find the asymptotic distribution of Lo

Ad. n—1V(l) —-»p V.

15
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Corollary 1. Al, A3 and A4 imply that Lo = j(l] W(r)'W(r)dr = [AWew

Remark 8. Corollary 1 covers most parametric econometric estimators and thus
substantially generalizes the results in Nyblom (1989) who examined correctly specified
MLE models. The limit distribution | (1)V_V’V_V is non—standard. When k; = 1, this is the
limiting distribution of the Von Mises goodness of fit statistic, which has been examined

thoroughly in Anderson and Darling (1952). One representation of this distribution is

lar, v o (=22
(17) !OW W = 3 (m) X'(kl)
=1 )
where the X?(kl) are iid chi—squares with k, degrees of freedom. An expansion of the
distribution function is given in Nyblom (1989). Table 1 provides tabulated critical values

for k1= 1,..,20.

Remark 9. The strong stochastic equicontinuity conditions A3(c)(e) is necessary for

application of a uniform strong law, which is necessary for the weak convergence result.

Remark 10. The invariance principle A3(a) is implied by either condition (i) or (ii) in

remark 4.

Remark 11. The pointwise strong laws in A3(b) hold under any of the following conditions
for all (6,7) € A :

(i)  SE holds, and E|m, ,(6,7)| <. (The Ergodic Theorem).

(i)  sup;E|m, 0((9,1')|q <o forsome q>1,and m,,(f,7) isan L%-mixingale
with summable mixingale coefficients. (Hansen, 1990, corollary 2).

(iii) MIX holds. sup,E|m, 0(0,1')|q < o forsome q>1, 2‘{’0:&1_1/ 2 ¢ for

some r > q . (Hansen, 1990, corollary 3).
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Remark 12. A3(d) holds under the conditions of remark 10 for m, (6 ,7) over J .
AS. V(1) — . V.
=2 a.s.

Theorem 3. Under Al, A3, A5, and for 11 a convez subset of (0,1),

LM(7) = Qk1(7r) = W(x)'W(r)/[r(1-7)] on mell.

Corollary 2. Under A1, A3, A5, and for II a convez subset of (0,1),

supLM = sup LM(7) = sup Q, (7) .
mell mell 1

Corollary 3. Under Al, A3 and AS, Lyy = [(LM(n)dr = [gQ, (r)dr .
1

Remark 13. The process Q () is known as a squared standardized tied—down Bessel
1
process of order k; . For fixed 7, Q, (m)= xz(kl) . This process is completely
1

parameterized by k1 , the dimension of 8! . Therefore the distributions in the corollaries

are completely parameterized by k1 as well, facilitating tabulation of critical values.

Remark 14. A result similar to Corollary 2 appears in Andrews (1990b, Theorem 4(b)).
The conditions given in A1, A3 and A5 are somewhat simpler (and the proof is
substantially simpler) than those of Andrews. This is because we focus attention on the
LM statistic (9), and thus are not required to guarantee uniform convergence of partial
sample estimators. As noted in Anderson and Darling (1952) and Andrews (1990b), the
restriction of II to a convex subset of (0,1) is essential, for Q, () is ill-behaved at ==
0 and 7= 1. Andrews has suggested the informal rule II = [.15, .85] , and has

tabulated critical values of the distribution for this choice.
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Remark 15. The average LM statistic Ly, does not require any trimming as does
supLM. This is because the aberrant behavior of Q,(7) is confined to the endpoints, and

is smoothed out by the integral.

Remark 16. The statistic limit distribution in Corollary 3 is equivalently
1 5
Q% = Z 0%
where the [ (1)Q j are independently distributed as [ (1)Q1(1r)d7r . The latter has been
examined in Anderson and Darling (1952, pp. 202—204), yielding the representation
®

(18) 0%, = I B+ K(ky)

where x?(kl) are iid chi—squares with k, degrees of freedom. Table 2 provides
tabulated critical values for k1 =1,..,20.

3. Monte Carlo Evidence

This section presents evidence from Monte Carlo experiments regarding size and
power of the test statistics. A simple linear regression with iid normal errors is used,
identical to that in Andrews (1990b). Three test statistics are compared: supLM (= supF),

LC , and LW. The model used is

, _ iy, .. .
y; = xi'Bi +u, xi—(l (-1))” , u, iid N(0,1) ,i=1,..n.

Table 3 reports rejection frequencies of the three tests using the asymptotic 1%, 5%,
and 10% significance levels and sample sizes of n = 30, 60 , and 120 . 20,000 replications

are used. Regardless of sample size, LC has virtually no size distortion. SupLM
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over—rejects for n = 30 , but has good size for n = 60 and 120 . Lw displays strong
over—rejection for small samples, diminishing with sample size.

To compare power properties, we consider both one—time shifts in ﬂi :

i

_{(0,0)' i ¢ o]
| g i > [nr*]

and ﬂi following a random walk :
,Bi = ,Bi +ory , oy iid N(0, 1/n) .

The test statistics are invariant to the angle between v and %Elllxi = (10)’. We vary (1)
the sample size n = 30,60, and 120 ; (2) the magnitude ||9| = b/yn ; and (3) the
time of shift 7* = .1,.3,and .5. For the random walk alternative (RW) we vary the
sample size and magnitude as for the one—time shift alternative.

We report size—corrected power (percentage rejections in 5000 trials) in table 4.
Critical values were calculated from the simulated finite—sample null distributions with
20,000 replications. Against single shifts in the tail of the sample (7* = .1) , supLM has
greater power for n = 30 , while Lw has greater power for n = 60 and 120 . For single
shifts at the sample mid—point (7* = .5) the statistics are ranked: Lo s Ly » supLM. For
7* = .3 and the random walk alternative, the three statistics have quite similar power.

We can summarize our findings as follows. All three statistics are computationally
feasible, with decent size and power properties. LC is the easiest and cheapest to
compute, has the least size distortion, and best power against mid—point shifts, yet has
lower power against tail shifts, especially in small samples. LW has the best power
against tail shifts for larger samples, yet has the worst size distortion. SupLM has the best
power against tail shifts for n = 30 , and has moderate size distortion. It appears that this

evidence is not sufficient to discriminate between these statistics.



Appendix A: Examples

OLS: 6 minimizes Elll(yi_x{ 0?2 ;
mi(0,7') = mni(O,T) = xi(yi_xia)
Qu(67) = Iy

GLS: 0 minimizes EI{[(yi_x{ 0) /U(Xiﬁ')]z;

m(0,r) = m_(6,r) = xi(yi—xil?)/az(xi,'r)
Qn(B,T) = I
MLE @ minimizes n_lzllllog fi( 0) ;
m(7) = m_(07) = aglog £(0)
Q87 = I,
IV 0 minimizes [lel(yi—-xi 0)z§] [Elllziz{]_l [Elllzi(yi—x{ 0)] :
mi(0,'r) = zi(yi—xi0)
myy(07) = [Bhxag] (Brng] 0 - x0
Q6r) = Qu(n) = [Bxag] [z -
GMM ¢ minimizes 57_,g.(0)’ Q" 3'_ g(6) ;
m(07) = g(0)
my(0r) = [ (0] 950

Q67 = [F_-0g(0) 07"

20
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Appendix B. Proofs of the Theorems

Proof of Theorem 1. The first order conditions for § are

(B1) 0 = Q(3N81) = o M2Q (03 B_ m(B7).
By A1(b)(c)(g),
(B2) Qn = Qn(br%) _’p Qn(OO’TO) = Q.

Here and in the sequel we use superscripts to denote elements of a vector or rows of
a matrix. For example, m?‘ denotes the a’th element of the vector m, , and m? )
denotes the a’th row of m,.

Element by element mean value expansions of Elilz 1ms( 8,7) about 0, give Va
—1/2 2 A —1/2 A -1 A 5
B3) o YA m¥B3) = o /20 md(0,5) + o5t _ m(0%5) Ja(2-0,)

where 6* is a random variable on a line segment joining @ and 00 . Below we show

(B4) n st md(047) = m(6,,r) + 0,(1)
and
(B5) a2 m(0.5) —y N0, 5 .

(B1)—(B5) combine to give

0 = [Q+0,(M]|NO, A + [my(8,7,) + 0, (V)] vE(D-0) + op(l)}

Since QM >0 by A1(i) we have

i(B-6) -y —@WQN@, » = TN, V).
To show (B4), take each element for b=1, ..., k:

-1 b ok o b
|n Elilzlm?a(a*ﬂ-) - m% (00’7-0)'

< ot m®enh) — mBP(eh)| + mBP(er) - w300, )
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—lyn ab ab
< (0?"71‘ E./Vn B _qmjp(6,m) —my (6,7)| + op(l) -5 0.

The second inequality uses A1(d)(b)(c). The final limit is a uniform weak law of large
numbers (U-WLLN), which holds under A2(b)(c) by Theorem 1 of Andrews (1990c).
To show (B5), take the element by element expansions
2R w307 = o VAR md(0,r) + a T m? (0,,7%) va(P-T)

where 7* is a random variable on a line segment joining 7 and T, - Now for each b,
-1 b -1 b b b b
078t m32(0,™)| < [nTE_ im0, — mIP(r)] + [mIP(r*) —mP(7)]

< sup|n 't m22(g,7) — m2(r)| + o (1) —, 0
€T

by Al(e)(c) and again applying Theorem 1 of Andrews (1990c) under A2(d)(e). Thus
—-1/2 A -1/2
Y2 im0 7)) = 020 mi(0,r) + o)(1) —y NO, )

by A2(a). This completes the proof. ul

Proof of Lemmas 1 and 2. Lemma 1 follows from Lemma 2 so we prove the latter.

Fix ¢,7> 0. Set )—(i = sup Ii_l)li._l X.(p)| , and X* = max Xi . Note that
wEY =1 i>
X* < o (a.s.) by strong convergence. Choose 6> 0 so that P{X* > ¢/6} < /2. Now

P{ max sup |n—1211X.(g0)| > 2¢}
1<i<n pey )

< P{max sup ln_'lZilX.(go)I >¢ + P{ max sup |n_12i1X.(<p)| > €} .
1<i<[nd] pey ! [n6]<i<n pey !

The first term on the right equals

P{ max %Xi>e} = P{6X* > ¢} < /2,
1<i¢[nd]

and the second term is bounded by



for n sufficiently large by Andrews (1990b, lemma A—1). o

Proof of Theorem 2. Element by element expansions give
(B6) 283 = 25T 3,7
= 2R3 5+ o tER T md 0x5) R(80) -

Note that the random variable ¢* (which lies on the line segment joining §  with 9)

may depend upon 7. Below we show

(B7) n"lEi[g'ir] m;"a(ﬂ;"r,%) - 7rm3(00,7'0) , uniformly in 7
and
(B8) /22 m (g 5 = B(r) = BM().

A calculation similar to that in the proof of Theorem 1 gives
(B9) Va(h-) = —I7'QB(1).
Combining (B6)—(B9), we find

(B10) a2 (m) = Q42 V() = Q[B(7r) _ wMJ_lQB(l)]

23

= QB(r) - 7QB(1) = Bg() — By(l) = Vl/z[W(W)—WW(l)] ,

where By(r) = QB(r) = BM(Q#Q") = BM(V) , and W(r) = V"/?B() = BM(T,)

To show (B7), take the b’th element,

sup |n~ IEEMF] (0* T) — szb(o )|
m€[0,1]

< sup (o~ 2] TG00 7) - w3070
™

b A
+ sup |7 m§>(05,7) — 7my (8,7,
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<sup sup Jo 2T mh(0n) — emiP(0n)] + sup Im§(0ED) — TR ()l
7 (0,7)eN T

The first term is o p(1) by Lemma 2 and A3(b)(c). The second term is op(l) by
AL(d)(b)(c)-

To show (B8), take the expansion

—1/2 A -1/2 -1

2% g 5 = VAR g ) + R T (0, ()
The b’th element of n 12[n7r] a i (0,,7F) satisfies

sup|a 52 Th?2(0,,7%) | ¢ sup|a B2 Tm?B(0,,7%) — wm3P(0, )]
T ™

+ sup |1rmab(0 )|
™

-1 [n7r] ab ab
< - =
S171rp 'srle11}7|n X {0,7) — Tm_ (6,7 + op(l) op(l)

by similar arguments and A1(f). Thus

-1/2 - /2
A2 (0,7 = o AR mi0,m) + o) = B(n)
by A3(a). This completes the proof. o

Proof of Corollary 1. Set e = (Ik 0)’. Then by Theorem 2

% (n) = i V2eS () = (Ve 2 = VW),

Combined with A4 we find

14 o —la
Lo = Jg51a(M" V(1) Syy(m) dr

= AW Ve vey WA (m ar = [IW(r)W(mdr . o
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Proof of Theorem 3. By A5, and Lemma 1,
n_IV(w) - 7V , uniformlyin v, 0<7<1.
Similarly,

0 IV*(n) = (wV) - (V)VY(#V) = [n(1—7)] V, uniformlyin 7.

Thus by the continuous mapping theorem,

LM(r) = sln(w)'[v;l(x)]-lsm(w)
= (Ve - ve] VIPW(r) = W(m) W(n)/[(1-)]

in any region for which 1/[x(1—~)] is continuous. o

Proof of Corollary 2. Follows from Theorem 3 , the continuous mapping theorem, and the

fact that the supremum is a continuous map. o

Proof of Corollary 3. From Theorem 3, for any ¢ > 0,

[ LM(n) dr = 1 Q (M dr.

The result follows if the random variable [ (I)Qk (m) dr is well defined, which was shown in
1

Anderson and Darling (1952) (see their Theorem 4.1 and the example on pages 202—204). o
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TABLE 1: ASYMPTOTIC CRITICAL VALUES FOR L3
Significance Level

28

Degrees of Freedom (kl) 1% 25% 5% 7.5% 10% 20%
1 748 593 470 .398 .353 .243
2 1.07 .898 .749 .670 .610 .469
3 1.35 1.16 1.01 .913 .846 .679
4 1.60 139 124 1.14 1.07 .883
5 1.88 1.63 147 136 1.28 1.08
6 2.12 189 168 158 149 1.28
7 235 210 190 178 1.69 1.46
8 259 233 211 199 1.89 1.66
9 282 255 232 219 210 1.8
10 3.05 276 254 240 2.29 2.03
11 327 299 275 2.60 249 2.22
12 351 3.18 296 2.81 2.69 241
13 369 339 3.15 3.00 2.8 2.59
14 390 360 334 319 3.08 2.77
15 407 381 354 3.38 326 295
16 430 4.01 3.75 358 346 3.14
17 451 421 395 3.77 3.64 3.32
18 473 440 4.14 396 3.83 3.50
19 492 460 433 4.16 4.03 3.69
20 5.13 479 452 436 4.22 3.86
TABLE 2 :ASYMPTOTKJCRHHCALVALUESFOR]ﬁN4

Significance Level

Degrees of Freedom (kl) 1% 25% 5% 7.5% 10% 20%
1 383 305 248 214 193 1.40
2 565 469 4.05 364 3.37 2.69
3 7.33 6.35 5.50 5.01 4.69 3.89
4 885 T7.74 6.91 6.37 5.96 5.06
5 10.1 9.08 823 T7.67 7.25 6.23
6 116 104 943 890 845 7.35
7 12.7 11.6 10.7 101 9.65 8.50
8 14.0 128 119 11.3 10.8 9.63
9 154 141 130 124 12.0 10.7
10 166 154 142 136 13.1 11.8
11 179 165 154 14.7 14.2 129
12 19.0 17.7 16.6 159 154 14.0
13 20.3 189 178 17.0 16.5 15.1
14 215 20.1 189 182 176 16.1
15 229 213 201 19.3 188 17.2
16 24.1 225 21.3 205 199 18.3
17 255 23.7 224 216 21.0 19.3
18 26.6 25.0 23.6 228 221 204
19 277 26.1 24.7 238 23.2 215
20 28.9 273 259 25.0 24.3 225

3Critical values were calculated from 20,000 draws from distribution (19).
4Critical values were calculated from 20,000 draws from distribution (20).



TABLE 35
SIMULATED NULL REJECTION FREQUENCY

Sample Size Test Statistic 1% 5% 10%
n=230 SupLM 2.5 74 12.0
LC 0.6 5.0 11.0
LW 24 8.5 14.7

n =60 SupLM 1.7 5.6 9.5
LC 1.0 5.4 10.9
LW 1.7 7.0 12.5

n=120 SupLM 1.2 5.1 8.9
LC 1.0 5.3 10.3
LW 1. 6.1 114

TABLE 4-A

SIMULATED SIZE-ADJUSTED POWER OF 5% SIZE TEST (N = 30)

SupLM L C LW
™ =.1 4.8 13 10 11
7.2 27 15 19
9.6 51 24 33
12.0 76 34 50
*=.3 4.8 29 32 32
7.2 60 61 61
9.6 89 87 87
12.0 98 97 97
™ =5 4.8 33 40 38
7.2 69 75 72
9.6 93 95 93
12.0 99 99 99
RW 4.8 19 22 22
7.2 32 33 34
9.6 44 44 45
12.0 51 50 52

5Percentage rejections using asymptotic critical values (20,000 replications).



TABLE 4-B
SIMULATED SIZE—ADJUSTED POWER OF 5% SIZE TEST (N = 60)

SupLM L C LW
™ =1 4.8 8 8 9
7.2 13 12 15
9.6 21 18 25
12.0 33 26 40
7*=.3 4.8 30 29 29
7.2 65 63 62
9.6 91 88 88
12.0 99 98 97
™*=.5 4.8 38 42 39
7.2 75 79 7
9.6 96 97 96
12.0 99 99 99
RW 4.8 20 22 22
7.2 36 36 37
9.6 49 48 49
12.0 59 56 57
TABLE 4-C
SIMULATED SIZE-ADJUSTED POWER OF 5% SIZE TEST (N = 120)
SupLM La Ly
™ =.1 4.8 9 8 9
7.2 16 13 17
9.6 27 21 29
12.0 42 32 46
™ =.3 4.8 32 33 33
7.2 67 66 65
9.6 93 90 90
12.0 99 99 98
™*=.5 4.8 39 45 42
7.2 [ 82 78
9.6 97 97 96
12.0 99 99 99
RW 4.8 22 23 23
7.2 37 38 38
9.6 52 51 51
12.0 62 60 61



