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Abstract

This chapter concerns selection and combination of nonparametric sieve regression estimators.

We review the concepts of series and sieve approximations, introduce least-squares estimates of

sieve approximations, and measure the accuracy of the estimators by integrated mean-squared error

(IMSE). We show that the critical issue in applications is selection of the order of the sieve, as the

IMSE greatly varies across the choice. We introduce the cross-validation criterion as an estimator

of mean-squared forecast error (MSFE) and IMSE. We extend the current optimality theory, by

showing that cross-validation selection is asymptotically IMSE equivalent to the infeasible best

sieve approximation.

We also introduce weighted averages of sieve regression estimators. Averaging estimators have

lower IMSE than selection estimators. Following Hansen and Racine (2012) we introduce a cross-

validation (or jackknife) criterion for the weight vector, and recommend selection of the weights

by minimizing this criterion. The resulting jackknife model averaging (JMA) estimator is a fea-

sible averaging sieve estimator. We show that the JMA estimator is optimal in the sense that

it is asymptotically IMSE equivalent to the infeasible optimal weighted average sieve estimator.

While computation of the JMA weights is a simple application of quadratic programming, we also

introduce a simple algorithm which closely approximates the JMA solution without the need for

quadratic programming.
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1 Introduction

One of the most popular nonparametric techniques in applied econometric analysis is sieve

regression. A sieve is sequence of finite-dimensional models of increasing complexity. The most

common examples of sieve regression are polynomials and splines. For a fixed order of complexity,

the model can be estimated by classical (parametric) methods. An important difference with

parametric regression is the the order of the sieve (the number of regressors) must be selected.

This fundamentally changes both the distributional theory and applied practice.

In this chapter we consider selection and combination of nonparametric sieve regression estima-

tors. We review the concepts of series and sieve approximations, introduce least-squares estimates

of sieve approximations, and measure the accuracy of the estimators by integrated mean-squared

error (IMSE). We show that a critical issue in applications is the order of the sieve, as the IMSE

greatly varies across the choice.

We develop the relationship between IMSE and mean-squared forecast error (MSFE), and in-

troduce the cross-validation criterion as an estimator of mean-squared forecast error (MSFE) and

IMSE. A major theoretical contribution is that we show that selection based on cross-validation is

asymptotically equivalent (with respect to IMSE) to estimation based on the infeasible best sieve

approximation. This is an important extension of the theory of cross-validation, which currently

has only established optimality with respect to conditional squared error.

We also introduce averaging estimators, which are weighted averages of sieve regression estima-

tors. Averaging estimators have lower IMSE than selection estimators. The critical applied issue is

the selection of the averaging weights. Following Hansen and Racine (2012) we introduce a cross-

validation criterion for the weight vector, and recommend selection of the weights by minimizing

this criterion. The resulting estimator —jackknife model averaging (JMA) —is a feasible averaging

sieve estimator. We show that the JMA estimator is asymptotically optimal in the sense that it is

asymptotically equivalent (with respect to IMSE) to the infeasible optimal weighted average sieve

estimator. Computation of the JMA weights is a simple application of quadratic programming. We

also introduce a simple algorithm which closely approximates the JMA solution without the need

for quadratic programming.

Sieve approximation has a long history in numerical analysis, statistics, and econometrics. See

Chui (1992) and de Boor (2001) for numerical properties of splines, Grenander (1981) for the devel-

opment of the theory of sieves, Li and Racine (2007) for a useful introduction for econometricians,

and Chen (2007) for a review of advanced econometric theory.

Nonparametric sieve regression has been studied by Andrews (1991a) and Newey (1995, 1997),

including asymptotic bounds for the IMSE of the series estimators.

Selection by cross-validation was introduced by Stone (1974), Allen (1974), Wahba and Wold

(1975), and Craven and Wahba (1979). The optimality of cross-validation selection was investigated

by Li (1987) for homoskedastic regression and Andrews (1991b) for heteroskedastic regression.

These authors established that the selected estimated is asymptotically equivalent to the infeasible

best estimator, where “best”is defined in terms of conditional squared error.
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Averaging estimators for regression models was introduced by Hansen (2007). A cross-validation

(jacknife) method for selecting the averaging weights was introduced by Hansen and Racine (2012).

The organization of this chapter is as follows. Section 2 introduces nonparametric sieve re-

gression, and Section 3 sieve approximations. Section 4 introduces the sieve regression model and

least-squares estimation. Section 5 derives the IMSE of the sieve estimators. Section 6 is a nu-

merical illustration of how the sieve order is of critical practical importance. Section 7 develops

the connection between IMSE and MSFE. Section 8 introduces cross-validation for sieve selection.

Section 9 presents the theory of optimal cross-validation selection. Section 10 is a brief discussion

of how to pre-select the number of models, and Section 11 discusses alternative selection criteria.

Section 12 is a continuation of the numerical example. Section 13 introduces averaging regression

estimators, and Section 14 introduces the JMA averaging weights and estimator. Section 15 intro-

duces methods for numerical computation of the JMA weights. Section 16 presents an optimality

result for JMA weight selection. Section 17 is a further continuation of the numerical example.

Section 18 concludes. Regularity conditions for the theorems are listed in Section 19, and the

proofs of the theoretical results are presented in Section 20. Computer programs which create the

numerical work is available on my webpage www.ssc.wisc.edu/~bhansen.

2 NonParametric Sieve Regression

Suppose that we observe a random sample (yi, xi), i = 1, ..., n, with yi real-valued and xi ∈ X
possibly vector valued with X compact and density f(x). We are interested in estimating the

regression of yi on xi, that is, the conditional mean g(x) = E (y | x) , which is identified almost

surely if E |y| <∞. We can write the regression equation as

yi = g(xi) + ei (1)

E (ei | xi) = 0. (2)

The regression problem is nonparametric when g(x) cannot be summarized by a finite set of para-

meters.

Notice that equations (1)-(2) do not impose any restrictions on the regression function g(x) nor

the regression error ei (such as conditional homoskedasticity). This is because in a nonparametric

context the goal is to be minimalistic regarding parametric assumptions. To develop distribu-

tional approximations for estimators it will be necessary to impose some smoothness and moment

restrictions. But these restrictions are technical regularity conditions, not fundamental features of

the nonparametric model.

A sieve expansion for g(x) is a sequence of finite dimensional models gm(x), m = 1, 2, ..., with
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increasing complexity. Particularly convenient are linear sieves, which take the form

gm(x) =

Km∑
j=1

zjm(x)βjm

= Zm(x)′βm

where zjm(x) are (nonlinear) functions of x. The number of terms Km indexes the complexity of

the approximation, and plays an important role in the theory. Given a sieve expansion Zm(x) we

define the Km × 1 regressor vector zmi = Zm(xi).

An important special case of a sieve is a series expansion, where the terms zjm(x) are not a

function of the sieve order m. For example, a polynomial series expansion is obtained by setting

zj(x) = xj−1. When the sieve is a series expansion then the models are nested in the sense that

m2 > m1 implies that gm2(x) contains gm1(x) as a special case.

While polynomial series expansions are quite well known, better approximations can be typically

achieved by a spline. A spline is a piecewise continuous polynomial, constrained to be smooth up

to the order of the polynomial. There is more than one way to write out the basis of a regression

spline. One convenient choice takes the form

gm(x) =

p∑
j=0

xjβjm +
m∑
j=1

βp+j(x− tj)p1 (x ≥ tj) . (3)

Here, p is the order of the polynomial. There are m constants t1, ..., tm called knots which are the

join points between the piecewise polynomials. Splines thus have Km = p+ 1 +m coeffi cients, and

a spline has similar flexibility to a (p+m)’th order polynomial. Splines require a rule to determine

the location of the knots tj . A common choice is to set the knots to evenly partition the support

of xi. An alternative is to set the knots to evenly partition the percentiles of the distribution of xi
(that is, if m = 3 then set t1, t2 and t3 to equal the 25’th, 50’th, and 75’th percentile, respectively).

Typically, the order p of the spline is pre-selected based on desired smoothness (linear, quadratic

and cubic are typical choices), and the number of knots m are then selected to determine the

complexity of the approximation.

If the knots are set evenly, then the sequence of spline sieves with m = 1, 2, 3, ..., are non-nested

in the sense that m2 > m1 does not implies that gm2(x) contains gm1(x). However, a sequence

of splines can be nested if the knots are set sequentially, or if they are set to partition evenly

but the number of knots doubled with each sequential sieve, that is, if we consider the sequence

m = 1, 2, 4, 8, ....

In a given sample with n observations, we consider a set of sieves gm(x) for m = 1, ..,Mn, where

Mn can depend on sample size. For example, the set of sieve expansions could be the set of p’th

order polynomials for p = 1, ...,M . Or alternatively, the sieve could be the set of p’th order splines

with m knots, for m = 0, 1, ...,M − 1.
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3 Sieve Approximation

We have been using the notation βm to denote the coeffi cients of the m’th sieve approximation,

but how are they defined? There is not a unique definition, but a convenient choice is the best

linear predictor

βm = argmin
β

E
(
yi − z′miβ

)2
=

(
E
(
zmiz

′
mi

))−1 E (zmiyi) . (4)

Given βm, define the approximation error

rm(x) = g(x)− Zm(x)′βm,

set rmi = rm(xi) and define the expected squared approximation error

φ2
m = Er2

mi =

∫
rm(x)2f(x)dx.

φ2
m measures the quality of gm(x) as an approximation to g(x) in the sense that a smaller φ2

m

means a better approximation. Notice that φ2
m is the variance of the projection error from the

population regression of the true regression function g(xi) on the sieve regressors zmi

φ2
m =

∫
g(x)2f(x)dx−

∫
g(x)Zm(x)′f(x)dx

(∫
Zm(x)Zm(x)′f(x)dx

)−1 ∫
Zm(x)g(x)f(x)dx.

It therefore follows that for nested series approximations, φ2
m is monotonically decreasing as Km

increases. That is, larger models mean smaller approximation error.

Furthermore, we can describe the rate at which φ2
m decreases to zero. As discussed on page 150

of Newey (1997), if dim(x) = q and g(x) has s continuous derivatives, then for splines and power

series there exists an approximation β′zm(x) such that
∣∣g(x)− β′zm(x)

∣∣ = O
(
K
−s/q
m

)
, uniformly

in x. Thus

φ2
m = inf

β
E
(
g(xi)− β′zm(xi)

)2 ≤ inf
β

sup
x

∣∣g(x)− β′zm(x)
∣∣2 ≤ O (K−2s/q

m

)
.

This shows that the magnitude of the approximation error depends on the dimensionality and

smoothness of g(x). Smoother functions g(x) can be approximated by a smaller number of series

terms Km, so the rate of convergence is increasing in the degree of smoothness.
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4 Sieve Regression Model and Estimation

As we have described, for each sieve approximation there are a set of regressors zmi and best

linear projection coeffi cient βm. The sieve regression model is then

yi = z′miβm + emi (5)

where emi is a projection error and satisfies

E (zmiemi) = 0.

It is important to recognize that emi is defined by this construction, and it is therefore inappropriate

to assume properties for emi. Rather they should be derived.

Recall that the approximation error is rmi = rm(xi) = g(xi)− z′miβm. Since the true regression
(1) is yi = g(xi) + ei, it follows that the projection error is emi = ei + rmi, the sum of the true

regression error ei and the sieve approximation error rmi.

The least-squares (LS) estimator of equation (5) is

β̂m =

(
n∑
i=1

zmiz
′
mi

)−1 n∑
i=1

zmiyi

ĝm(x) = Zm(x)′β̂m.

Least squares is an appropriate estimator as βm is defined as the best linear predictor. The

least-squares estimator is a natural moment estimator of the projection coeffi cient βm.

5 Integrated Mean Squared Error

As a practical matter, the most critical choice in a series regression is the number of series

terms. The choice matters greatly, and can have a huge impact on the empirical results.

Statements such as “the number of series terms should increase with the sample size”do not

provide any useful guidance for practical selection. Applied nonparametric analysis needs practical,

data-based rules. Fortunately, there are sound theoretical methods for data-dependent choices.

The foundation for a data-dependent choice is a (theoretical) criterion which measures the

performance of an estimator. The second step is to constuct an estimator of this criterion. Armed

with such an estimate, we can select the number of series terms or weights to minimize the empirical

criterion.

Thus to start, we need a criterion to measure the performance of a nonparametric regression

estimator. There are multiple possible criteria, but one particularly convenient choice is integrated
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mean squared error (IMSE). For a sieve estimator ĝm(x) the IMSE equals

IMSEn(m) =

∫
E (ĝm(x)− g(x))2 f(x)dx.

Using the fact that ĝm(x)− g(x) = zm(x)′
(
β̂m − βm

)
− rm(x) we can calculate that

∫
(ĝm(x)− g(x))2 f(x)dx

=

∫
rm(x)2f(x)dx− 2

(
β̂m − βm

)′ ∫
xm(x)rm(x)f(x)dx

+
(
β̂m − βm

)′ ∫
zm(x)zm(x)′f(x)dx

(
β̂m − βm

)
.

Note the the first term equals the expected squared approximation error φ2
m. The second term is

zero because
∫
xm(z)rm(z)f(z)dz = E (zmirmi) = 0. Defining Qm = E (zmiz

′
mi) , we can write

IMSEn(m) = φ2
m + tr

[
QmE

((
β̂m − βm

)(
β̂m − βm

)′)]
.

Asymptotically, E
((

β̂m − βm
)(

β̂m − βm
)′)

' 1

n
Q−1
m ΩmQ

−1
m where Ωm = E

(
zmiz

′
miσ

2
i

)
and

σ2
i = E

(
e2
i | xi

)
. Making these substitutions, we expect that IMSEn(m) should be close to

IMSE∗n(m) = φ2
m +

1

n
tr
(
Q−1
m Ωm

)
. (6)

The second term in (6) is the integrated asymptotic variance. Under conditional homoskedas-

ticity E
(
e2
i | xi

)
= σ2 we have the simplification Ωm = E (zmiz

′
mi)σ

2 = Qmσ
2. Thus in this case

1

n
tr
(
Q−1
m Ωm

)
= σ2

mKm/n, a simple function of the number of coeffi cients and sample size. That

is, homoskedasticity implies the following simplification of (6)

IMSE∗n(m) = φ2
m + σ2Km

n
.

However, in the general case of conditional heteroskedasticity, (6) is the appropriate expression.

Hansen (2012) showed that IMSEn(m) and IMSE∗n(m) are uniformly close under quite general

regularity conditions, listed in Section 19.

Theorem 1 Under Assumption 1, uniformly across m ≤Mn,

IMSEn(m) = IMSE∗n(m)(1 + o(1))

This shows that IMSE∗n(m) is a good approximation to IMSEn(m).
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6 The Order of the Approximation Matters

The way that nonparametric methods are often presented, some users may have received the

false impression that the user is free to select the order of the approximation m. So long as m

increases with n, the method works, right? Unfortunately it is not so simple in practice. Instead,

the actual choice of m in a given application can have large and substantive influence on the results.

To illustrate this point, we take a simple numerical example. We consider the following data

generating process.

yi = g(xi) + ei

g(x) = a sin
(

2πx+
π

4

)
xi ∼ U [0, 1]

ei ∼ N(0, σ2
i )

σ2
i =

√
5x2

i

This is a simple normal regression with conditional heteroskedasticity. The parameter a is selected

to control the population R2 = a2/(2 + a2), and we vary R2 = 0.25, 0.5, 0.75 and 0.9. We vary the

sample size from n = 50 to 1000.

We consider estimation of g(x) using quadratic splines, ranging the number of knots m from 1

to 5. For each R2, n, and m, the integrated mean-squared error (IMSE) is calculated and displayed

in Figure 1 as a function of sample size using a logarithmic scale. The four displays are for the four

values of R2, and each line corresponds to a different number of knots. Thus each line corresponds

to a distinct sieve approximationm. To render the plots easy to read, the IMSE has been normalized

by the IMSE of the infeasible optimal averaging estimator. Thus the reported IMSE’s are multiples

of the infeasible best.

One striking feature of Figure 1 is the strong variation with m. That is, for a given R2 and n,

the IMSE varies considerably across estimators. For example, take n = 200 and R2 = 0.25. The

relative IMSE ranges from about 1.4 (2 knots) to 2.1 (5 knots). Thus the choice really matters.

Another striking feature is that the IMSE rankings strongly depend on unknowns. For example,

again if n = 200 but we consider R2 = 0.9 then the sieve with two knots performs quite poorly

with IMSE=2.9, while the sieve with 5 knots has an relative IMSE of about 1.5.

A third striking feature is that the IMSE curves are U-shaped functions of the sample size n.

When they reach bottom they tend to be the sieve with the lowest IMSE. Thus if we fix R2 and

vary n from small to large, we see how the best sieve is increasing. For example, take R2 = 0.25.

For n = 50, the lowest IMSE is obtained by the spline with one knot. The one-knot spline has the

lowest IMSE until n = 150, at which point the two-knot spline has the lowest IMSE. The three-knot

spline has lower IMSE for n ≥ 800. Or, consider the case R2 = 0.75. In this case, the two-knot

spline has the lowest IMSE for n < 100, while the three-knot spline is best for 100 ≤ n ≤ 400, with

the four-knot spline for n ≤ 600.
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Figure 1: Integrated Mean-Squared Error of Spline Regression Estimators

The overall message is that the order of the series approximation matters, and it depends on

features which we know (such as the sample size n) but also features that we do not know. Data-

dependent methods for selection of m are essential, otherwise the selection between the estimators

is arbitrary.

7 Mean Squared Forecast Error

A concept related to IMSE is the mean-squared-forecast-error (MSFE). This is the expected

squared error from the prediction of an out-of-sample observation. Specifically, let (yn+1, xn+1) be

an out-of-sample observation drawn from the same distribution as the in-sample observations. The

forecast of yn+1 given xn+1 is ĝm(xn+1). The MSFE is the expected squared forecast error

MSFEn(m) = E (yn+1 − ĝm(xn+1))2

which depends on the sample size n as well as the estimator ĝm.

Making the substitution yn+1 = g(xn+1) + en+1 and using the fact that en+1 is independent of

g(xn+1)− ĝm(xn+1), we can calculate that the MSFE equals

MSFEn(m) = E
(
e2
n+1

)
+ E (g(xn+1)− ĝm(xn+1))2 .

The second term on the right is an expectation over the random vector xn+1 and the estimator

ĝm(x), which are independent since the estimator is a function only of the in-sample observations.
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We can write the expectation over xn+1 as an integral with respect to its marginal density f(x),

thus

MSFEn(m) = E
(
e2
n+1

)
+

∫
E (ĝm(x)− g(x))2 f(x)dx

= E
(
e2
n+1

)
+ IMSEn(m).

Thus MSFEn(m) equals IMSEn(m) plus E
(
e2
n+1

)
. Notice that E

(
e2
n+1

)
does not depend on the

estimator ĝm(x). Thus ranking estimators by MSFE and IMSE are equivalent.

8 Cross-Validation

Ideally, we want to select the estimatorm which minimizes IMSEn(m) or equivalentlyMSFEn(m).

However, the true MSFE is unknown. In this section we show how to estimate the MSFE.

Observe that

MSFEn(m) = E
(
ẽ2
m,n+1

)
where ẽm,n+1 = yn+1 − ĝm(xn+1). This is a prediction error. Estimation is based on the sample

(yi, xi) : i = 1, ..., n, and the error calculated on the out-of-sample observation n + 1. Thus

MSFEn(m) is the expectation of a squared leave-one-out prediction error from a sample of length

n+ 1.

For each observation i, we can create a similar leave-one-out prediction error. For each i we can

create a pseudo-prediction error by estimating the coeffi cients using the observations excluding i.

That is, define the leave-one-out estimator

β̂m,−i =

∑
j 6=i

zmjz
′
mj

−1∑
j 6=i

zmjyj (7)

and prediction error

ẽmi = yi − z′miβ̂m,−i. (8)

The only difference between ẽm,n+1 and ẽmi is that the former is based on the extended sample

of length n + 1 while the latter are based on a sample of length n. Otherwise they have the same

construction. It follows that for each i, Eẽ2
mi = MSFEn−1(m). Similarly, the sample average,

known as the cross-validation criterion

CVn(m) =
1

n

n∑
i=1

ẽ2
mi

also has mean MSFEn−1(m). This is a natural moment estimator of MSFEn−1(m).

We have established the following result.

Theorem 2 ECVn(m) = MSFEn−1(m)
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As MSFEn−1(m) should be very close to MSFEn(m), we can view CVn(m) as a nearly unbi-

ased estimator of MSFEn(m).

Computationally, the following algebraic relationship is convenient.

Proposition 1 ẽmi = êmi(1− hmi)−1, where êmi = yi − z′miβ̂m are the least-squares residuals and

hmi = z′mi (
∑n

i=1 zmiz
′
mi)
−1 zmi are known as the leverage values.

While Proposition 1 is well known, we include a complete proof in Section 20 for completeness.

Proposition 1 directly implies the simple algebraic expression

CVn(m) =
1

n

n∑
i=1

ê2
mi

(1− hmi)2 . (9)

This shows that for least squares estimation, cross-validation is a quite simple calculation, and does

not require the explicit leave-one-out operations suggested by (7).

The estimator m̂ which is selected by cross-validation is the one with the smallest value of

CV (m). We can write this as

m̂ = argmin
1≤m≤Mn

CVn(m)

Computationally, we estimate each series regression m = 1, ...,Mn, compute the residuals êmi for

each, the CV criterion CVn(m) using (9) and then find m̂ as the value which yields the smallest

value of CVn(m).

It is useful to plot CVn(m) against m to visually check if there are multiple local minima or

flat regions. In these cases some statisticians have argued that it is reasonable to select the most

parsimonious local minima or the most parsimonious estimator among near-equivalent values of the

CV function. The reasons are diverse, but essentially the cross-validation function can be quite a

noisy estimate of the IMSE, especially for high-dimensional models. The general recommendation

is to augment automatic model-selection with visual checks and judgment.

To illustrate, Figure 2 plots the cross-validation function for one of the samples from Section

6. The cross-validation function is sharply decreasing until 2 knots, then flattens out, with the

minimum m = 2 knots. In this particular example, the sample was drawn from the DGP of Section

6 with n = 200 and R2 = 0.5. From Figure 1 we can see that the lowest IMSE is obtained by m = 2,

so indeed the CV function is a constructive guide for selection.

9 Asymptotic Optimality of Cross-Validation Selection

Li (1987), Andrews (1991b) and Hansen and Racine (2012) have established conditions under

which the CV selected estimator is asymptotically optimal, in the sense that the selected model is

asymptotically equivalent to the infeasible optimum. The criterion they used to assess optimality
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Figure 2: Typical Cross-Validaion Function, n = 200

is the conditional squared error fit

Rn(m) =
1

n

n∑
i=1

E
(

(ĝm(xi)− g(xi))
2 | X

)
(10)

where X = {x1, ..., xn}. This is similar to IMSE, but only assesses fit on the support points of the
data. In contrast, the literature on sieve approximations focuses on IMSE. We now extend the

asymptotic optimality theory and show that the CV selected estimator is asymptotically optimal

with respect to IMSE.

Theorem 3 Under Assumptions 1, 2, and 3, as n→∞,∣∣∣∣∣∣ IMSEn(m̂)

inf
1≤m≤Mn

IMSEn(m)

∣∣∣∣∣∣ p−→ 1

The assumptions and proof are presented in Sections 19 and 20, respectively.

Theorem 3 shows that in large samples, the IMSE of the CV-selected estimator ĝm̂(x) is equiv-

alent to the IMSE of the infeasible best estimator in the class ĝm(x) for 1 ≤ m ≤ Mn. This is an

oracle property for cross-validation selection.

A critical assumption for Theorem 3 is that φ2
m > 0 for allm <∞ (Assumption 2 in Section 20).

Equivalently, the approximation error is non-zero for all finite-dimensional models —that all models

are approximations. If instead one of the finite-dimensional models is the true conditional mean

(so that φ2
m = 0 for some model m) then cross-validation asymptotically over-selects the model

order with positive probability and is thus asymptotically sub-optimal. In this context consistent
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model selection methods (such as BIC) are optimal. This classification was carefully articulated

in the review paper by Shao (1997). Some researchers refers to cross-validation as a conservative

selection procedure (it is optimal for the broad class of nonparametric models) and to BIC as a

consistent selection procedure (it selects the correct model when it is truly finite dimensional).

10 Pre-Selection of the Number of Models

To implement cross-validation selection, a user first has to select the set of models m = 1, ...,Mn

over which to search. For example, if using a power series approximation, a user has to first

determine the highest power, or if using a spline a user has to determine the order of the spline

and the maximum number of knots. This choice affects the results, but unfortunately there is no

theory about how to select these choices. What we know is that the assumptions restrict both

the number of estimated parameters in each model Km and the number of models Mn relative

to sample size. Specifically, Assumption 1.5 specifies that for a power series K4
m/n = O(1) and

for a spline sieve K3
m/n = O(1), uniformly for m ≤ Mn. These conditions may be stronger than

necessary, but they restrict the number of estimated parameters to be increasing at a rate much

slower than sample size. Furthermore, Assumption 3.2 allows non-nested models, but controls the

number of models. While these conditions do not give us precise rules for selecting the initial set

of models, they do suggest that we should be reasonably parsimonious and not too aggressive in

including highly parameterized models.

Unfortunately, these comments still do not give precise guidance on how to determine the

number of models Mn. It may be a useful subject for future research to construct and justify

data-dependent rules for determining Mn.

11 Alternative Selection Criteria

We have discussed the merits of cross-validation to select the sieve approximation, but many

other selection methods have been proposed. In this section we briefly describe the motivation and

properties of some of these alternative criteria.

The Mallows criterion (Mallows, 1973)

Mallows(m) =
1

n

n∑
i=1

ê2
mi + 2σ̃2Km

with σ̃2 a preliminary estimate of E
(
e2
i

)
is an alternative estimator of the IMSE under the additional

assumption of conditional homoskedasticity E
(
e2
i | xi

)
= σ2. Li (1987) provided conditions under

which Mallows selection is asymptotically optimal, but Andrews (1991b) shows that its optimality

fails under heteroskedasticity.
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The Akaike information criterion (Akaike, 1973)

AIC(m) = n log

(
1

n

n∑
i=1

ê2
mi

)
+ 2Km

is an estimate of the Kullback-Leibler divergence between the estimated Gaussian model and the

true model density. AIC selection has similar asymptotic properties as Mallows selection, in that

it is asymptotically optimal under conditional homoskedasticity but not under heteroskedasticity.

The corrected AIC (Hurvich and Tsai, 1989)

AICc(m) = AIC(m) +
2Km (Km + 1)

n−Km − 1

is a finite-sample unbiased estimate of the Kullback-Leibler divergence under the auxiliary assump-

tion that the errors ei are independent and Gaussian. Its asymptotic properties are the same as

AIC, but has improved finite-sample performance, especially when the model dimension Km is high

relative to sample size.

The Bayesian information criterion (Schwarz, 1978)

BIC(m) = n log

(
1

n

n∑
i=1

ê2
mi

)
+ log(n)Km

is an approximation to the log posterior probability that model m is the true model, under the aux-

iliary assumption that the errors are independent and Gaussian, the true model is finite dimension,

the models have equal prior probability, and priors for each model m are diffuse. BIC selection

has the property of consistent model selection: When the true model is a finite dimensional series,

BIC will select that model with probability approaching one as the sample size increases. However,

when there is no finite dimensional true model, then BIC tends to select overly parsimonious models

(based on IMSE).

The above methods are all information criteria, similar in form to cross-validation. A different

approach to selection is the class of penalized least squares estimators. Let zi denote the Kn × 1

vector of all potential regressors in all models, let β = (β1, ..., βKn
) denote its projection coeffi cient,

and define the penalized least squares criteria

Pn(β, λ) =
1

2n

n∑
i=1

(
yi − z′iβ

)2
+

Kn∑
j=1

pλ
(
βj
)

and the PLS estimator

β̂λ = argmin
β

Pn(β, λ)

where pλ (u) is a non-negative symmetric penalty function and λ is a tuning parameter.

The choice of pλ (u) determines the estimator. In the recent literature a popular choice is
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pλ (|u|) = λ |u| which yields the LASSO (least absolute shrinkage and selection operator) estimator,
proposed by Tibshirani (1996). Different variants of LASSO have been proposed, including SCAD

(smoothly clipped absolute deviation) (Fan and Li, 2001), and the adaptive LASSO (Zou, 2006).

PLS estimators are generally appropriate when the dimension of zi is high (some estimators such

as the LASSO are defined even whenKn exceeds n). The LASSO family are selection methods as the

estimators β̂λ typically set most individual coeffi cients to zero. The non-zero coeffi cient estimates

are the selected variables, and the zero coeffi cient estimates are the excluded variables. SCAD and

the adaptive LASSO have optimality (oracle) properties when the true regression function is sparse,

meaning that the true regression function is a finite dimensional series. When the true regression

function is not sparse the properties of LASSO selection are unclear.

Among these methods, selection by cross-validation is uniquely the only method which is as-

ymptotically optimal for general nonparametric regression functions and unknown conditional het-

eroskedasticity. Most of the other selection methods explicitly or implicity rely on conditional ho-

moskedasticity, and some of the methods rely on sparsity (finite dimensionality), neither of which

are generally appropriate for nonparametric estimation.

12 Numerical Simulation

We return to the simulation experiment introduced in Section 6. Recall that we reported the

integrated mean-squared error of a set of least-squares estimates of a quadratic spline with given

knots. Now we compare the IMSE of estimators which select the number of knots. We consider CV

selection, and compare its performance with selection based on the Akaike information criterion

(Akaike, 1973) and the Hurvich-Tsai (1989) corrected AIC.

For all methods, we estimate nonparametric quadratic splines with knots m = 0, 1, ...,Mn with

Mn = 4n0.15. The selection criteria were calculated for each set of knots, and the model selected

with the lowest value of the criteria.

We report the IMSE of the three methods in Figure 3 (along with the IMSE of the JMA method,

to be discussed below). Again, the IMSE is normalized by the IMSE of the infeasible best averaging

estimator, so all results are relative to this infeasible optimum.

One striking feature of this figure is that the three methods (CV, AIC and AICc) have similar

performance for n ≥ 100, though CV has slightly lower IMSE, especially for small n.

Another striking feature is that for n ≥ 100, the IMSE of the selection methods is relatively

unaffected by sample size n and the value of R2. This is especially important when contrasted with

Figure 1, where we found that the IMSE of individual sieve estimators depend greatly upon n and

R2. This is good news, it shows that the selection methods are adapting to the unknown features

of the sampling distribution.
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Figure 3: Integrated Mean-Squared Error, Selection and Averaging Estimators

13 Averaging Regression

Let w = (w1, w2, ..., wM ) be a set of non-negative weights which sum to one,
∑M

m=1wm = 1 .

An averaging LS estimator is

ĝw(x) =
M∑
m=1

wmĝm(x). (11)

The averaging estimator includes the m’th least-squares estimator as a special case by setting w to

equal the unit vector with a weight of 1 in the m′th place.

For example, consider a set of spline estimators with m = 0, 1, 2, and 3 knots. The averaging

estimator takes an average of these four estimators. In general, averaging is a smoother function of

the data than selection, and smoothing generally reduces variance. The reduction in variance can

result in estimators with lower IMSE.

We define the IMSE of the averaging estimator as

IMSEn(w) =

∫
E (ĝw(x)− g(x))2 f(x)dx

which is a function of the weight vector.

It is recommended to constrain the weights wm to be non-negative, that is, wm ≥ 0. In this

case the weight vector w lies on H, the unit simplex in RMn . This restriction may not be necessary,

but some bounds on the weights are required. Hansen and Racine (2012) suggested that in the

case of nested models non-negativity is a necessary condition for admissibility, but they made a

technical error. The actual condition is that 0 ≤
∑M

j=mwj ≤ 1 which is somewhat broader. (I
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thank Guido Kuersteiner and Ryo Okui for pointing out this error to me.) It is unclear if this

broader condition is compatible with the optimality theory, or what restrictions are permissible in

the case of non-nested models.

Hansen (2012) provides an approximation to the IMSE of an averaging estimator.

Theorem 4 Under Assumptions 1, 2, and 4, uniformly across w ∈ H,

IMSEn(w) = IMSE∗n(w)(1 + o(1))

where

IMSE∗n(w) =

Mn∑
m=1

w2
m

(
φ2
m +

1

n
tr
(
Q−1
m Ωm

))

+2

Mn∑
`=1

`−1∑
m=1

w`wm

(
φ2
` +

1

n
tr
(
Q−1
m Ωm

))

=

Mn∑
m=1

w∗mnφ
2
m +

Mn∑
m=1

w∗∗m tr
(
Q−1
m Ωm

)
(12)

and

w∗m = w2
m + 2wm

m−1∑
`=1

w` (13)

w∗∗m = w2
m + 2wm

Mn∑
`=m+1

w`. (14)

14 JMA for Averaging Regression

The method of cross-validation for averaging regressions is much the same as for selection.

First, note that the discussion about the equivalence of mean-square forecast error (MSFE) and

IMSE from Section 7 is not specific to the estimation method. Thus it equally applies to averaging

estimators. Namely the averaging forecast of yn+1 given xn+1 is ĝw(xn+1), with MSFE

MSFEn(w) = E (yn+1 − ĝw(xn+1))2

= E
(
e2
n+1

)
+ IMSEn(w)

where the second equality follows by the same discussion as in Section 7.

Furthermore, the discussion in Section 8 about estimation of MSFE by cross-validation is also

largely independent of the estimation method, and thus applies to averaging regression. There are

some differences, however, in the algebraic implementation. The leave-one-out averaging prediction

16



errors are

ẽwi =

M∑
m=1

wmẽmi

where, as before, ẽmi is defined in (8) and Proposition 1. The cross-validation function for averaging

regression is then

CVn(w) =
1

n

n∑
i=1

ẽ2
wi

=
M∑
m=1

M∑
`=1

wmw`

(
1

n

n∑
i=1

ẽmiẽ`i

)
= w′Sw

where S is an M ×M matrix with m`’th entry

Sm` =
1

n

n∑
i=1

ẽmiẽ`i

=
1

n

n∑
i=1

êmiê`i
(1− hmi) (1− h`i)

.

with êmi the least-squares residuals for them′th estimator, and the second equality uses Proposition

1.

CVn(w) is also the jackknife estimator of the expected squared error, and thus Hansen and

Racine (2012) call CVn(w) the jackknife model averaging (JMA) criterion.

15 Computation

The cross-validation or jackknife choice of weight vector w is the one which minimizes the cross-

validation criterion CVn(w) = w′Sw. Since the weights wm are restricted to be non-negative and

sum to one, the vector w lies on the M -dimension unit simplex H, so we can write this problem as

ŵ = argmin
w∈H

w′Sw.

The weights ŵ are called the JMA weights, and when plugged into the estimator (11) yield the

JMA nonparametric estimator

ĝw(x) =
M∑
m=1

ŵmĝm(x). (15)

Since the criterion is quadratic in w and the weight space H is defined by a set of linear equal-
ity and inequality restrictions, this minimization problem is known as a quadratic programming

problem. In matrix programming languages solution algorithms are available. For example, ŵ can

be easily solved using the qprog command in GAUSS, the quadprog command in MATLAB, or the
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quadprog command in R.

In other packages quadratic programming may not be available. However, it is often possible

to call the calculation through an external call to a compatible language (for example, calling R

from within STATA). This, however, may be rather cumbersome.

However, it turns out that ŵ can be found using a relatively simple set of linear regressions.

First, let g̃i = (g̃1i, ..., g̃Mi)
′ be the M × 1 vector of leave-one-out predicted values for the i’th

observation. Then note that ẽwi = yi − g̃′iw, so the CV criterion can be written as

CVn(w) =
1

n

n∑
i=1

ê2
wi

=
1

n

n∑
i=1

(
yi − g̃′iw

)2
.

This is the sum-of-squared error function from a regression of yi on the vector g̃i, with coeffi cients

w. Thus the problem of solving for ŵ is algebraically equivalent to a constrained least-squares

regression of yi on g̃i. We can write the least-squares regression as

yi = g̃′iw + ẽwi

or in vector notation

y = G̃w + ẽw.

where G̃ is an n×M matrix whose m’th columnn are the leave-one-out predicted values from the

m’th series approximation.

The simple unconstrained least-squares estimator of w

w̃ =
(
G̃′G̃

)−1
G̃′y (16)

will satisfy neither the summing up nor non-negativity constraints. To impose the constraint that

the coeffi cients sum to one, letting 1 denote anM×1 vector of ones, then the least-squares estimator

subject to the constraint 1′w = 1 is

w̄ = w̃ −
(
G̃′G̃

)−1
1

(
1′
(
G̃′G̃

)−1
1

)−1 (
1′w̃ − 1

)
. (17)

Alternatively, subtract g̃Mi from yi and g̃1i, ..., g̃M−1,i and run the regression

yi − g̃Mi = w̄1 (g̃1i − g̃Mi) + w̄2 (g̃2i − g̃Mi) + · · ·+ w̄M−1 (g̃M−1,i − g̃Mi) + ẽwi (18)

and then set w̄M = 1−
∑M−1

m=1 w̄m. (17) and (18) are algebraically equivalent methods to compute

w̄.

While the weights w̄ will sum to one, they will typically violate the non-negativity constraints,
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and thus is not a good estimator. However, a simple iterative algorithm will convert w̄ to the

desired ŵ. Here are the steps.

1. If w̄m ≥ 0 for all m, then ŵ = w̄ and stop.

2. If minm w̄m < 0, find the index m̄ with the most negative weight w̄m̄ (e.g. m̄ = argmin w̄m)

3. Remove the estimator m̄ from the set of M estimators. We are left with a set of M − 1

estimators, with G̃ an n× (M − 1) matrix

4. Recompute w̃ and w̄ in (16) and (17) using this new G̃.

5. Go back to Step 1 and iterate until all weights are non-negative.

This is a simple algorithm, and has at most M iteration steps, where M are the number of

initial estimators, and is thus quite effi cient. It is simple enough that it can be computed using

simple least-squares methods and thus can be used in many packages.

16 Asymptotic Optimality of JMA Averaging

Hansen and Racine (2012) have established conditions under which the JMA weights are asymp-

totically optimal, in the sense that the selected averaging estimator is asymptotically equivalent to

the infeasible optimal weights. They established optimality with respect to the conditional squared

error fit (10). We now show that this can be extended to optimality with respect to IMSE.

As in Hansen (2007) and Hansen and Racine (2012), we only establish optimality with respect

to a discrete set of weights. For some integer N ≥ 1, let the weights wj take values from the set

{0, 1

N
,

2

N
, ..., 1}, and let Hn denote the subset of the unit simplex H restricted to these points. If

N is large then this is not restrictive. This restriction is for technical reasons and does not affect

how the method is implemented in practical applications.

Theorem 5 Under Assumptions 1-4, as n→∞,∣∣∣∣∣∣ IMSEn(ŵ)

inf
w∈Hn

IMSEn(w)

∣∣∣∣∣∣ p−→ 1

The assumptions and proof are presented in Sections 19 and 20, respectively.

Theorem 5 shows that in large samples, the IMSE of the JMA estimator ĝŵ(x) is equivalent to

the IMSE of the infeasible best estimator in the class ĝw(x) for w ∈ Hn. This is an oracle property
for weight selection by cross-validation.
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17 Numerical Simulation

We return to the simulation experiment introduced in Sections 6 and 12. Now we add the JMA

estimator (15). The IMSE of the estimator is plotted in Figure 3 along with the other estimators.

The IMSE of the JMA estimator is uniformly better than the other estimators, with the difference

quite striking.

The plots display the IMSE relative to the IMSE of the infeasible optimal averaging estimator.

The optimality theory (Theorem 5) suggests that the relative IMSE of the JMA estimator should

approach one as the sample size n diverges. Examining the figures, we can see that the IMSE of

the estimator is converging extremely slowly to this asymptotic limit. This suggests while the JMA

is “asymptotically”optimal, there is considerable room for improvement in finite samples.

We illustrate implementation with the simulated sample (n = 200) from Section 12. We report

the cross-validation function and JMA weights in Table 1. As we saw in Figure 2, the CV function

is minimized at m = 2. However, the value of the CV function is quite flat for m ≥ 2, and in

particular its value at m = 5 is nearly identical to m = 2. This means that cross-validation ranks

m = 2 and m = 5 quite similarly. The JMA weights account for this. Notice that JMA divides

the weight between m = 1, m = 2 and m = 5, rather than putting all the weight on a single

estimator. The estimators are plotted (along with the true conditional mean g(x)) in Figure 4.

Both estimators are close to the true g(x).

Table 1:

Cross-Validation Function and JMA weights
m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

CVn(m) 0.955 0.735 0.717 0.722 0.720 0.718

ŵm 0.02 0.17 0.35 0.00 0.00 0.46

18 Summary

Sieves are routinely used in applied econometrics to approximate unknown functions. Power

series and splines are particularly popular and convenient choices. In all applications, the critical

issue is selecting the order of the sieve. The choice greatly affects the results and the accuracy of

the estimates. Rules of thumb are insuffi cient as the ideal choice depends on the unknown function

to be estimated.

In regression estimation, a simple, straightforward and computationally easy method for se-

lecting the sieve approximation is cross-validation. The method is also asymptotically optimal, in

the sense that the CV-selected estimator is asymptotically equivalent to the infeasible best-fitting

estimator, when we evaluate estimators based on IMSE (integrated mean-squared error).

Further improvements can be obtained by averaging. Averaging estimators reduce estimation

variance, and thereby IMSE. Selection of the averaging weights is analogous to the problem of

selection of the order of a sieve approximation, and a feasible method is again cross-validation.
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Figure 4: CV and JMA Feasible Series Estimators

Numerical computation of the averaging weights is simple using quadratic programming. Good

approximations can be obtained by a simple iterative algorithm. The JMA weights selected by

cross-validation are asymptotically optimal in the sense that the fitted averaging estimator is as-

ymptotically equivalent (with respect to IMSE) to the infeasible best weighted average.

19 Regularity Conditions

In this section we list the regularity conditions for the theoretical results.

Assumption 1

1. The support X of xi is a Cartesian product of compact connected intervals on which the

density f(x) is bounded away from zero.

2. g(x) is continuously differentiable on x ∈ X .

3. For some α > 0, η > 0, and ψ <∞, for all `′Qm` = 1 and 0 ≤ u ≤ η, supm P (|`′zmi| ≤ u) ≤
ψuα.

4. 0 < σ2 ≤ σ2
i ≤ σ2 <∞.

5. maxm≤Mn K
4
m/n = O(1) for a power series, or maxm≤Mn K

3
m/n = O(1) for a spline sieve.

Assumption 2 φ2
m > 0 for all m <∞.
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The role of Assumption 1.1 is to ensure that the expected design matrix Qm is uniformly

invertible. Assumption 1.2 is used to ensure that rm(x) is uniformly bounded. Assumption 1.3 is

unusual, but used to ensure that moments of the inverse sample design matrix
(
n−1

∑n
i=1 zmiz

′
mi

)−1

exist. Assumption 1.4 bounds the extent of conditional heteroskedasticity, and Assumption 1.5

restricts the complexity of the fitted models.

Assumption 2 is quite important. It states that the approximation error is non-zero for all finite-

dimensional models; thus all models are approximations. This is standard in the nonparametrics

optimality literature. One implication is that ξn = infm nIMSE∗n(m) −→∞ as n→∞.
Let qjn = #{m : Km = j} be the number of models which have exactly j coeffi cients, and

set qn = maxj≤Mn qjn. This is the largest number of models of any given dimension. For nested

models, then qn = 1, but when the models are non-nested then qn can exceed one.

Assumption 3 For some N ≥ 1

1. supi E
(
e

4(N+1)
i | xi

)
<∞.

2. qn = o(ξ
1/N
n ) where ξn = infm nIMSE∗n(m).

3. maxm≤Mn maxi≤n hmi −→ 0 almost surely.

Assumption 3.1 is a strengthing of Assumption 1.4. Assumption 3.2 allows for non-nested

models, but bounds the number of models. Assumption 3.3 states that the design matrix cannot

be too unbalanced. Under our conditions it is easy to show that maxm≤Mn maxi≤n hmi = op(1).

The technical strengthening here is to almost sure convergence.

Assumption 4

1. zm(x) is either a spline or power series, and is nested.

2. g(x) has s continuous derivatives on x ∈ X with s ≥ q/2 for a spline and s ≥ q for a power
series.

20 Technical Proofs

Proof of Proposition 1:
The key is the Sherman-Morrison formula (Sherman and Morrison, 1950) which states that for

nonsingular A and vector b

(
A− bb′

)−1
= A−1 +

(
1− b′A−1b

)−1
A−1bb′A−1.

This can be verified by premultiplying the expression by A− bb′ and simplifying.
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Let Zm and y denote the matrices of stacked regressors and dependent variable so that the LS

estimator is β̂m = (Z ′mZm)
−1
Z ′my. An application of the Sherman-Morrison formula yields∑

j 6=i
zmjz

′
mj

−1

=
(
Z ′mZm − zmiz′mi

)−1

=
(
Z ′mZm

)−1
+ (1− hmi)−1 (Z ′mZm

)−1
zmiz

′
mi

(
Z ′mZm

)−1
.

Thus

ẽmi = yi − z′mi
(
Z ′mZm − zmiz′mi

)−1 (
Z ′my − zmiyi

)
= yi − z′mi

(
Z ′mZm

)−1
Z ′my + z′mi

(
Z ′mZm

)−1
zmiyi

− (1− hmi)−1 z′mi
(
Z ′mZm

)−1
zmiz

′
mi

(
Z ′mZm

)−1
Z ′my

+ (1− hmi)−1 z′mi
(
Z ′mZm

)−1
zmiz

′
mi

(
Z ′mZm

)−1
zmiyi

= êmi + hmiyi − (1− hmi)−1 hmiz
′
miβ̂m + (1− hmi)−1 h2

miyi

= êmi + (1− hmi)−1 hmiêmi

= (1− hmi)−1 êmi

the third equality making the substitutions β̂m = (Z ′mZm)
−1
Z ′my and hmi = z′mi (Z ′mZm)

−1
zmi,

and the remainder collecting terms. �

Define

ζm = sup
x∈X

(
zm(x)′Q−1

m zm(x)
)1/2

, (19)

the largest normalized Euclidean length of the regressor vector. Under Assumption 1, if zmi is a

power series then ζ2
m = O(k2

m) (see Andrews (1991a)), and when zmi is a regression spline then

ζ2
m = O(km) (see Newey (1995)). For further discussion see Newey (1997) and Li and Racine

(2006).

Without loss of generality, assume Qm = IKm throughout this section.

Proof of Theorem 3:
Assumptions (A.1), (A.2), (A.7), (A.9) and (A.10) of Hansen and Racine (2012) are satisfied

under our Assumptions 1-3. Thus by their Theorem 2 with N = 1, CV selection is optimal with

respect to the criterion Rn(m), that is,∣∣∣∣∣∣ Rn(m̂)

inf
1≤m≤Mn

Rn(m)

∣∣∣∣∣∣ p−→ 1

Furthermore, Theorem 1 shows that IMSE∗n(m) and IMSEn(m) are asymptotically equivalent.

Thus for Theorem 3 it is thus suffi cient to show that Rn(m) and IMSE∗n(m) are asymptotically

equivalent. To reduce the notation we will write In(m) = IMSE∗n(m) = φ2
m + n−1 tr (Ωm) . Thus

23



what we need to show is

sup
1≤m≤Mn

∣∣∣∣Rn(m)− In(m)

In(m)

∣∣∣∣ p−→ 0. (20)

It is helpful to note the following inequalities:

nφ2
m ≤ nIn(m) (21)

tr (Ωm) ≤ nIn(m) (22)

1 ≤ nIn(m) (23)

ζ2
m

n
≤ ζ2

mKm

n
≤ ζ2

mK
2
m

n
≤ Ψ <∞. (24)

(21) and (22) follow from the formula nIn(m) = nφ2
m + tr (Ωm) . (23) holds for n suffi ciently large

since ξn = infm nIn(m) → ∞. The first two inequalities in (24) holds since either Km ≥ 1 or

ζ2
m = 0, the third inequality holds for n suffi ciently large under Assumption 1.5.

Set

Q̂m =
1

n

n∑
i=1

zmiz
′
mi

γ̂m =
1

n

n∑
i=1

zmirmi

Ω̂m =
1

n

n∑
i=1

zmiz
′
miσ

2
i .

As shown in Andrews (1991a) and Hansen and Racine (2012)

nRn(m) =

n∑
i=1

r2
mi − nγ̂′mQ̂−1

m γ̂m + tr
(
Q̂−1
m Ω̂m

)
.

Then

n (Rn(m)− In(m)) =

n∑
i=1

(
r2
mi − φ2

m

)
− nγ̂′mQ̂−1

m γ̂m + tr
((
Q̂−1
m − IKm

)
Ωm

)
+ tr

(
Ω̂m − Ωm

)
+ tr

((
Q̂−1
m − IKm

)(
Ω̂m − Ωm

))
.
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and for any J ≥ 2

(
E |n (Rn(m)− In(m))|J

)1/J
≤

E ∣∣∣∣∣
n∑
i=1

(
r2
mi − φ2

m

)∣∣∣∣∣
J
1/J

(25)

+

(
E
∣∣∣nγ̂′mQ̂−1

m γ̂m

∣∣∣J)1/J

(26)

+

(
E
∣∣∣tr((Q̂−1

m − IKm

)
Ωm

)∣∣∣J)1/J

(27)

+

(
E
∣∣∣tr(Ω̂m − Ωm

)∣∣∣J)1/J

(28)

+

(
E
∣∣∣tr((Q̂−1

m − IKm

)(
Ω̂m − Ωm

))∣∣∣J)1/J

(29)

We use some bounds developed in Hansen (2012) for the moment matrices which appear on

the right-side of (25)-(29). A key bound is the matrix Rosenthal inequality (Theorem 1 of Hansen

(2012)) which states that for any J ≥ 2 there is a constant AJ <∞ such that for any iid random

matrix XiE∥∥∥∥∥
n∑
i=1

(Xi − EXi)

∥∥∥∥∥
J

2

1/J

≤
[
AJ

((
nE ‖Xi‖22

)J/2
+
(
nE ‖Xi‖J2

))]1/J

≤ A
1/J
J

(
nE ‖Xi‖22

)1/2
+A

1/J
J

(
nE ‖Xi‖J2

)1/J
. (30)

where the second inequality is the cr inequality. Using this bound, Hansen (2012, Lemmas 2 and

3) established that for n suffi ciently large

E
∥∥∥Q̂−1

m

∥∥∥J ≤ 2 (31)(
E
∥∥∥Q̂−1

m − IKm

∥∥∥J)1/J

≤ A
1/J
2J

(
ζ2
mKm

n

)1/2

. (32)

We use (30)-(32) to bound the terms (25)-(29).

We start with (25). Define r = supm supx∈X |rm(x)| , which is bounded under Assumption
1.2. WLOG assume that r ≥ 1. Note that |rmi| ≤ r. Applying (30) to (25), and then ErNmi ≤
rN−2Er2

mi ≤ rN−2φ2
m,E ∣∣∣∣∣
n∑
i=1

(
r2
mi − φ2

m

)∣∣∣∣∣
J
1/J

≤ A
1/J
J

(
nEr4

mi

)1/2
+A

1/J
J

(
nEr2J

mi

)1/J
≤ A

1/J
J r

(
nφ2

m

)1/2
+A

1/J
J r2−2/J

(
nφ2

m

)1/J
. (33)

We next take (26). Note that (19) implies ‖zmi‖ ≤ ζm. Then E ‖zmirmi‖2 ≤ r2E ‖zmi‖2 =

25



r2 tr (Qm) = r2Km and E ‖zmirmi‖2 ≤ ζ2
mφ

2
m. Together,

E ‖zmirmi‖2 ≤ r
(
ζ2
mKm

n

)1/2 (
nφ2

m

)1/2 ≤ rΨ1/2
(
nφ2

m

)1/2
(34)

where the second inequality uses (24). Similarly,

E ‖zmirmi‖4J

n2J−1
≤ r4J−2ζ4J

m Er2
mi

n2J−1
= r4J−2

(
ζ2
m

n

)2J

nφ2
m ≤ r4J−2Ψ2Jnφ2

m. (35)

Applying (30) to (26), and then (34) and (35) we find

(
E
∥∥∥n1/2γ̂m

∥∥∥4J

2

)1/2J

≤ A
1/2J
4J E ‖zmirmi‖2 +A

1/2J
4J

(
E ‖zmirmi‖4J

n2J−1

)1/2J

≤ A
1/2J
4J rΨ1/2

(
nφ2

m

)1/2
+A

1/2J
4J r2−1/JΨ

(
nφ2

m

)1/2J
. (36)

Using the trace and Cauchy-Schwarz inequalities, (31), and (36)(
E
∣∣∣nγ̂′mQ̂−1

m γ̂m

∣∣∣J)1/J

≤
(
E
(∥∥∥Q̂−1

m

∥∥∥J ∥∥∥n1/2γ̂m

∥∥∥2J

2

))1/J

≤
(
E
(∥∥∥Q̂−1

m

∥∥∥2J
)
E
(∥∥∥n1/2γ̂m

∥∥∥4J

2

))1/2J

≤ (2A4J)1/2J rΨ1/2
(
nφ2

m

)1/2
+ (2A4J)1/2J r2−1/JΨ

(
nφ2

m

)1/2J
. (37)

Now we take (27). Using the trace inequality, (32), tr (Ωm) = E
∣∣z′mizmiσ2

i

∣∣ ≤ σ2E |z′mizmi| =

σ2Km, and (24)(
E
∣∣∣tr((Q̂−1

m − IKm

)
Ωm

)∣∣∣J)1/J

≤
(
E
∥∥∥Q̂−1

m − IKm

∥∥∥J)1/J

tr (Ωm)

≤ A
1/J
J

(
ζ2
mKm

n

)1/2

σK1/2
m tr (Ωm)1/2

≤ σA
1/J
J Ψ1/2 tr (Ωm)1/2 . (38)
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Next, take (28). Applying (30) to (28), using
∣∣z′mizmiσ2

i

∣∣ ≤ ζ2
mσ

2 and (24),

(
E
∣∣∣tr(Ω̂m − Ωm

)∣∣∣J)1/J

≤ A
1/J
J

(
E
∣∣z′mizmiσ2

i

∣∣2
n

)1/2

+A
1/J
J

(
E
∣∣z′mizmiσ2

i

∣∣J
nJ−1

)1/J

≤ σA
1/J
J

(
ζ2
m

n

)1/2

tr (Ωm)1/2 + σ2(1−1/J)A
1/J
J

(
ζ2
m

n

)1−1/J

tr (Ωm)1/J (39)

≤ σA
1/J
J Ψ1/2 tr (Ωm)1/2 + σ2(1−1/J)A

1/J
J Ψ1−1/J tr (Ωm)1/J . (40)

Finally, take (29). Using the trace inequality, Cauchy-Schwarz, (32), and (39),(
E
∣∣∣tr((Q̂−1

m − IKm

)(
Ω̂m − Ωm

))∣∣∣J)1/J

≤
(
E
(∥∥∥Q̂−1

m − IKm

∥∥∥J ∥∥∥Ω̂m − Ωm

∥∥∥J))1/J

Km

≤
(
E
∥∥∥Q̂−1

m − IKm

∥∥∥2J
)1/2J (

E
∥∥∥Ω̂m − Ωm

∥∥∥2J
)1/2J

Km

≤ A
1/2J
4J

(
ζ2
mKm

n

)1/2
(
σA

1/2J
2J

(
ζ2
m

n

)1/2

tr (Ωm)1/2 + σ2(1−1/2J)A
1/2J
2J

(
ζ2
m

n

)1−1/2J

tr (Ωm)1/2J

)
Km

≤ σA
1/2J
4J A

1/J
J Ψ tr (Ωm)1/2 + σ2(1−1/2J)A

1/2J
4J A

1/2J
2J Ψ3/2−1/2J tr (Ωm)1/2J . (41)

Combining (33) and (37), and then applying (21) and (23) we find thatE ∣∣∣∣∣
n∑
i=1

(
r2
mi − φ2

m

)∣∣∣∣∣
J
1/J

+

(
E
∣∣∣nγ̂′mQ̂−1

m γ̂m

∣∣∣J)1/J

≤ C1

(
nφ2

m

)1/2
C2

(
nφ2

m

)1/J
+ C3

(
nφ2

m

)1/2J
(42)

≤ C1 (nIn(m))1/2 + C2 (nIn(m))1/J + C3 (nIn(m))1/2J

≤ (C1 + C2 + C3) (nIn(m))1/2 (43)

where C1 = A
1/J
J r + (2A4J)1/2J rΨ1/2, C2 = A

1/J
J r2−2/J , and C3 = (2A4J)1/2J r2−1/JΨ.
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Similarly, combining (38), (40) and (41), and then applying (22) and (23),(
E
∣∣∣tr((Q̂−1

m − IKm

)
Ωm

)∣∣∣J)1/J

+

(
E
∣∣∣tr(Ω̂m − Ωm

)∣∣∣J)1/J

+

(
E
∣∣∣tr((Q̂−1

m − IKm

)(
Ω̂m − Ωm

))∣∣∣J)1/J

≤ C4 tr (Ωm)1/2C5 tr (Ωm)1/J + C6 tr (Ωm)1/2J (44)

≤ C4 (nIn(m))1/2 + C5 (nIn(m))1/J + C6 (nIn(m))1/2J

≤ (C4 + C5 + C6) (nIn(m))1/2 . (45)

where C4 = σA
1/J
J

(
2Ψ1/2 +A

1/2J
4J Ψ

)
, C5 = σ2(1−1/J)A

1/J
J Ψ1−1/J , and C6 = σ2(1−1/2J)A

1/2J
4J A

1/2J
2J Ψ3/2−1/2J .

Setting J = 4, (25)-(29), (43) and (45) imply that(
E |n (Rn(m)− In(m))|4

)1/4
≤ C (nIn(m))1/2 . (46)

where C = C1 + C2 + C3 + C4 + C5 + C6.

Applying Boole’s inequality, Markov’s inequality, and (46)

P

(
sup

1≤m≤Mn

∣∣∣∣Rn(m)− In(m)

In(m)

∣∣∣∣ > η

)
= P

(
Mn⋃
m=1

{∣∣∣∣Rn(m)− In(m)

In(m)

∣∣∣∣ > η

})

≤
Mn∑
m=1

P
({∣∣∣∣n (Rn(m)− In(m))

nIn(m)

∣∣∣∣ > η

})

≤ η−4
Mn∑
m=1

E |n (Rn(m)− In(m))|4

(nIn(m))4

≤ C4η−4
Mn∑
m=1

1

(nIn(m))2 .

Recall the definitions of qn and ξn. Pick a sequence mn → ∞ such that mnξ
−2
n → 0 yet

q2
n = o(mn) which is possible since ξn → ∞ and q2

n = o(ξ2
n) under Assumption 3.2. Then since

nIn(m) ≥ ξn and nIn(m) ≥ tr (Ωm) ≥ σ2Km ≥ σ2m/qn, the sum on the right-hand side is bounded

by

mnξ
−2
n +

∞∑
m=mn+1

q2
n

σ4m2
≤ mnξ

−2
n +

q2
n

σ4mn
−→ 0

as n→∞. This establishes (20) as desired, completing the proof. �

Proof of Theorem 5
As in the proof of Theorem 2, it is suffi cient to show that

sup
w∈Hn

∣∣∣∣Rn(w)− In(w)

In(w)

∣∣∣∣ p−→ 0. (47)
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where we have written In(w) = IMSE∗n(w). WLOG, assume Qm = IKm . For w
∗
m and w∗∗m defined

in (13) and (14), observe that
∑Mn

m=1w
∗
m =

∑Mn
m=1w

∗∗
m = 1. Since w∗m are non-negative and sum to

one, they define a probability distribution. Thus by Liapunov’s inequality, for any s ≥ 1 and any

constants am ≥ 0
Mn∑
m=1

w∗ma
1/s
m ≤

(
Mn∑
m=1

w∗mam

)1/s

(48)

and similarly
Mn∑
m=1

w∗∗m a
1/s
m ≤

(
Mn∑
m=1

w∗∗m am

)1/s

(49)

As shown in Andrews (1991a) and Hansen and Racine (2012)

nRn(w) =

Mn∑
m=1

w∗mnφ
2
m −

Mn∑
m=1

w∗mnγ̂
′
mQ̂
−1
m γ̂m +

Mn∑
m=1

w∗∗m tr
(
Q̂−1
m Ω̂m

)
.

Then applying Minkowski’s inequality, (42), (44), and then (48) and (49)(
E |n (Rn(m)− In(m))|J

)1/J

≤
Mn∑
m=1

w∗m


E ∣∣∣∣∣

n∑
i=1

(
r2
mi − φ2

m

)∣∣∣∣∣
J
1/J

+

(
E
∣∣∣nγ̂′mQ̂−1

m γ̂m

∣∣∣J)1/J


+

Mn∑
m=1

w∗∗m

[(
E
∣∣∣tr((Q̂−1

m − IKm

)
Ωm

)∣∣∣J)1/J

+

(
E
∣∣∣tr(Ω̂m − Ωm

)∣∣∣J)1/J

+

(
E
∣∣∣tr((Q̂−1

m − IKm

)(
Ω̂m − Ωm

))∣∣∣J)1/J
]

≤ C1

Mn∑
m=1

w∗m
(
nφ2

m

)1/2
+ C2

Mn∑
m=1

w∗m
(
nφ2

m

)1/J
+ C3

Mn∑
m=1

w∗m
(
nφ2

m

)1/2J
+ C4

Mn∑
m=1

w∗∗m tr (Ωm)1/2 + C5

Mn∑
m=1

w∗∗m tr (Ωm)1/J + C6

Mn∑
m=1

w∗∗m tr (Ωm)1/2J

≤ C1

(
Mn∑
m=1

w∗mnφ
2
m

)1/2

+ C2

(
Mn∑
m=1

w∗mnφ
2
m

)1/J

+ C3

(
Mn∑
m=1

w∗mnφ
2
m

)1/2J

+ C4

(
Mn∑
m=1

w∗∗m tr (Ωm)

)1/2

+ C5

(
Mn∑
m=1

w∗∗m tr (Ωm)

)1/J

+ C6

(
Mn∑
m=1

w∗∗m tr (Ωm)

)1/2J

≤ C1 (nIn(w))1/2 + C2 (nIn(w))1/J + C3 (nIn(w))1/2J

+ C4 (nIn(w))1/2 + C5 (nIn(w))1/J + C6 (nIn(w))1/2J

≤ C (nIn(m))1/2
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where the final two inequalities use

Mn∑
m=1

w∗mnφ
2
m ≤ nIn(w)

Mn∑
m=1

w∗∗m tr (Ωm) ≤ nIn(w)

1 ≤ nIn(w)

where the first two follow from the formula (12) for nIn(w), and the third holds for n suffi ciently

large since infw nIn(w)→∞.
Setting J = 2(N + 1), we have shown that

E |n (Rn(w)− In(w))|2(N+1) ≤ C1+N (nIn(w))N+1 .

Then

P
(

sup
w∈Hn

∣∣∣∣Rn(w)− In(w)

In(w)

∣∣∣∣ > η

)
= P

( ⋃
w∈Hn

{∣∣∣∣Rn(w)− In(w)

In(w)

∣∣∣∣ > η

})

≤
∑
w∈Hn

P
({∣∣∣∣n (Rn(w)− In(w))

nIn(w)

∣∣∣∣ > η

})

≤ η−2(N+1)
∑
w∈Hn

E |n (Rn(w)− In(w))|2(N+1)

(nIn(w))2(N+1)

≤ C1+Nη−2(N+1)
∑
w∈Hn

1

(nIn(w))N+1
.

As shown in Hansen and Racine (2012), equations (23)-(25)-(28), the right-hand-side is o(1). �
By Markov’s inequality, we have established (47), as desired.
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