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We provide a complete asymptotic distribution theory for clustered data with a large
number of independent groups, generalizing the classic laws of large numbers, uniform
laws, central limit theory, and clustered covariance matrix estimation. Our theory allows
for clustered observationswithheterogeneous andunbounded cluster sizes. Our conditions
cleanly nest the classical results for i.n.i.d. observations, in the sense that our conditions
specialize to the classical conditions under independent sampling. We use this theory to
develop a full asymptotic distribution theory for estimation based on linear least-squares,
2SLS, nonlinear MLE, and nonlinear GMM.
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1. Introduction

Clustered samples are widely used in current applied econometric practice. Despite this dominance, there is little formal
large-sample theory for estimation and inference. This paper provides such a foundation. We develop a complete, rigorous,
and easily-interpretable asymptotic distribution theory for the “large number of clusters” framework. Our theory allows
heterogeneous andgrowing cluster sizes, but requires that thenumber of clustersG growswith sample sizen. Our core theory
provides a weak law of large numbers (WLLN), central limit theorem (CLT), and consistent clustered variance estimation
for clustered sample means. We also provide uniform laws of large numbers and uniform consistent clustered variance
estimation appropriate for the distribution theory of nonlinear econometric estimators.

We apply this core theory to develop large sample distribution theory for standard econometric estimators: linear least-
squares, 2SLS, MLE, and GMM. For each, we provide conditions for consistent estimation, asymptotic normality, consistent
covariancematrix estimation, and asymptotic distributions for t-ratios andWald statistics. The theory provided in this paper
is the first formal theory for such econometric estimators allowing for clustered dependence.

Our assumptions areminimal, requiring only uniform integrability for theWLLN and squared uniform integrability for the
CLT and clustered covariance matrix estimators, plus the requirement that individual clusters are asymptotically negligible.
Our results show that there are inherent trade-offs in the conditions between the allowed degree of heterogeneity in cluster
sizes and the number of finite moments. These trade-offs are least restrictive for the WLLN, are more restrictive for the CLT
and consistent cluster covariance matrix estimation, and are strongest for CLTs applied to clustered second moments. These
trade-offs do not arise in the independent sampling context.
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We show that under clustering the convergence rate depends on the degree of clustered dependence. Convergence rates
may equal the square root of the sample size, the square root of the number of clusters, be a rate in between these two, or even
slower than both. Our assumptions and theory allow for these possibilities. This is in contrast to the existing literature, which
imposes specific rate assumptions. One useful finding is that the rate does not need to be known by the user; the asymptotic
distribution of t-ratios and Wald statistics does not depend on the underlying rate of convergence. This generalizes similar
results in Hansen (2007) and related results in Tabord-Meehan (2018).

This paper makes the following technical contributions. We show that the key to extending the classical WLLN and
CLT to cluster-level data is developing uniform integrability bounds for cluster sums. To allow for arbitrary within-cluster
dependence, this means that such bounds will be scaled by cluster sizes. This leads to bounds on the degree of cluster size
heterogeneity which can be allowed under cluster dependence. Some of the most difficult technical work presented here
is the extension of classical results to clustered covariance matrix estimators. These are not sample averages, but rather
average across clusters of squared cluster sums. Handling such estimators requires a new technical treatment.

Clustered dependence in econometrics dates to the work of Moulton (1986, 1990), Liang and Zeger (1986), and
in particular Arellano (1987), who proposed the popular cluster-robust covariance matrix estimator. The method was
popularized by the implementation in Stata by Rogers (1993) and the widely-cited paper of Bertrand et al. (2004). Surveys
can be found inWooldridge (2003), Cameron and Miller (2011, 2015), MacKinnon (2012, 2016), and textbook treatments in
Angrist and Pischke (2009) and Wooldridge (2010).

The “large G” asymptotic theory develops normal approximations under the assumption that G → ∞. The earliest
treatment appears in White (1984). Wooldridge (2010) asserts a distribution theory under the assumption that the cluster
sizes are fixed. C. Hansen (2007) provides two sets of asymptotic results, including both

√
G and

√
n convergence rates under

two distinct assumptions on the rate of convergence of the estimation variance. His results are derived under the assumption
that all clusters are identical in size. Carter et al. (2017) provided asymptotic results allowing for heterogeneous clusters,
but their results are limited by atypical regularity conditions. Independently of this paper, Djogbenou et al. (2018) have
provided a rigorous asymptotic theory for heterogeneous clusters, with similar but stronger regularity conditions than ours.
Their primary focus is theory for regression wild bootstrap, while our focus is regularity conditions for general econometric
estimators.

An alternative to the “large G” asymptotic is the “fixed G” framework, which leads to a non-normal inference theory.
Contributions to this literature include C. Hansen (2007), Bester et al. (2011), and Ibragimov and Müller (2010, 2016). A
related paper is Conley and Taber (2011) which provide an asymptotic theory under the assumption of a small number of
groups with policy changes. Canay et al. (2017) provide approximate randomization tests.

Small sample approaches to cluster robust inference include Donald and Lang (2007), Imbens and Kolesár (2016), and
Young (2016). Bootstrap approaches are provided by Cameron et al. (2008), and MacKinnon and Webb (2017, 2018).

A recent contribution which develops cluster-robust inference for GMM is Hwang (2017).
The organization of the paper is as follows. After Section 2, which introduces cluster sampling, Sections 3–8 cover the

core asymptotic theory, providing rigorous conditions for the WLLN (Section 3), rates of convergence (Section 4), the CLT
(Section 5), cluster-robust covariance matrix estimation (Section 6), the ULLN (Section 7), and the CLT for clustered second
moments (Section 8). Following this, we provide the distribution theory for the core econometric estimators, specifically
linear regression and 2SLS (Section 9), Maximum Likelihood (Section 10), and GMM (Section 11). Each of these latter sections
is written self-sufficiently, so they can be used directly by readers. Proofs of the core theorems are provided in the Appendix,
and proofs for the applications are provided in the Supplemental Appendix.

2. Cluster sampling

The observations are Xi ∈ Rp for i = 1, . . . , n. They are grouped into G mutually independent known clusters, indexed
g = 1, . . . ,G, where the gth cluster has ng observations. The clustering can be due to the sampling scheme, or done by
the researcher due to known correlation structures. The number of observations ng per cluster (the “cluster sizes”) may
vary across clusters. The total number of observations are n =

∑G
g=1 ng . It will also be convenient to double-index the

observations as Xgj for g = 1, . . . ,G and j = 1, . . . , ng .
As is conventional in the clustering literature, the only dependence assumption we make is that the observations are

independent across clusters, while the dependence within each cluster is unrestricted. Furthermore, we do not require
that the observations or clusters come from identical distributions. Thus our framework includes i.n.i.d (independent, not
necessarily identically distributed) as the special case ng = 1.

The notation and assumptions allow for linear panel data models with cluster-specific fixed effects. In this case the
observations Xgj should be viewed as clustered-demeaned observations. Another common application is linear panel data
models with both cluster-specific and time-specific fixed effects. Our assumptions do not cover this case as removing the
time effects will induce cross-cluster correlations. This is essentially “multiway” clustering and requires different methods.
See MacKinnon et al. (2017).

Our distributional framework is asymptotic as n and G simultaneously diverge to infinity. This is typically referred to as
the “large G” framework. Our assumptions, however, will allow G to diverge at a rate slower than n, by allowing the cluster
sizes ng to diverge. This is in contrast to the early asymptotic theory for clustering, which implicitly assumed that the cluster
sizes were bounded.
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Our theory assumes that the clusters are known, and observations are independent across clusters. This is a substantive
restriction. Alternatively, it may be possible to develop a distribution theory which allows weak dependence across clusters,
but we do not do so here.

A word on notation. For a vector a let ∥a∥ =
(
a′a
)1/2 denote the Euclidean norm. For a positive semi-definite matrix A let

λmin(A) and λmax(A) denote its smallest and largest eigenvalue, respectively. For a general matrix A let ∥A∥ =
√
λmax (A′A)

denote the spectral norm. For a positive semi-definite matrix A let A1/2 denote the symmetric square root matrix such that
A1/2A1/2

= A. We let C denote a generic positive constant, that may be different in different uses.

3. Weak law of large numbers

For our core theory (WLLN & CLT), we focus on the sample mean Xn =
1
n

∑n
i=1 Xi as an estimator of EXn. It will be

convenient to define the cluster sums

X̃g =

ng∑
j=1

Xgj

which are mutually independent under clustered sampling. The sample mean can then be written as

Xn =
1
n

G∑
g=1

X̃g .

We use the following regularity condition.

Assumption 1. As n → ∞

max
g≤G

ng

n
→ 0. (1)

Theorem 1 (WLLN for Clustered Means). If Assumption 1 holds and

lim
M→∞

sup
i
(E ∥Xi∥ 1 (∥Xi∥ > M)) = 0 (2)

then as n → ∞,Xn − EXn
 p

−→ 0. (3)

The condition (2) states that Xi is uniformly integrable.3 This condition is identical to the standard condition for theWLLN
for independent heterogeneous observations, and thus Theorem 1 is a direct generalization of the WLLN for i.n.i.d. samples.
(2) simplifies to E ∥Xi∥ < ∞ when the observations have identical marginal distributions. A sufficient condition allowing
for distributional heterogeneity is supi E ∥Xi∥

r < ∞ for some r > 1.
Assumption 1 states that each cluster size ng is asymptotically negligible. This implies G → ∞, so we do not explicitly

need to list the latter as an assumption. Assumption 1 allows for considerable heterogeneity in cluster sizes. It allows the
cluster sizes to grow with sample size, so long as the growth is not proportional. For example, it allows clusters to grow at
the rate ng = nα for 0 ≤ α < 1.

Assumption 1 is necessary for parameter estimation consistency while allowing arbitrary within-cluster dependence.
Otherwise a single cluster could dominate the sample average. To see this, suppose that there is a cluster ℓ such that
all observations within the cluster are identical, so that Xℓj = Zℓ for some non-degenerate random variable Zℓ, and that
this cluster violates Assumption 1, so that nℓ/n → c > 0. Suppose for all other clusters that EXgj = 0 and ng/n → 0.
Then Xn

p
−→ Zℓ and is inconsistent. Thus Assumption 1 is necessary for the WLLN (3) if we allow for unstructured cluster

heterogeneity.
Assumption 1 is equivalent to the condition∑G

g=1 n
2
g

n2 → 0. (4)

To see this, first observe that since
∑G

g=1 ng = n, the left-hand-side of (4) is smaller than maxg≤G ng/n → 0 under
Assumption 1. Thus Assumption 1 implies (4). Second,

max
g≤G

ng

n
=

(
max
g≤G

n2
g

n2

)1/2

≤

⎛⎝ G∑
g=1

n2
g

n2

⎞⎠1/2

→ 0

under (4). Thus (4) implies Assumption 1, so the two are equivalent.

3 A referee points out that the sup in (2) could be weakened to an average. However our later results will use uniform integrability conditions similar
to (2) so we state all results in this format.
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4. Rate of convergence

Under i.i.d. sampling the rate of convergence of the sample mean is n−1/2. Clustering can alter the rate of convergence.
In this section we explore possible rates of convergence. From the work of Hansen (2007) it has been understood that if the
dependence within each cluster is weak then the rate of convergence would be the i.i.d. rate n−1/2 but if the dependence
within each cluster is strong then the rate of convergence would be determined by the number of clusters: G−1/2. What we
now show is that the rate of convergence can be in between or even slower than these rates.

The convergence rate can be calculated as the standard deviation of the sample mean. For simplicity we focus on the
scalar case p = 1. The standard deviation of Xn is

sd
(
Xn
)

=
1
n

⎛⎝ G∑
g=1

var(̃Xg )

⎞⎠1/2

.

We now consider several examples. For our first four we take the case where the clusters are all the same size: ng = nα
for 0 < α < 1. In this case the number of clusters is G = n1−α .

We first consider a case where the convergence is the i.i.d. rate n−1/2.

Example 1. The observations are independent within each cluster and var(Xi) = 1. Then

var(̃Xg ) = ng = nα

and

sd
(
Xn
)

= n−1/2.

The n−1/2 rate extends to any case where the within-cluster dependence is weak, including autoregressive and moving
average dependence.

Our second example is a case where the convergence is determined by the number of clusters.

Example 2. The observations are identical within each cluster (e.g. perfectly correlated) and var(Xi) = 1. Then

var(̃Xg ) = n2
g = n2α

and

sd
(
Xn
)

= n−(1−α)/2
= G−1/2.

The assumption that the observations are perfectly correlated is not essential to obtain the G−1/2 rate. What is important
is that there is a common component to the observations within a cluster.

Our third example is a casewhere the convergence rate is in between the above two cases. Not surprisingly, it can obtained
by constructing strong but decaying within-cluster dependence.

Example 3. The observations are correlated within each cluster with var(Xi) = 1 and cov(Xgj, Xgl) = 1/|j − l|. Then

var(̃Xg ) ∼ ng log ng ∼ nα log n

and

sd
(
Xn
)

∼

√
log n/n.

Furthermore, Gvar
(
Xn
)

→ 0. Thus sd
(
Xn
)
converges at a rate in between n−1/2 and G−1/2.

Our next two examples are somewhat surprising. They are cases where the convergence rate is slower than both n−1/2

and G−1/2.

Example 4. The observations follow random walks within each cluster: Xgj = Xgj−1 + εgj with εgj i.i.d. (0, 1) and Xg0 = 0.
Then

var(̃Xg ) ∼ n3
g

and

sd
(
Xn
)

∼ nα−1/2.

Thus sd
(
Xn
)
converges at a rate slower than both n−1/2 and G−1/2.
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Example 5. The clusters are of two sizes, ng = 1 and ng = nα . There are G1 = n/2 of the first type and G2 = n1−α/2 of the
second type. (So G = G1 + G2 = O (n).) Within each cluster the observations are identical and have unit variances. var(̃Xg )
for the two types of clusters are 1 and n2α , respectively. Then

sd
(
Xn
)

=

(
G1 + G2n2α

n2

)1/2

=

(
1 + nα

2n

)1/2

= O
(
n−(1−α)/2) .

Thus sd
(
Xn
)
converges at a rate slower than both n−1/2 and G−1/2.

The final example illustrates the importance of considering heterogeneous cluster sizes. The reasonwhy the convergence
rate is slower than both n−1/2 andG−1/2 is because the number of clusters is determined by the large number of small clusters,
but the convergence rate is determined by the (relatively) small number of large clusters.

What we have seen is that the convergence rate sd
(
Xn
)
can equal the square root of sample size n−1/2, can equal the

square root of the number of groups G−1/2, can be in between G−1/2 and n−1/2, or can be slower than both n−1/2 and G−1/2.
When Xn is a vector, it is likely that its elements converge at different rates since they can have different within-cluster

correlation structures. For example, some variables could be independent within clusters while others could be identical
within clusters.

These examples show that under cluster dependence the convergence rate is context-dependent and variable-dependent,
and it is therefore important to allow for general rates of convergence and to not impose arbitrary rates in asymptotic
analysis.

5. Central limit theory

Under i.i.d. sampling the standard deviation of the sample mean is of order O(n−1/2), so
√
n is the appropriate scaling to

obtain the central limit theorem (CLT). As discussed in the previous section, clustering can alter the rate of convergence, so
it is essential to standardize the sample mean by the actual variance rather than an assumed rate. The variance matrix of
√
nXn is

Ωn = E
(
n
(
Xn − EXn

) (
Xn − EXn

)′)
=

1
n

G∑
g=1

E
((̃

Xg − EX̃g
) (̃

Xg − EX̃g
)′)
.

We use the following regularity condition.

Assumption 2. For some 2 ≤ r < ∞(∑G
g=1 n

r
g

)2/r
n

≤ C < ∞, (5)

max
g≤G

n2
g

n
→ 0, (6)

as n → ∞.

Theorem 2 (CLT). If for some 2 ≤ r < ∞ Assumption 2 holds,

lim
M→∞

sup
i

(
E ∥Xi∥

r 1 (∥Xi∥ > M)
)

= 0, (7)

and

λn = λmin (Ωn) ≥ λ > 0, (8)

then as n → ∞

Ω−1/2
n

√
n
(
Xn − EXn

) d
−→ N

(
0, Ip

)
. (9)

Theorem 2 provides a CLT for cluster samples which generalizes the classic CLT for independent heterogeneous samples.
The latter holds with r = 2, ng = 1 and G = n.

Assumption 2 and (7) are stronger than Assumption 1 and (2), and thus the conditions for the CLT imply those for the
WLLN.

The condition (7) states that ∥Xi∥
r is uniformly integrable.When r = 2 this is similar to the Lindeberg condition for the CLT

under independent heterogeneous sampling. (7) simplifies to E ∥Xi∥
r < ∞ when the observations have identical marginal

distributions. A sufficient condition allowing for distributional heterogeneity is supi E ∥Xi∥
s < ∞ for some s > r ≥ 2.
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Assumption 2 (5) is a restriction on the cluster sizes. It involves a trade-off with the number of moments r . It is least
restrictive for large r , and more restrictive for small r . As r → ∞ it approaches maxg≤G n2

g/n = O(1), which is implied by
Assumption 2 (6).

Assumption 2 allows for growing and heterogeneous cluster sizes. For example, it allows clusters to grow uniformly at
the rate ng = nα for 0 ≤ α ≤ (r −2)/2(r −1). (Note that this requires the cluster sizes to be bounded if r = 2.) It also allows
for only a small number of clusters to grow. For example, suppose that ng = n (bounded) for G − K clusters and ng = Gα/2
for K clusters, with K fixed. Then Assumption 2 holds for any α < 1 and r ≥ 2.

Assumption 2 (5) is implied by

max
g≤G

ng

n(r−2)/2(r−1) ≤ C (10)

and they are equivalent when the cluster sizes are homogeneous. In general, however, (5) is less restrictive than (10). For
example, when r = 2, (10) requires the cluster sizes to be bounded,while (5) does not. (Consider the heterogeneous example
given in the previous paragraph. This satisfies (5) but not (10) when r = 2.)

The condition (8) specifies that var
(√

nα′Xn
)
does not vanish for any conformable vectorα ̸= 0. This excludes degenerate

cases and perfect negative within-cluster correlation. In general, if Xi is non-degenerate then (8) is not restrictive as there is
no reasonable setting where it will be violated. If Xn converges at rate n−1/2 then λn = O(1) but when Xn converges at rate
slower than n−1/2 then λn will actually diverge with n. It should also bementioned that condition (8) allows the components
ofΩn to converge at different rates.

Our proof of Theorem 2 actually uses the conditions(∑G
g=1 n

r
g

)2/r
nλn

≤ C < ∞ (11)

and

max
g≤G

n2
g

nλn
→ 0 (12)

instead of (5)–(8). (11)–(12) is weaker than (5)–(8) when λn diverges to infinity (which occurs when Xn converges at a rate
slower than n−1/2). Since the sequence λn is unknown in an application it is difficult to interpret the assumptions (11)–(12).
Hence we prefer the assumptions (5)–(8).

The conditions (11)–(12) may be stronger than necessary when within-cluster dependence is weak, but are necessary
under strong within-cluster dependence. To see this, suppose that all observations within a cluster are identical, so that
Xgj = Zg and Zg has a finite variance but no higher moments. Then the Lindeberg condition for the CLT can be simplified to

G∑
g=1

n2
g

nλn
E
(Zg2 1(Zg2 ≥

nλnε
n2
g

))
→ 0

for all ε > 0. Each term in the sum must limit to zero, which requires (11)–(12) with r = 2.
We now compare our conditions with those of Djogbenou et al. (2018). Their Assumption 3 states (in our notation) for

r ≥ 4

max
g≤G

ng

n(r−2)/2(r−1)λ
r/2(r−1)
n

= o(1). (13)

Eq. (13) implies and is stronger than (11). Calculations similar to those in our appendix show that λn ≤ O
(
maxg ng

)
= O(n).

So (13) also implies(
max
g≤G

n2
g

nλn

)1/2

= max
g≤G

ng

n(r−2)/2(r−1)λ
r/2(r−1)
n

(
λn

n

)1/2(r−1)

= o (1)

which is (12). Thus our conditions (11)–(12) are less restrictive than their condition (13), and do not require r ≥ 4.

6. Cluster-robust variance matrix estimation

We now discuss cluster-robust covariance matrix estimation.
We first consider the case where Xi is mean zero (or equivalently that the mean is known). In this case the covariance

matrix equals

Ωn =
1
n

G∑
g=1

E
(̃
Xg X̃ ′

g

)
.
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In this case a natural estimator is

Ω̃n =
1
n

G∑
g=1

X̃g X̃ ′

g .

Theorem 3. Under the assumptions of Theorem 2, if in addition EXi = 0 then as n → ∞

Ω−1/2
n Ω̃nΩ

−1/2
n

p
−→ Ip (14)

and

Ω̃−1/2
n

√
nXn

d
−→ N

(
0, Ip

)
. (15)

Theorem 3 shows that the cluster-robust covariance matrix estimator is consistent, and replacing the covariance matrix
in the CLT with the estimated covariance matrix does not affect the asymptotic distribution. Implications of (15) are that
cluster-robust t-ratios are asymptotically standard normal, and that cluster-robust Wald statistics are asymptotically chi-
square distributed with p degrees of freedom.

Construction of practical covariancematrix estimators is context-specific, depending on themean structure. For example,
suppose that µ = EXi does not vary across observations. In this case we can write

Ωn =
1
n

G∑
g=1

E
(̃
Xg X̃ ′

g

)
−

1
n

G∑
g=1

n2
gµµ

′.

The natural estimator for µ is Xn and that forΩn is

Ω̂n =
1
n

G∑
g=1

X̃g X̃ ′

g −
1
n

G∑
g=1

n2
gXnX

′

n.

Theorem 4. Under the assumptions of Theorem 2, if in addition µ = EXi does not vary across observations, then as n → ∞

Ω−1/2
n Ω̂nΩ

−1/2
n

p
−→ Ip (16)

and

Ω̂−1/2
n

√
n
(
Xn − µ

) d
−→ N

(
0, Ip

)
. (17)

7. Uniform laws of large numbers

Now consider a uniformWLLN. Consider functions f (x, θ ) ∈ Rk indexed on θ ∈ Θ whereΘ is compact. Define the sample
mean

f n(θ ) =
1
n

n∑
i=1

f (Xi, θ ).

The following result is an application of Theorem 3 of Andrews (1992).

Theorem 5 (ULLN for Clustered Means).. Suppose that Assumption 1 holds and for each θ ∈ Θ

lim
M→∞

sup
i
(E ∥f (Xi, θ )∥ 1 (∥f (Xi, θ )∥ > M)) = 0. (18)

Suppose as well that for each θ1, θ2 ∈ Θ

∥f (x, θ1) − f (x, θ2)∥ ≤ A(x)h (∥θ1 − θ2∥) (19)

where h(u) ↓ 0 as u ↓ 0 and supi EA(Xi) ≤ C. Then Ef n(θ ) is continuous in θ uniformly over θ ∈ Θ and n ≥ 1, and as n → ∞

sup
θ∈Θ

f n(θ ) − Ef n(θ )
 p

−→ 0. (20)

We also consider a uniform law for the clustered variance. Setµ(θ ) = Ef (Xi, θ ) so that it does not vary across observations.
The variance of

√
nf n(θ ) is

Ωn(θ ) = E
(
n
(
f n(θ ) − Ef n(θ )

) (
f n(θ ) − Ef n(θ )

)′)
=

1
n

G∑
g=1

Ẽfg (θ )̃fg (θ ) −
1
n

G∑
g=1

n2
gµ(θ )µ(θ )

′
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where f̃g (θ ) =
∑ng

j=1 f (Xgj, θ ) are the cluster sums. An appropriate estimator forΩn(θ ) is

Ω̂n(θ ) =
1
n

G∑
g=1

f̃g (θ )̃fg (θ ) −
1
n

G∑
g=1

n2
g f n(θ )f n(θ )

′.

In practice, a simpler estimator

Ω̃n(θ ) =
1
n

G∑
g=1

f̃g (θ )̃fg (θ )′

is often used if µ(θ0) = 0 for θ0 ∈ interior (Θ) and θ̂
p

−→ θ0 for some estimator θ̂ .
The following result is an extension of Theorem 5 to the case of clustered variance estimators. It also relies on Theorem

3 of Andrews (1992).

Theorem 6 (ULLN for Clustered Variance).. Suppose that Assumption 2 holds with r = 2, µ(θ ) = Ef (Xi, θ ) does not vary across i,
for each θ ∈ Θ ,

lim
M→∞

sup
i

(
E ∥f (Xi, θ )∥2 1 (∥f (Xi, θ )∥ > M)

)
= 0, (21)

and for each θ1, θ2 ∈ Θ (19) holds with supi EA(Xi)2 ≤ C. Then as n → ∞

sup
θ∈Θ

Ω̂n(θ ) −Ωn(θ )
 p

−→ 0. (22)

If µ(θ ) = 0, then as n → ∞

sup
θ∈Θ

Ω̃n(θ ) −Ωn(θ )
 p

−→ 0. (23)

8. Central limit theorem for clustered second moments

Although our primary focus is the samplemean, the core theory can be extended to statisticswhich are not samplemeans.
In this section, we focus on the vectorized variance estimators

f G =
1
n

G∑
g=1

f̃g

where

f̃g = X̃g ⊗ X̃g

or

f̃g =
(̃
Xg − ngXn

)
⊗
(̃
Xg − ngXn

)
.

The WLLN for f G holds by Theorem 3 (14) and Theorem 4 (16), and the ULLN for f G holds by Theorem 6. However, the CLT
given in Theorem 2 cannot be applied to f G because f G cannot be written as the sample mean over i. We provide the CLT
for f G below. This is useful to establish asymptotic distributions of estimators in a non-standard setting. For example, the
asymptotic distribution of the generalized method of moments (GMM) estimators depends on the limiting distribution of
the weight matrix when the moment condition is misspecified (Hall and Inoue, 2003; Lee, 2014; Hansen and Lee, 2018).

Similar to the sample mean, the convergence rate of f G can vary under cluster dependence. Consider f̃g = X̃g ⊗ X̃g and
assume p = 1 for simplicity. The standard deviation of f G is

sd
(
f G
)

=
1
n

⎛⎝ G∑
g=1

var
(̃
Xg X̃g

)⎞⎠1/2

=
1
n

⎛⎝ G∑
g=1

ng∑
j=1

ng∑
l=1

var
(
XgjXgl

)⎞⎠1/2

.

Under i.i.d. sampling sd
(
f G
)

= O
(
n−1/2

)
. Under the Examples 1 and 2 in Section 4, the convergence rate is G−1/2.

Define the variance matrix of
√
nf G as

Ωn = E
(
n
(
f G − Ef G

) (
f G − Ef G

)′)
=

1
n

G∑
g=1

E
((̃

fg − Ẽfg
) (̃

fg − Ẽfg
)′)
.

We use the following regularity condition.
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Assumption 3. For some 2 ≤ r < ∞(∑G
g=1 n

2r
g

)2/r
n

≤ C < ∞, (24)

max
g≤G

n4
g

n
→ 0, (25)

as n → ∞.

Note that Assumption 3 is a strengthening of Assumption 2.

Theorem 7 (CLT for Clustered Variance). For some 2 ≤ r < ∞ Assumption 3 holds,

lim
M→∞

sup
i

(
E ∥Xi∥

2r 1 (∥Xi∥ > M)
)

= 0, (26)

and

λn = λmin (Ωn) ≥ λ > 0 (27)

then as n → ∞

Ω−1/2
n

√
n
(
f G − Ef G

) d
−→ N

(
0, Iq

)
(28)

where q = p2.

Finally we provide a CLT combining the previous results. For Yi ∈ Rs, i = 1, . . . , n, obtained by cluster sampling, let ψ̃g
be the stacked vector

ψ̃g =

⎛⎝ Ỹg

X̃g

X̃g ⊗ X̃g

⎞⎠
or

ψ̃g =

⎛⎝ Ỹg

X̃g(̃
Xg − ngXn

)
⊗
(̃
Xg − ngXn

)
⎞⎠

and ψG = n−1∑G
g=1 ψ̃g . Let the variance matrix of

√
nψG be

Ωn = E
(
n
(
ψG − EψG

) (
ψG − EψG

)′)
.

The following Corollary provides the CLT for the joint process. Since it immediately follows from Theorems 2 and 7, the proof
is omitted.

Corollary 1. If for some 2 ≤ r < ∞ Assumption 3 holds,

lim
M→∞

sup
i

(
E ∥Yi∥

r 1 (∥Yi∥ > M)
)

= 0,

lim
M→∞

sup
i

(
E ∥Xi∥

2r 1 (∥Xi∥ > M)
)

= 0,

and

λmin (Ωn) ≥ λ > 0,

then as n → ∞

Ω−1/2
n

√
n
(
ψG − EψG

) d
−→ N

(
0, Iq

)
where q = s + p + p2.

9. Linear regression and two-stage least squares

It is useful to use cluster-level notation. Let yg = (yg1, . . . , ygng )
′, X g = (xg1, . . . , xgng )′ and Zg = (zg1, . . . , zgng )′ denote

an ng × 1 vector of dependent variables, ng × k matrix of regressors, and ng × l matrix of instruments for the gth cluster. A
linear model can be written using cluster notation as

yg = X gβ + eg , (29)
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X g = Zgγ + ug , (30)
E
(
Z ′

geg
)

= 0

where eg is a ng × 1 error vector. The case of linear regression holds as the special case where Zg = X g and l = k (so that
(30) becomes identity). Assume l ≥ k. (29) is the structural equation and (30) is the first-stage equation.

The two-stage least squares (2SLS) estimator for β can be written as

β̂ =

⎛⎜⎝ G∑
g=1

X ′

gZg

⎛⎝ G∑
g=1

Z ′

gZg

⎞⎠−1
G∑

g=1

Z ′

gX g

⎞⎟⎠
−1⎛⎜⎝ G∑

g=1

X ′

gZg

⎛⎝ G∑
g=1

Z ′

gZg

⎞⎠−1
G∑

g=1

Z ′

gyg

⎞⎟⎠ .
We first show consistency of β̂. Define

Qn =
1
n

G∑
g=1

E
(
Z ′

gX g
)
,

Wn =
1
n

G∑
g=1

E
(
Z ′

gZg
)
.

Theorem 8. If Assumption 1 holds, Qn has full rank k, λmin(Wn) ≥ C > 0, and either

1. (yi, xi, z i) have identical marginal distributions with finite second moments;
or

2. For some r > 2, supi E |yi|r < ∞, supi E ∥xi∥r < ∞, and supi E ∥z i∥r < ∞;

then as n → ∞, β̂
p

−→ β.

Next we provide the asymptotic distribution. Define

Ωn =
1
n

G∑
g=1

E
(
Z ′

gege
′

gZg
)
,

Vn =
(
Q ′

nW
−1
n Qn

)−1
Q ′

nW
−1
n ΩnW−1

n Qn
(
Q ′

nW
−1
n Qn

)−1
.

The residuals for the gth cluster are

êg = yg − X g β̂.

Define

Ω̂n =
1
n

G∑
g=1

Z ′

ĝeĝe
′

gZg ,

Q̂n =
1
n

G∑
g=1

Z ′

gX g ,

Ŵn =
1
n

G∑
g=1

Z ′

gZg .

The variance estimator is

V̂n = dn
(
Q̂ ′

nŴ
−1
n Q̂n

)−1
Q̂ ′

nŴ
−1
n Ω̂nŴ−1

n Q̂n
(
Q̂ ′

nŴ
−1
n Q̂n

)−1
.

with dn a possible finite-sample degree-of-freedom adjustment. For example, Hansen (2007) proposed dn = G/(G − 1) for
the regression case (under homogeneous cluster sizes), and Stata sets

dn =

(
n − 1
n − k

)(
G

G − 1

)
for the OLS and 2SLS estimators under cluster option.

Theorem9. Suppose that Assumption2 holds for some2 ≤ r ≤ s < ∞, Qn has full rank k,λmin(Wn) ≥ C > 0,λmin(Ωn) ≥ λ > 0,
supi E |yi|2s < ∞, supi E ∥xi∥2s < ∞, and supi E ∥z i∥2s < ∞, and either
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1. (yi, xi, z i) have identical marginal distributions; or
2. r < s;

then, for any sequence of full-rank k × q matrices Rn, as n → ∞(
R′

nVnRn
)−1/2 R′

n

√
n
(̂
β − β

) d
−→ N

(
0, Iq

)
, (31)(

R′

nVnRn
)−1/2 R′

nV̂nRn
(
R′

nVnRn
)−1/2 p

−→ Iq, (32)

and (
R′

nV̂nRn
)−1/2

R′

n

√
n
(̂
β − β

) d
−→ N

(
0, Iq

)
. (33)

The standard errors for R′
nβ̂ can be obtained by taking the square roots of the diagonal elements of n−1R′

nV̂nRn.

10. (Pseudo) maximum likelihood

Suppose that we observe a sequence of random vectors Xi ∈ Rp, i = 1, . . . , n with the same marginal distributions
from a density f (x, θ) where θ ∈ Rk. Let X g = (Xg1, . . . , Xgng )

′ be a ng × p matrix for each cluster. For the observations in
the cluster g , let fg (X g , θ0) be the joint density. Since the observations within the same cluster need not be independent,
fg (X g , θ0) ̸=

∏ng
i=1 f (Xgi, θ0) in general. This also implies that fg (X g , θ0) ̸= fh(Xh, θ0) for g ̸= h. Given specification of

fg (X g , θ0), the maximum likelihood estimator (MLE) can be obtained as the maximizer of

G∑
g=1

log fg (X g , θ).

However, the joint density fg (X g , θ) may be difficult to specify in practice. A simpler alternative is to use a pseudo-likelihood∏ng
i=1 f (Xgi, θ0) for the joint density fg (X g , θ0), and specify the log likelihood function as

Ln(θ ) =

G∑
g=1

ng∑
j=1

log f (Xgj, θ).

Define the pseudo-MLE as

θ̂ = argmax
θ∈Θ

Ln(θ).

This estimator is also called the partial (or pooled) MLE (Wooldridge, 2010).
This estimator is the standard implementation ofMLE under clustered dependence. To our knowledge there is no existing

distribution theory for this standard estimator.
We first show consistency of θ̂. The following is based on Theorem 2.1 of Newey and McFadden (1994).

Theorem 10. If Assumption 1 holds,

1. Xi have identical marginal distributions with the density f (x, θ0) and θ0 ∈ Θ , which is compact,
2. if θ ̸= θ0 then f (x, θ) ̸= f (x, θ0),
3. E[supθ∈Θ |log f (Xi, θ)|] < ∞,
4. for each θ1, θ2 ∈ Θ ,

∥log f (x, θ1) − log f (x, θ2)∥ ≤ A(x)h (∥θ1 − θ2∥)

where h(u) ↓ 0 as u ↓ 0 and EA(Xi) ≤ C,

Then as n → ∞, θ̂
p

−→ θ0.

Next we show the asymptotic distribution. Define

Hn(θ) =
1
n

n∑
i=1

E
[
∂2

∂θ∂θ′
log f (Xi, θ)

]
,

Ωn(θ) =
1
n

G∑
g=1

E

⎛⎝ ng∑
j=1

∂

∂θ
log f (Xgj, θ)

⎞⎠⎛⎝ ng∑
j=1

∂

∂θ′
log f (Xgj, θ)

⎞⎠ ,
Vn = Hn(θ0)−1Ωn(θ0)Hn(θ0)−1.
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Define the sample versions

Ĥn(θ) =
1
n

n∑
i=1

∂2

∂θ∂θ′
log f (Xi, θ),

Ω̂n(θ) =
1
n

G∑
g=1

⎛⎝ ng∑
j=1

∂

∂θ
log f (Xgj, θ)

⎞⎠⎛⎝ ng∑
j=1

∂

∂θ′
log f (Xgj, θ)

⎞⎠ .
The variance estimator is

V̂n = Ĥn (̂θ)−1Ω̂n (̂θ)Ĥn (̂θ)−1.

Note that the information matrix equality does not hold because
∑ng

j=1 log f (Xgj, θ0) ̸= fg (X g , θ0) in general.

Theorem 11. In addition to the assumptions of Theorem 10, Assumption 2 holds with r = 2,

1. θ0 ∈ interior(Θ),
2. for some neighborhood N of θ0,

(a) f (x, θ) is twice continuously differentiable and f (x, θ) > 0,
(b)

∫
supθ∈N

 ∂
∂θ

log f (x, θ)
 dx < ∞,

(c) E
 ∂
∂θ

log f (Xi, θ)
2 < ∞,

(d) E supθ∈N

 ∂2

∂θ∂θ′ log f (Xi, θ)
2 < ∞,

(e) and for each θ1, θ2 ∈ N , ∂2

∂θ∂θ′
log f (x, θ1) −

∂2

∂θ∂θ′
log f (x, θ2)

 ≤ A(x)h (∥θ1 − θ2∥)

where h(u) ↓ 0 as u ↓ 0 and EA(Xi) ≤ C,

3. λmin(Hn(θ0)) ≥ C > 0,
4. λmin(Ωn(θ0)) ≥ λ > 0,

then for any sequence of full-rank k × q matrices Rn, as n → ∞(
R′

nVnRn
)−1/2 R′

n

√
n
(̂
θ − θ0

) d
−→ N

(
0, Iq

)
, (34)

(
R′

nVnRn
)−1/2 R′

nV̂nRn
(
R′

nVnRn
)−1/2 p

−→ Iq, (35)

and (
R′

nV̂nRn
)−1/2

R′

n

√
n
(̂
θ − θ0

) d
−→ N

(
0, Iq

)
. (36)

The standard errors for R′
nβ̂ can be obtained by taking the square roots of the diagonal elements of n−1R′

nV̂nRn.

11. Generalized method of moments

Suppose that we observe a sequence of random vectors Xi ∈ Rp, i = 1, . . . , n from cluster sampling. A known moment
function is given bym(Xi, θ) where m(·, ·) is l × 1 and θ is k × 1. Define the cluster sum as

m̃g (θ) =

ng∑
j=1

m(Xgj, θ).

An unconditional moment model in cluster notation is given by

Em̃g (θ0) = 0. (37)

We assume that θ0 is identified and l > k so the moment model is over-identified. Write the sample mean of the moment
function as

mn(θ) =
1
n

n∑
i=1

m(Xi, θ).
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Since (37) holds for all g = 1, . . . ,G, the usual unconditional moment condition Emn(θ0) = 0 follows. The generalized
method of moments (GMM) estimator is given by

θ̂ = argmin
θ∈Θ

n · mn(θ)′Ŵ−1
n mn(θ) (38)

where Ŵ−1
n is an l × l positive definite weight matrix, which may or may not depend on an estimated parameter. Typically,

the weight matrix is obtained by plugging in a preliminary consistent estimator, θ̃, so that Ŵ−1
n = Ŵn (̃θ)−1.

We consider two forms of GMM estimator. The first one is based on a non-clustered weight matrix, which takes the
form of

Ŵn(θ) =
1
n

n∑
i=1

v(Xi, θ)v(Xi, θ)′ (39)

for some l × 1 vector v(x, θ). This includes the conventional one-step and two-step GMM estimators. For 2SLS, v(Xi, θ) = Zi
where Zi is an l×1 vector of instruments. The efficient two-step GMMuses v(Xi, θ) = m(Xi, θ) or v(Xi, θ) = m(Xi, θ)−mn(θ).
The conventional efficient weight matrix, however, does not provide efficiency anymore under cluster sampling because a
weight matrix of the form of (39) is not consistent for the variance matrix of

√
n(mn(θ) − Emn(θ)) in general.

The second is based on the clustered efficient weight matrix, which leads to the two-step efficient GMM under cluster
sampling. The weight matrix takes the form of

Ŵn(θ) =
1
n

G∑
g=1

m̃g (θ)m̃g (θ)′ −
1
n

G∑
g=1

n2
gmn(θ)mn(θ)′. (40)

Alternatively, the uncentered version of Ŵn(θ) and Ω̂n(θ) can be used to obtain the efficient two-step GMM estimator but
the centered version is generally recommended. For more discussion, see Hansen (2018).

Since we assume that the weight matrix depends on a consistent preliminary estimator, we exclude the continuously
updating (CU) GMM estimator in our analysis. Whenever possible, we omit the dependence of the weight matrices on θ̃ and
write Ŵn = Ŵn (̃θ). Define Wn = EŴn(θ0).

We first show consistency of the GMM estimator. The following is based on Theorem 2.1 of Newey andMcFadden (1994).

Theorem 12. If Assumption 1 holds,

1. Θ is compact,
2. θ0 is the unique solution to Emn(θ) = 0,
3. for each θ ∈ Θ , either Xi have identical marginal distributions with E ∥m(Xi, θ)∥ < ∞, or supi E ∥m(Xi, θ)∥r < ∞ for

some r > 1,
4. for each θ1, θ2 ∈ Θ

∥m(x, θ1) − m(x, θ2)∥ ≤ A(x)h (∥θ1 − θ2∥)

where h(u) ↓ 0 as u ↓ 0 and EA(Xi) ≤ C,
5. λmin(Wn) ≥ C > 0,
6. Ŵ−1

n − W−1
n

p
−→ 0,

then as n → ∞, θ̂
p

−→ θ0.

Primitive conditions under which Condition 6 of Theorem 12 holds can be found given the choice of the weight matrix.
For simplicity, we assume that if the conventional weight matrix is used then either v(Xi, θ) = m(Xi, θ) or v(Xi, θ) =

m(Xi, θ) − mn(θ). If the clustered weight matrix is used then it takes the form of (40). The conditions of Theorem 13 are
sufficient for Condition 6 of Theorem 12 to hold.

To show the asymptotic distribution of the GMM estimator, define

Qn(θ) =
1
n

n∑
i=1

E
[
∂

∂θ′
m(Xi, θ)

]
,

Ωn(θ) =
1
n

G∑
g=1

Em̃g (θ)m̃g (θ)′,

Vn = (Q ′

nW
−1
n Qn)−1Q ′

nW
−1
n ΩnW−1

n Qn(Q ′

nW
−1
n Qn)−1,

where Qn = Qn(θ0) and Ωn = Ωn(θ0). If the clustered efficient weight matrix (40) is used, then the asymptotic variance
matrix simplifies to

Vn = (Q ′

nΩ
−1
n Qn)−1.
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Define the sample versions as

Q̂n(θ) =
1
n

n∑
i=1

∂

∂θ′
m(Xi, θ),

Ω̂n(θ) =
1
n

G∑
g=1

m̃g (θ)m̃g (θ)′ −
1
n

G∑
g=1

n2
gmn(θ)mn(θ)′

and let Q̂n = Q̂n (̂θ) and Ω̂n = Ω̂n (̂θ). The variance estimator is

V̂n = (Q̂ ′

nŴ
−1
n Q̂n)−1Q̂ ′

nŴ
−1
n Ω̂nŴ−1

n Q̂n(Q̂ ′

nŴ
−1
n Q̂n)−1,

if Ŵn is given by (39) and

V̂n = (Q̂ ′

nΩ̂
−1
n Q̂n)−1,

if Ŵn is given by (40), i.e., Ŵn = Ω̂n.
The over-identifying restrictions test (the J test, hereinafter) is a test based on the GMM criterion to test whether the

moment model is correctly specified or not, i.e., Em̃g (θ0) = 0. An implication of cluster sampling is that the conventional J
test statistic will not have a standard chi-square asymptotic distribution because the conventional efficient weight matrix is
not consistent for the inverse of the variance matrix of the moment function. The GMM criterion (38) based on the clustered
efficient weight matrix (40) evaluated at the estimator is the robust J test statistic. Define

Jn (̂θ) = n · mn (̂θ)′Ŵ−1
n mn (̂θ).

Theorem 13. In addition to the assumptions of Theorem 12, if Assumption 2 holds with r = 2,

1. θ0 ∈ interior(Θ),
2. for some neighborhood N of θ0,

(a) m(Xi, θ) is continuously differentiable with probability approaching one,
(b) either Xi have identical marginal distributions with E supθ∈N ∥m(Xi, θ)∥2 < ∞;

or E supi supθ∈N ∥m(Xi, θ)∥r < ∞ for some r > 2,
(c) E supi supθ∈N

 ∂

∂θ′ m(Xi, θ)
2 < ∞

(d) for each θ1, θ2 ∈ N ∂∂θm(x, θ1) −
∂

∂θ
m(x, θ2)

 ≤ A(x)h (∥θ1 − θ2∥)

where h(u) ↓ 0 as u ↓ 0 and supi EA(Xi) ≤ C,

3. λmin(Wn(θ0)) ≥ C > 0,
4. λmin(Ωn(θ0)) ≥ λ > 0,
5. Qn is full column rank,

then for any sequence of full-rank k × q matrices Rn, as n → ∞(
R′

nVnRn
)−1/2 R′

n

√
n
(̂
θ − θ0

) d
−→ N

(
0, Iq

)
, (41)

(
R′

nVnRn
)−1/2 R′

nV̂nRn
(
R′

nVnRn
)−1/2 p

−→ Iq, (42)

(
R′

nV̂nRn
)−1/2

R′

n

√
n
(̂
θ − θ0

) d
−→ N

(
0, Iq

)
, (43)

and

Jn (̂θ)
d

−→ χ2
l−k. (44)

The standard errors for R′
nβ̂ can be obtained by taking the square roots of the diagonal elements of n−1R′

nV̂nRn.
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Appendix A

We start with a useful technical result which states that if random variables are uniformly integrable then so are their
cluster averages, regardless of their joint dependence.

Lemma 1. For random vectors Xi set X̃m =
∑m

i=1 Xi. For r ≥ 1, if

lim
B→∞

sup
i

E
(
∥Xi∥

r 1 (∥Xi∥ > B)
)

= 0, (45)

then

lim
B→∞

sup
m

E
(m−1X̃m

r 1 (m−1X̃m
 > B

))
= 0. (46)

Proof of Lemma 1. The proof is based on the proof of Theorem 1 of Etemadi (2006). Eq. (45) implies that supi E ∥Xi∥
r

≤ C
for some C < ∞. By the Cr inequalitym−1X̃m

r =
1
mr


m∑
i=1

Xi


r

≤
1
m

m∑
i=1

∥Xi∥
r (47)

and hence

E
m−1X̃m

r ≤ C . (48)

Fix ε > 0. Find B ≥ (C/ε)2/r sufficiently large such that

sup
i

E
(
∥Xi∥

r 1
(
∥Xi∥ >

√
B
))

≤ ε, (49)

which is feasible under (45). Using (47),

E
(m−1X̃m

r 1 (m−1X̃m
 > B

))
≤

1
m

m∑
i=1

E
(
∥Xi∥

r 1
(m−1X̃m

 > B
))

=
1
m

m∑
i=1

E
(
∥Xi∥

r 1
(m−1X̃m

 > B
)
1
(
∥Xi∥ >

√
B
))

+
1
m

m∑
i=1

E
(
∥Xi∥

r 1
(m−1X̃m

 > B
)
1
(
∥Xi∥ ≤

√
B
))

≤
1
m

m∑
i=1

E
(
∥Xi∥

r 1
(
∥Xi∥ >

√
B
))

+ Br/2E1
(m−1X̃m

 > B
)

≤ ε +
E
m−1X̃m

r
Br/2

≤ 2ε

by (49), Markov’s inequality, (48), and Br/2
≥ C/ε. Since ε is arbitrary this implies (46). ■

The next Lemma is useful for establishing the WLLN and CLT for the vectorized clustered second moments.

Lemma 2. For random vectors Xi set X̃m =
∑m

i=1 Xi and f̃m = X̃m ⊗ X̃m or f̃m =
(̃
Xm − mXn

)
⊗
(̃
Xm − mXn

)
where

Xn = n−1∑n
i=1 Xi. For r ≥ 2, if (45) holds then

lim
B→∞

sup
m

E
(m−2 (̃fm − Ẽfm

)r/2 1 (m−2 (̃fm − Ẽfm
) > B

))
= 0. (50)

Proof of Lemma 2. The proof proceeds similar to that of Lemma 1. First consider f̃m = X̃m ⊗ X̃m. By the triangle inequality,
the Cr inequality, the fact that ∥X̃m ⊗ X̃m∥

r/2
= ∥X̃m∥

r , and (48),m−2 (̃fm − Ẽfm
)r/2 ≤

(m−2̃fm
+

m−2Ẽfm
)r/2

≤ 2r/2−1
(m−2̃fm

r/2 + E
m−2̃fm

r/2)
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≤ 2r/2−1
(m−1X̃m

r + E
m−1X̃m

r)
≤ 2r/2−1

(m−1X̃m
r + C

)
. (51)

Fix ε > 0. Find B ≥

(
2r−2C(1 +

√
1 + 23−rε)/ε

)4/r
sufficiently large such that

sup
i

E
(
∥Xi∥

r 1
(
∥Xi∥ > B1/4))

≤
ε

2r/2−1 , (52)

which is feasible under (45). Using (47) and (51),

E
(m−2 (̃fm − Ẽfm

)r/2 1 (m−2 (̃fm − Ẽfm
) > B

))
≤ 2r/2−1E

((m−1X̃m
r + C

)
1
(m−2 (̃fm − Ẽfm

) > B
))

= 2r/2−1 1
m

m∑
i=1

E
(
∥Xi∥

r 1
(m−2 (̃fm − Ẽfm

) > B
)
1
(
∥Xi∥ > B1/4))

+ 2r/2−1 1
m

m∑
i=1

E
(
∥Xi∥

r 1
(m−2 (̃fm − Ẽfm

) > B
)
1
(
∥Xi∥ ≤ B1/4))

+ 2r/2−1CE
(
1
(m−2 (̃fm − Ẽfm

) > B
))

≤ 2r/2−1 1
m

m∑
i=1

E
(
∥Xi∥

r 1
(
∥Xi∥ > B1/4))

+ 2r/2−1 (Br/4
+ C

)
E
(
1
(m−2 (̃fm − Ẽfm

) > B
))

≤ ε + 2r/2−1 (Br/4
+ C

) E m−2
(̃
fm − Ẽfm

)r/2
Br/2

≤ 2ε

by (52), Markov’s inequality, (48), and 2r−1(Br/4
+ C)C/Br/2

≤ ε using the discriminant. Since ε is arbitrary this implies (50).
Now consider f̃m =

(̃
Xm − mXn

)
⊗
(̃
Xm − mXn

)
. By Minkowski’s inequality, the Cr inequality, (47), and (48),

E
m−1 (̃Xm − mXn

)r = E

m−1
m∑
i=1

Xi − n−1
n∑

i=1

Xi


r

≤ E

(m−1
m∑
i=1

Xi

+

n−1
n∑

i=1

Xi


)r

≤ 2rC

and m−2 (̃fm − Ẽfm
)r/2 ≤

(m−2̃fm
+

m−2Ẽfm
)r/2

≤ 2r/2−1
(m−1 (̃Xm − mXn

)r + E
m−1 (̃Xm − mXn

)r)
≤ 23r/2−1

(
2−1

(
m−1

m∑
i=1

∥X∥
r
+ n−1

n∑
i=1

∥Xi∥
r

)
+ C

)
.

Given ε, find B ≥

(
23r−2C(1 +

√
1 + 23(1−r)ε)/ε

)4/r
sufficiently large such that

sup
i

E
(
∥Xi∥

r 1
(
∥Xi∥ > B1/4))

≤
ε

23r/2−1 ,

and proceed as above to show (50). This completes the proof. ■

Proof of Theorem 1.Without loss of generality assume EXi = 0. Fix ε > 0. Pick B sufficiently large so that

sup
g

E
(n−1

g X̃g1
(n−1

g X̃g
 > B

))
− E

(
n−1
g X̃g1

(n−1
g X̃g

 > B
)) ≤ ε (53)
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which is feasible by Lemma 1 with r = 1 under (2). Using the triangle inequality, Jensen’s inequality and (53),

E
Xn

 = E

1n
G∑

g=1

X̃g


≤ E

1n
G∑

g=1

(̃
Xg1

(n−1
g X̃g

 ≤ B
)
− E

(̃
Xg1

(n−1
g X̃g

 ≤ B
)))

+
1
n

G∑
g=1

E
(̃Xg1

(n−1
g X̃g

 > B
)
− E

(̃
Xg1

(n−1
g X̃g

 > B
)))

≤

⎛⎜⎝E

1n
G∑

g=1

(̃
Xg1

(n−1
g X̃g

 ≤ B
)
− E

(̃
Xg1

(n−1
g X̃g

 ≤ B
)))

2
⎞⎟⎠

1/2

+
1
n

G∑
g=1

ngε

=

⎛⎝ 1
n2

G∑
g=1

E
X̃g1

(n−1
g X̃g

 ≤ B
)
− E

(̃
Xg1

(n−1
g X̃g

 ≤ B
))2⎞⎠1/2

+ ε

≤

⎛⎝4B2

n2

G∑
g=1

n2
g

⎞⎠1/2

+ ε

≤ o(1) + ε.

The equality uses the assumption that the clusters are independent and thus uncorrelated and the fact
∑G

g=1 ng = n. The
third inequality uses the boundX̃g1

(n−1
g X̃g

 ≤ B
)
− E

(̃
Xg1

(n−1
g X̃g

 ≤ B
)) ≤ 2Bng .

The fourth inequality is (4). Since ε is arbitrary, E
Xn

 → 0. By Markov’s inequality, (3) follows. ■

Proof of Theorem 2.Without loss of generality we assume EXi = 0. Note that

Ω−1/2
n

√
nXn = Ω−1/2

n

G∑
g=1

n−1/2X̃g

We apply the multivariate Lindeberg–Feller central limit theorem (e.g. Hansen (2018) Theorem 6.15) since X̃g are
independent but not identically distributed. A sufficient condition for the CLT (9) is that for all ε > 0

1
nλn

G∑
g=1

E
(X̃g

2 1(X̃g
2 ≥ nλnε

))
→ 0 (54)

as n → ∞.
Fix ε > 0 and δ > 0. Pick B sufficiently large so that

sup
g

E
(n−1

g X̃g
r 1 (n−1

g X̃g
 > B

))
≤
δεr/2−1

C r/2 . (55)

which is feasible by Lemma 1 under (7). Pick n large enough so that

max
g≤G

ng

(nλnε)1/2
≤

1
B

(56)

which is feasible by (12). Thus

1
nλn

G∑
g=1

E
(X̃g

2 1(X̃g
2 ≥ nλnε

))
(57)

=
1

nλn

G∑
g=1

E

( X̃g
rX̃g
r−2 1

(X̃g
 ≥ (nλnε)1/2

))
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≤
1

nλn (nλnε)(r−2)/2

G∑
g=1

E
(X̃g

r 1 (X̃g
 ≥ (nλnε)1/2

))

≤
1

εr/2−1 (nλn)r/2

G∑
g=1

nr
gE
(n−1

g X̃g
r 1 (n−1

g X̃g
 ≥ B

))
≤

δ

C r/2

∑G
g=1 n

r
g

(nλn)r/2

≤ δ.

The second inequality is (56), the third is (55), and the final is (11). Since ε and δ are arbitrary we have established (54) and
hence (9). ■

Proof of Theorem 3. Fix δ > 0. Set ε = δ2/4p. Define X̃∗
g = Ω

−1/2
n X̃g and Ỹg = X̃∗

g 1
(X̃∗

g

2 ≤ nε
)
. Then

Ω̃∗

n =
1
n

G∑
g=1

X̃∗

g X̃
∗′

g

=
1
n

G∑
g=1

Ỹg Ỹ ′

g +
1
n

G∑
g=1

X̃∗

g X̃
∗′

g 1
(X̃∗

g

2 > nε
)
.

By the triangle inequality,

E
Ω̃∗

n − Ip
 ≤

1
n
E


G∑

g=1

(̃
Yg Ỹ ′

g − E
(̃
Yg Ỹ ′

g

)) (58)

+
2
n

G∑
g=1

E
(X̃∗

g

2 1(X̃∗

g

2 > nε
))
. (59)

An argument similar to (57) shows that for n sufficiently large (59) is bounded by 2δ. We now consider (58).
Using Jensen’s inequality, the assumption that the clusters are independent and thus uncorrelated, and the triangle

inequality, (58) is bounded by

1
n

⎛⎜⎝E


G∑

g=1

(̃
Yg Ỹ ′

g − E
(̃
Yg Ỹ ′

g

))
2
⎞⎟⎠

1/2

=
1
n

⎛⎝ G∑
g=1

E
Ỹg Ỹ ′

g − E
(̃
Yg Ỹ ′

g

)2⎞⎠1/2

≤
2
n

⎛⎝ G∑
g=1

E
Ỹg Ỹ ′

g

2⎞⎠1/2

. (60)

Using the bounds
Ỹg Ỹ ′

g

 ≤ nε and
Ỹg Ỹ ′

g

 ≤
X̃∗

g

2, we deduce
Ỹg Ỹ ′

g

2 ≤ nε
X̃∗

g

2. Thus (60) is bounded by

2ε1/2

⎛⎝1
n

G∑
g=1

E
X̃∗

g

2⎞⎠1/2

= 2ε1/2

⎛⎜⎝1
n
E


G∑

g=1

X̃∗

g


2
⎞⎟⎠

1/2

= 2ε1/2
(
nvar

(
X

∗

n

))1/2
= 2ε1/2

(
trIp
)1/2

= δ

The first equality holds because X̃∗
g are independent and mean zero, and the second and third use the definition of X

∗

n. The
final equality is ε = δ2/4p.

Together, we have shown that for n sufficiently large,

E
Ω̃∗

n − Ip
 ≤ 3δ

and hence (14) by Markov’s Inequality.
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By the continuous mapping theorem

Ω̃∗−1/2
n

p
−→ I−1/2

p = Ip

and Ω−1/4
n Ω̃∗−1/2

n Ω1/4
n − Ip

 =
Ω̃∗−1/2

n − Ip
 p

−→ 0.

Combined with Theorem 2 we find

Ω̃−1/2
n

√
nXn

= Ω̃−1/2
n Ω1/2

n Ω−1/2
n

√
nXn

= Ω−1/4
n Ω̃∗−1/2

n Ω1/4
n Ω−1/2

n

√
nXn

d
−→ N

(
0, Ip

)
This is (15). ■

Proof of Theorem 4. Since the estimator Ω̂n is invariant to µ, without loss of generality we assume µ = 0. In this case

Ω̂n = Ω̃n −
1
n

G∑
g=1

n2
gXnX

′

n.

Then by the triangle inequality, Theorem 3, Theorem 2, and (6),Ω−1/2
n Ω̂nΩ

−1/2
n − Ip


≤
Ω−1/2

n Ω̃nΩ
−1/2
n − Ip


+

⎛⎝ 1
n2

G∑
g=1

n2
g

⎞⎠Ω−1/2
n

√
nXn

2
≤ op(1).

This is (16). Eq. (17) follows as in the proof of (15). ■

Proof of Theorem 5. Define the cluster sums f̃g (θ ) =
∑ng

i=1 f (Xgi, θ ) so that f n(θ ) =
1
n

∑G
g=1 f̃g (θ ) where f̃g (θ ) are mutually

independent.
Andrews (1992, Theorem 3) shows that (20) holds ifΘ is totally bounded,1n

G∑
g=1

(̃
fg (θ ) − Ẽfg (θ )

) →p 0

and for all θ1, θ2 ∈ Θ ,̃fg (θ1) − f̃g (θ2)
 ≤ Agh (∥θ1 − θ2∥) (61)

where h(u) ↓ 0 as u ↓ 0 and 1
n

∑G
g=1 E

(
Ag
)

≤ A < ∞. The total boundedness condition holds by assumption and the WLLN
holds by Theorem 1 under Assumption 1 and (18), so it only remains to establish the Lipschitz condition (61). Indeed, using
the triangle inequality and (19)

̃fg (θ2) − f̃g (θ1)
 =


ng∑
j=1

(
f (Xgj, θ2) − f (Xgj, θ1)

)
≤

ng∑
j=1

f (Xgj, θ2) − f (Xgj, θ1)


≤

ng∑
j=1

A(Xgj)h (∥θ1 − θ2∥)

= Agh (∥θ1 − θ2∥)
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where Ag =
∑ng

j=1 A(Xgj). Notice that

1
n

G∑
g=1

E
(
Ag
)

=
1
n

G∑
g=1

ng∑
j=1

EA(Xgj) ≤ C

since supi EA(Xi) ≤ C . This verifies (61) and hence (20) holds. ■

Proof of Theorem 6.Without loss of generality, assume µ(θ ) = 0.
We first examine the casewith no estimatedmean (23). Andrews (1992, Theorem 3) shows that (23) holds if for all θ ∈ ΘΩ̃n(θ ) − EΩ̃n(θ )

 →p 0, (62)

and for all θ1, θ2 ∈ Θ ,̃fg (θ1 )̃fg (θ1)′ − f̃g (θ2 )̃f (θ2)′
 ≤ Agh(∥θ1 − θ2∥) (63)

with h(u) ↓ 0 as u ↓ 0 and 1
n

∑G
g=1 EAg ≤ A < ∞. We now establish (62) and (63).

Take (62). Fix θ ∈ Θ . For brevity, suppress the dependence of f̃g (θ ) on θ . Fix δ > 0. Set ε = (δ/C)2. Define
h̃g = f̃g1

(̃fg ≤
√
nε
)
. Then

Ω̃n(θ ) =
1
n

G∑
g=1

h̃g h̃′

g +
1
n

G∑
g=1

f̃g̃ f ′

g1
(̃fg > √

nε
)
.

By the triangle inequality

E
Ω̃n(θ ) − EΩ̃n(θ )

 =
1
n
E


G∑

g=1

(̃
hg h̃′

g − Eh̃g h̃′

g

) (64)

+
2
n

G∑
g=1

E
(̃fg2 1 (̃fg > √

nε
))
. (65)

Take (64). Assumption (21) and the Cr inequality allow us to deduce that

E
̃fg2 ≤ Cn2

g (66)

for some C < ∞. Using Jensen’s inequality, the assumption the clusters are independent and thus uncorrelated, the bounds̃hg
 ≤

√
nε and

̃hg
 ≤

̃fg, (66), (5) with r = 2 and the definition of ε, we obtain that (64) is bounded by

1
n

⎛⎜⎝E


G∑

g=1

(̃
hg h̃′

g − Eh̃g h̃′

g

)
2
⎞⎟⎠

1/2

≤
1
n

⎛⎝ G∑
g=1

E
̃hg

4⎞⎠1/2

≤ ε1/2C1/2

⎛⎝1
n

G∑
g=1

n2
g

⎞⎠1/2

≤ δ.

Take (65). Lemma 1 implies that
n−1

g f̃g
2 is uniformly integrable given Assumption (21). This means we can pick B

sufficiently large so that

sup
g

E
(n−1

g f̃g
2 1 (n−1

g f̃g
 > B

))
≤
δ

C
(67)

Pick n large enough so that

max
g≤G

ng

n1/2 ≤ max
g≤G

n2
g

n1/2 ≤

√
ε

B
which is feasible by (6). Then (65) is bounded by

2
n

G∑
g=1

E
(̃fg2 1 (n−1

g f̃g
 > B

))
≤

2
n

G∑
g=1

n2
g
δ

C
≤ 2δ,

using (5) and (67) with r = 2. We have shown that E
Ω̃n(θ ) − EΩ̃n(θ )

 ≤ 3δ. Since δ is arbitrary, by Markov’s inequality,
(62) is shown.
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Take (63). Fix any θ1, θ2 ∈ Θ . Set f̃g = supθ∈Θ
̃fg (θ ). Using the triangle inequality and Assumption (19)

̃fg (θ2) − f̃g (θ1)
 ≤

ng∑
j=1

A(Xgj)h (∥θ1 − θ2∥) .

Then ̃fg (θ1 )̃fg (θ1)′ − f̃g (θ2 )̃f (θ2)′
 ≤ 2̃fg

̃fg (θ2) − f̃ (θ1)


≤ 2̃fg

⎛⎝ ng∑
j=1

A(Xgj)

⎞⎠ h (∥θ1 − θ2∥) .

Hence (63) holds with Ag = 2̃fg
(∑ng

j=1 A(Xgj)
)
.

It remains to show that 1
n

∑G
g=1 EAg ≤ A < ∞. Assumption (21) and the Cr inequality allow us to deduce that Ẽf 2g ≤ Cn2

g .
Applying Holder’s inequality

EAg ≤ 2
ng∑
j=1

(
Ẽf 2g
)1/2 (

EA2(Xgj)
)1/2

≤ 2Cn2
g .

Hence

1
n

G∑
g=1

EAg ≤ 2C
1
n

G∑
g=1

n2
g ≤ 2C2

by Assumption (5) with r = 2. This establishes (63).
By showing (62) and (63) we have established (23).
The case with estimated mean (22) immediately follows from (23) and Theorem 5. ■

Proof of Theorem 7. Define

f̃ ∗

g = Ω−1/2
n f̃g

f
∗

G =
1
n

G∑
g=1

f̃ ∗

g .

Then

Ω−1/2
n

√
n
(
f G − Ef G

)
=

√
n
(
f
∗

G − Ef
∗

G

)
where nvar

(
f
∗

G

)
= Ip.

Since f̃ ∗
g are independent but not identically distributed,we apply themultivariate Lindeberg–Feller central limit theorem

(e.g. Hansen (2018) Theorem 6.15). Since var
(
√
nf

∗

G

)
= Ip a sufficient condition for the CLT (28) is that for all ε > 0

1
n

G∑
g=1

E
(̃f ∗

g − Ẽf ∗

g

2 1(̃f ∗

g − Ẽf ∗

g

2 ≥ nε
))

≤
1
nλ

G∑
g=1

E
(̃fg − Ẽfg

2 1(̃fg − Ẽfg
2 ≥ nελ

))
→ 0 (68)

as n → ∞.
Fix ε > 0 and δ > 0. Pick B sufficiently large so that

sup
g

E
(n−2

g

(̃
fg − Ẽfg

)r 1 (n−2
g

(̃
fg − Ẽfg

) > B
))

≤
δεr/2−1λr/2

C r/2 . (69)

which is feasible by Lemma 2 under (26). Pick n large enough so that

max
g≤G

n2
g

n1/2 ≤
(ελ)1/2

B
(70)
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which is feasible by (25). Thus

1
nλ

G∑
g=1

E
(̃fg − Ẽfg

2 1(̃fg − Ẽfg
2 ≥ nελ

))
(71)

=
1
nλ

G∑
g=1

E

( ̃fg − Ẽfg
r̃fg − Ẽfg
r−2 1

(̃fg − Ẽfg
 ≥ (nελ)1/2

))

≤
1

εr/2−1nr/2λr/2

G∑
g=1

E
(̃fg − Ẽfg

r 1 (̃fg − Ẽfg
 ≥ (nελ)1/2

))

≤
1

εr/2−1nr/2λr/2

G∑
g=1

n2r
g E

(n−2
g

(̃
fg − Ẽfg

)r 1 (n−2
g

(̃
fg − Ẽfg

) ≥ B
))

≤
δ

C r/2

∑G
g=1 n

2r
g

nr/2

≤ δ.

The second inequality is (70), the third is (69), and the final is (24). Since ε and δ are arbitrary we have established (68) and
hence (28). ■

The proofs of Theorems 8–Theorem 13 are presented in the Supplemental Appendix.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.02.001.
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