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Abstract

Many tests for parameter instability have been proposed and discussed. How
should applied researchers choose between the tests? This paper attempts to construct
a unified framework in which many tests can be compared. Asymptotic theory is used
to develop a distributional theory for sequences of partial sample estimators and test
statistics under the assumption of local parameter variation. This is a functional
analog of the classic Pitman drift used to study local asymptotic power in conventional
hypothesis testing. We find that the CUSUM test is essentially a test for instability
in the intercept, the CUSUM of squares test is essentially a test for instability in the
variance of the regression error, and the forecast Chow test used by Hendry (1989) is
essentially a test for instability in the variance of the regression error as well. The
post—sample prediction tests for GMM proposed by Hoffman and Pagan (1989) and
Ghysels and Hall (1990) are close to the optimal test proposed here, if the tests are
made robust to the choice of the sample split. The optimal tests do not require a
sample split, and are best constructed using the full-sample estimates, thus being easy

to apply even in non-linear contexts.



1. Introduction

A large number of tests for model stability have been proposed and analyzed by
statisticians and econometricians. This analysis, however, has been fragmented, and
has failed to draw direct comparisons between the various test methods. This paper
attempts to meet this need by analyzing a number of stability tests within a common
framework.

Section two outlines the estimators considered, the parameter process and an
asymptotic distribution theory for the sequence of partial sample estimators. Explicitly
considered are the class of parametric estimators which solve a system of first order
conditions, which can be written as a sum across observations. This includes many
common econometric estimators, such as non—linear least squares and maximum
likelihood. Allowing for two—step estimators, such as generalized least squares, could
be handled fairly directly (as in Hansen (1990a)), but are excluded to reduce notation
and the complexity of the proofs. Extensions to handle the generalized method of
moments estimator is discussed in section 5. The process allowed for the parameter
vector is a generalization of the classic Pitman drift for the functional case. The
parameter process is assumed to be a constant plus a process which has a weak limit
in C[0,1]. This includes (standardized) polynomial trends and random walks. The
null distribution (no parameter variation) obtains as a special case. To develop a
distribution theory, the regularity conditions allow for heterogeneity and weak
dependence, but exclude explosive processes (such as trends or unit roots). This is not
simply to make the proofs easier, as the null distributions are different in the
non—stationary case (see Hansen (1991)).

Section three develops the tests for parameter instability. The locally most
powerful test is presented, under the assumption that the alternative is that the

parameter follows a martingale. The test is an average of squared backward



cumulative sums of scores (first order conditions). The locally most powerful test
requires knowledge of the parameter vector; some sample estimates are required to
implement the test. We consider tests based upon the full sample estimator and the
sequence of partial sample estimators. The latter can be written in a recursive or a
prediction format.

Section four develops a distributional theory for the test statistics. The
asymptotic distribution of the test statistics under the local alternative process is
derived. It is shown that all of the tests have asymptotic local power against
instability in the parameters for which the tests were intended. The asymptotic power
functions are displayed, and it is shown that the test based on the full-sample
estimates is uniformly most powerful. Since this is also the easiest test to calculate, it
emerges as the clear winner.

Section five analyzes several popular tests for parameter instability. The
CUSUM test of Brown, Durbin and Evans (1975) is shown to be a test for instability
in the intercept. Their CUSUM of squares test is shown to be a test for instability
in the variance of the regression error. Likewise for the prediction Chow test
advocated by Hendry (1989). The post—sample prediction tests for GMM proposed by
Hoffman and Pagan (1989) and Ghysels and Hall (1990) are close to the optimal test
proposed here, if the tests are made robust to the choice of the sample split.

Concerning notation, = denotes weak convergence of associated probability
measures with respect to the uniform metric, C[0,1] denotes the space of continuous
functions on [0,1], and BM(V) denotes a Brownian motion with covariance matrix V .

When applied to matrices |A| = max |Aij| , and |[A||p = [E(Ipa:g | Aij|)p] 1/p .
1,] 1,]
Throughout the paper, the letters r and s denote real numbers in [0,1] . The

notation '"nr" and '"ns" will be used as a shorthand for "the integer part of nr"

and '"the integer part of ns", respectively.



2. Local Parameter Instability and Recursive Parameter Estimation

An econometrician has some time series {x;,...,x } and wishes to estimates
some economic model, with unknown parameter vector 6 € 8 C IRk . The
econometrician elects to estimate the model by solving some optimization problem. In
most cases, this means that the estimator solves a system of first order conditions.

Assume that they can be written in the linear form

n
(1) FOC = ) m(0)

i=1
For simplicity, we only will explicitly examine one—step estimators. Allowing for
two—step estimators is a straightforward generalization which provides no additional
benefits while complicating the notation and proofs. The class of estimation problems
covered by (1) is quite broad, including linear and non-linear regression, and
maximum likelihood. To include generalized method of moments, we could generalize
our results by allowing m, to depend upon sample size as well. All of the results in
this paper extend to this case, but complicate the notation while adding little to our
comprehension.

The full sample estimator of the unknown parameter 6 , denoted by 9 , sets

the FOC equal to zero. Therefore

i=1
Our concern is estimation in the potential presence of parameter instability. It
seems natural in this context to examine the behavior of @ as the sample size
changes. It is convenient to display the dependence of @ upon sample size by
explicitly examining partial-sample estimators, which are the sequence of estimators
{?)t t = nl,...,n} based on partial-sample information. Note that there is some

minimum sample size, o, below which the econometrician will not define a partial



sample estimator. This minimum sample size needs to at least equal the number of
estimated parameters; and in practice may be considerably higher, for it may not
"make sense" to define a partial sample estimator with just a few degrees of freedom.
For example, it may be considered reasonable that the minimum number of degrees of
freedom equal no less than 10% of the total sample. Define this proportion ¢ = nl/n.
The choice of a is important in practice, and this is reflected in the asymptotic
theory which follows, as we assume that @ remains constant as n - o , so that n,
is assume to grow with sample size.

These estimators will satisfy the sequence of first order conditions:
t

(2) Y m(8) = 0.
i=1

It is well understood how to develop an asymptotic distributional theory for the
full-sample estimator # under the assumption of parameter constancy. It is also
fairly well understood how to develop an asymptotic distributional theory for the
partial-sample parameter sequence {9t}, using stochastic process theory, again under
the assumption of parameter stability. See, for example, Andrews (1990) or Hansen
(1990a).

What are the implications of parameter instability? Many forms of parameter
instability are plausible. My intention is to develop a framework for parameter
instability which may be thought of as a local deviation from a constant parameters.
The natural way to think of local departures is to use Pitman drift. The classic
Pitman drift specifies the parameter as a local approximation to the null value, such

as

B 1
0—00+7I-1C.

This allows construction of an asymptotic theory in which there is a smooth transition

between the null and alternative. In order to think of generalizing the classic Pitman



drift to incorporate parameter instability, we need to have an analogy for stochastic

processes. A tractable specification is

1
(2) b = 0, + 7% z_ = () € o] .

This specification is convenient for it allows the development of an asymptotic theory
in which both constant parameter and time—varying parameters appear as special cases.

The specification of Z(r) as an element of C[0,1] requires the parameter
process Z; to be relatively smooth. For example, Z(r) may be a linear (or
polynomial) trend, a Brownian motion, or a diffusion process. Discontinuous processes,
such as structural breaks, are excluded. This exclusion is probably not necessary, but
facilitates the use of currently available proof techniques.

We want to consider estimation of @ using the estimator which solves (1)
when the parameter follows process (2). By the latter, we will interpret this to mean
that in our statements of regularity conditions, we will center functions of the data
not at 00 , as would be conventionally done in asymptotic theory, but at 0i , the
value of the parameter at time i . Define . to be some neighborhood of 00 ,

M(0) = 597 mi(0) ,

Assumption A.

(a) 00 lies in the interior of 0, a bounded subset of RS .

(b) SUPr¢[g,1] 105 = 6l —p 0.
n
() V = limlig § [mi(ﬂi)mi(Oi)'] exists and is finite.
N-w .
i=1

nr

(d) 711—1 Y m(4) = B() =BM(V).
i=1



n
1
(e) 5'2 M(d) — M as and M>0.

i=1
t

1 0 yrab
f sup = sup MO = 0. (1) .
O o 121 eyl 7o Mi P

(8) M;(0) is strong mixing of size —2p/(p-1), for some p > 2.
(h) sup || sup |M.(O)] | <o for some § > 0 .
D 1 RE MO e

(i) fgg 1Z; — Zi—1“2(p+6) < ¢/n , for some ¢ < o.

Theorem 2.1. Under (1), (2) and assumption A, for r € [a,1] ,
Y, 1 31 1
mB, -6) = -31M Bx) +

(Proofs are in the appendix.)

Theorem 2.1 gives a characterization of the behavior of sequential estimation in
the possible presence of parameter variation. Suppose that there is no parameter
instability. Then the function Z(r) is identically zero, and the parameter estimates
converge to a scaled version of W(r)/r . Note that for all r, W(r)/r = N(0,1/r).
Thus, as expected, the variance of the partial sample estimator decreases as sample
size increases. The need to bound r away from zero becomes apparent as 1/r - o,
so the partial sample estimator is ill-behaved in extremely small samples.

The most interesting result of Theorem 2.1 concern the behavior of the partial
sample estimator in the presence of local departures from parameter stability. A
leading example is random walk parameter variation. In this case, Z(r) is a
Brownian motion and [ BZ is an integrated Brownian motion, a continuous time
analog of an I(2) process. A straightforward calculation reveals that for all r, [ SZ
=N, G r3/3), for some covariance matrix G , so r—lf(r)Z = N(0, G 1/3).



Thus this component of the asymptotic distribution has a variance which grows with
sample size.
Consider the effect of local parameter variation in a parameter subset. That is,

1 2

make the partition 6 = (01 , 02) and assume that Zi is a random walk, and Zi

is identically zero. Then the asymptotic distribution of 9% is conventional, while the
asymptotic distribution of 911; contains the divergent term. This is interesting for it
suggests that local deviations from constancy in some parameters only affects the
distribution of the estimators of those parameters, and not the distributions of the
estimators of the other parameters. Estimation and inference can proceed on the
stable parameters, as if all the other parameters were indeed stable. This fact also
points out the need for extreme care in selecting tests for parameter instability. In
order to detect local departures from stability, it is necessary to examine the

parameter estimates of interest, for examination of a subset of the parameters will not

contain information as to whether or not the other parameters are stable.



3. A General Approach to Testing for Instability

We now turn to optimal tests of parameter stability. Tests of stability may be
constructed to assess the stability of the entire parameter vector, or just a subset.
The former are called tests of pure parameter instability and the latter are called tests
of partial parameter instability. Partition 6 as (01 , Iz ), and take ' to be the
subset of 6 to test for instability. (For a test of pure parameter instability, set
gl = ). Denote the dimension of 6! by k, and the dimension of 6> by k, .
Partition m,(f) = (m}(0) , m?(O)) conformably. Denote the true (or pseudo—true)
value of @ under the null hypothesis of no parameter instability as 00.
In order to develop a test for parameter instability, we need to be more specific

about the process Z, which describes the parameter process in (2). Write Z, as

Z. = I, + 7, Z

1 =0,

0
and partition A and z; in conformity with @ . It turns out to be particularly

1

convenient to assume that Z; is a martingale with respect to some increasing

sequence of sigma—fields, with covariance matrix

E(z}z}’) = 7'2VI}/n
where V11 is the conformable upper—left block of the covariance matrix V from
Theorem 2.1.

Formulating the parameter process as a martingale allows for a wide range of
behaviors under the alternative. It includes, for example, simple random walks, and
parameter processes which display infrequent permanent shifts. It is in fact even
possible to construct a martingale with exactly one "structural break" of unknown
timing in each sample.

The null hypothesis of no parameter change is given by
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H: 2 =0 H,: 2>0.

In the context of maximum likelihood, Nyblom (1989) has provided the locally most
powerful test statistic for H, against H;. It is given by

n
-2 1,0 v -1l
L = o ) By(6) ViiBy(d)
t=1

where

n

B,()) = ) my(0),

i=t
and Bt(') is partitioned conformably with m. . This statistic may be derived as
an approximation to the Lagrange multiplier test. In non—MLE contexts, L is not
necessarily the locally most powerful test, but it can be interpreted as an "LM-like"
statistic in the conventional way.
In maximum likelihood, the variables m.(f) are known as the scores. The

variable Bt(0) is therefore a partial sum of scores, but descending from n to 1.
We could call this a backward cumulative score. We will retain this terminology even

in non—-MLE contexts. Note that if we define a forward cumulative score as

t
S,(0) = ) m(0),
i=1

then we can obviously write the statistic as either a function of the forward

cumulative score as well, since

Bt(ﬂ) = Sn(ﬂ) - St_1(0) .
The locally most powerful test cannot be directly implemented because the true

value 00 is unknown. Nyblom (1989) suggests using the MLE @

n

- -2 10, o-1nl/?

L = 2% ) B(b) VB0 .
t=1
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Since the first order conditions guarantee that lel( ) = 0, this statistic equals

n
: -2 Loy, o1 olfs
L =% ) s;b) V780,
t=1
so when the full-sample MLE is used, the statistic may be equivalently thought of as

constructed from forward or backward cumulative scores. To simplify the notation, we

can write the statistic as
n t
i = g2 &l,o-1al al ~1 s r
L = Y SV § = ) m, m, = m,() .
t=1 i=1
To render the distribution invariant to nuisance parameters and robust to

heteroskedasticity, Hansen (1990a) suggests taking
v o= 1 2 s

With Vll the upper—left block of this matrix.

The replacement of 00 with the MLE @ is a computationally simple
procedure, but it is not the only option. The partial-sample estimators can also be
used in some fashion. The following configurations seem promising. The recursive

estimates of the first—order conditions are given by

~

m, = ( _1)

Denote by n* = n —n, = n — ne the number of observations for which m. is
1 1

defined. We have the test statistics

n
- x—2 ~1, o151 = ~
L, = o7 ) By VB, B, = ) m
t=na 1=t
and
n t
s x—2 al,v—1gl & ~
Lp = o ) S ViiS; § = ) m.
t=na i=na

Note that we have specified test statistics as functions of both the forward
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cumulative scores as well as the backward cumulative scores. The theory suggests the
use of the latter, but as we will see, some commonly used test statistics bear greater
resemblance to the forward cumulative scores.

We also have the prediction error formulation:

Although it would be possible to define a version of L using the forward cumulative
scores, there seems no particular reason to do so.

It is useful to reflect upon these four feasible formulations of the test statistic.
All are based upon the average of the squared cumulative scores, where the cumulative
scores are evaluated at different parameter estimates. Statistic L evaluates all the
scores (first—order conditions) using the full-sample parameter estimates, which should
be the most efficient estimate of the parameter value under the null hypothesis.
Statistics if and i’b evaluate each score at the partial sample estimates obtained
with only the previous observations. Statistic L essentially performs a sample split
(for each t). Observations 1 through t—1 are used to obtain the parameter

estimate f§, ; , and then this estimate is used to center the cumulative scores over

observations t to n .
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4. Asymptotic Power Functions

None of the implementable tests discussed in section 3 is actually the locally
most powerful test, because sample estimates are used. Which of the several tests
proposed is the most powerful is therefore unclear a priori. To compare the tests, the
first place to start is with an examination of local asymptotic power. This abstracts
from complications due to small samples, dynamics, non—linearities and non—normal
distributions. One may think of the asymptotic local power function as a first—order
approximation to the actual power function.

The asymptotic power functions are simple functions of the asymptotic
distributions of the test statistics under the local alternative process. Therefore, we
simply provide the latter.

First, we provide the distribution of L . Partition

11 .12
M=[MM}

M21 M22

Theorem 4.1. Under (1), (2) and assumption A,
nr
1 4 _ 1 . * *
(a) VHSnr“VHEmi =  B¥I) — MZ¥r)
i=1

(b) L —y  [oP*() P*a)dr

where P*(r) = W*(r) + v;}/z[M”z*l(r) + M12Z*2(r)] , B*(x) = B(r) — B(1),
a Brownian bridge, Z*(r) = [ 8Z —rf (I)Z, a tied—down integrated Brownian motion,

and W*(r) is a standard Brownian bridge of dimension k, .

Theorem 4.1 provides the asymptotic distribution of L under the null
hypothesis and local alternatives. Under the null, the distribution is [ (l)W*’W*,
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which is a multivariate generalization of the Smirnov goodness—of—fit distribution.
How can we use Theorem 4.1 to evaluate the power of the test statistic? I

think that it is easiest if we simplify a moment and assume that the scores are

orthogonal. This arises in linear regression, for example, if the regressors are

orthogonal. In this case, M is the identity matrix, Ml = , and M2 =

0,
yielding P*(r) = W¥(r) + Vﬁ/ 2Z*l(r) . The asymptotic distribution only depends
upon the non—stationary process Zl, but not upon Z2, so the test will have power
against movements in 01, but not 02, as should be expected from the design of the
test. It is important to note that when the scores are correlated (the design matrix is
not orthogonal) then the test statistic will have some power against local departures in
# as well. This power will depend upon the degree of correlation, as well as the

nature of the instability in 02 .

We can also derive the asymptotic distributions for L and L .

Theorem 4.2.
1 & 1y - 1 (5 . . .
(a) Sy = Wiznami = [B(r) ~ B(a) = M[Z(r) — Z(a)]] ,
for r € [a,1]
(b) L, —y [gP@ B,
(c) L, —y ;(1)[?(1)_ﬁ(r)]f[ﬁ(1)-ﬁ(r)]dx

where B(r) = B(r) — ](I)%B(s)ds , Z(r) = IgZ - f{)-:-(fgzu)dA)ds ,

P) = We) + V2 [MlZ) + MP220) . 20) = (e + 1(-0)) - L@V

and W(r) = BM(Ikl) .
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Theorem 4.3.
n
1 5 1 y A >
(a) & By = 75*2 m(d ) = B(r) - MZ(y)
i=nr
(b) L —y —— /PP
(1-a)* "¢

where B(r) = B(1) — r 'B(r) , Z(r) = [iZ — £ 32, W(r) = W(1) - r "W(r) ,

W() = BM(L ) and PG) = W) + VIll‘/z[MHZl(r) + M1222(r)] .

Theorems 4.2 and 4.3 show the differences in the asymptotic behavior of the
various tests considered. First, the distributions under the null hypothesis are
different. The null distribution of L depends upon a Brownian bridge, I~,f and
f‘b depend upon a Brownian motion, and L depends upon the process B(r) =
B(1) — -rl-B(r), which I haven’t seen before. I will return to a discussion of the latter
process momentarily. All null distributions depend upon k1 , the number of
parameters tested for stability. The null distribution of L depends upon nothing
else. The distributions of if , f‘b and I depend as well upon a , the
proportion of the sample excluded from testing. This slightly complicates the
tabulation of critical values.

The process B(r) is fairly different from either a Brownian motion or a
Brownian Bridge. Its covariance function is E[B(r)B(s)] = -l—s_ﬁ for r < s, which is
independent of r . The fact that Var(B(r)) = 1;_r means that Var(B(r)) + « as
r - 0, so the choice of the proportion parameter a appears to be quite crucial.

The power functions of the four test statistics are different in form, but similar
in content. All statistics apparently have asymptotic local power against movements

in the same parameters, but the expressions give little guidance as to which tests

should have the greatest local power. Note as well that the power functions of if ,
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f’b and I depend upon a .

Since we understand what the asymptotic power functions depend upon, we can
calculate the functions using simulation methods. The null distributions of L, if, and
i’b are known; see, for example, Nyblom (1989). The distribution of L is not. I
calculated the null values for a = 0.05, 0.1, and 0.2 (using 20,000 samples of size
1000). To calculate the power functions, I set k1 = 1, and took 2,000 samples of
size 500. The statistics if , f‘b and L were calculated using the proportions
a = 0.05, 0.1, and 0.2 . The alternative used was a Gaussian random walk, and the
power of a 5% size test was calculated for 20 values of 7, from 7 =1 to 7 = 20.
The results are displayed in Figures 1, 2 and 3. The power function of L was
uniformly most powerful, so all other tests are displayed relative to it. Figure 1
displays the power functions of I~,f , figure 2 displays those of I~‘b , and figure 3
displays those of L. The figures show that L is the most powerful test and f.f is
the least powerful. The power functions of i’b are quite close to that of L ,
especially for small 7 . Figure 2 also suggests that the choice of a is not critical
for L. The power functions for L are fairly close to L , but show some
dependence upon the choice of a , with the power increasing with a .

Overall, the calculations show that L, I~Jb and L will all have similar
power against the same alternatives, with L having the best performance. Since L
is also the simplest statistic to calculate, this combines to yield a strong argument in
its favor. The figures show that reversing the direction of the cumulative sum, to
become a forward sum, will have adverse effects upon power.

For convenience, asymptotic critical values for L are provided in Table 1.
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5. Popular tests for Instability

One useful feature of our present framework is that it allows us to examine
popular tests for instability. We can discover their asymptotic power functions by

determining on which scores they are based.

5.1 The CUSUM and CUSUMSQ Tests

In a seminal paper, Brown, Durbin, and Evans (or BDE) (1975) proposed the
CUSUM procedure for testing for instability. In a linear regression
yy = a + ﬂ’xi + g

BDE suggested forming the recursive residuals

~ S

& =¥ — 4 — XA,
where (&i—l’ 'Bi—l) are the partial-sample estimates using the data up to time i.
Then BDE suggested taking the forward and backward cummulative sums of scores
n
S, = ) & By = L& -

1=n, 1=t
The authors suggested plotting S, and/or B, and (informally) rejecting stability if
these cumulative sums were "too large".

Our analysis of this problem is now quite simple.! The residual is the
derivative of the least squares objective function with respect to the intercept. The
cumulative sums of the recursive residuals are thus the cumulative scores evaluated at
the recursive estimates, and the asymptotic local power function is given in Theorem
4.2. We see that the test has good power against instability in the intercept, but no
asymptotic power against movements in any zero—mean regressor. The test will have

some power against movements in a non—zero—mean regressor, but the power will be a

iThe power function of the CUSUM test has been derived independently by Kramer,
Ploberger, and Alt (1987).
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function of this mean. The CUSUM test was intended as a general test for
instability. Its asymptotic power function tells a different story.
BDE also proposed a test involving the squared recursive residuals, often called

the CUSUM of squares, or CUSUMSQ, test. The test is based upon the sequence

~2
_ t
Ft = ;2- -1
n
~2 _ 1gt 22 )
where i = fznlei . Since
t
=2 =2 ~2 =21 ~2 ~2
Fo = o [at—on] - nfz(ei_an
i=n1

we see that Ft is a forward cumulative sum of the centered squared cumulative
residuals. But these are simply the scores with respect to the variance of the
regression error in the Gaussian linear model! Thus the CUSUMSQ statistic will have
asymptotic power against movements in the variance of the regression error. Due to
the block—diagonality of the information matrix between the regression coefficients and
the variance, the CUSUMSQ statistic will have no asymptotic power against
movements in the regression coefficients. This confirms the findings of Ploberger and
Kramer (1990) who used different techniques.

The bottom line is that neither test are expected to have useful power against

movements in the slope parameters.

5.2 GMM Post—Sample Prediction Tests

Recently, Hoffman and Pagan (1989) and Ghysels and Hall (1990) independently
proposed a test for structural stability in the context of estimation by the generalized
methods of moments (GMM). To allow for GMM estimation in our framework, we

have to extend the notation. The first order conditions which replace (1) are now
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FOC = ) m_(0)
i=1

so the “"scores" now depend upon sample size as well. In the GMM case, § is chosen

to minimize a function of the form

Q.0 = g(6)'W g(0)

where
g(0) = Zig(9)

E[gi(O) | 5.”_1] = 0, and W is some weight matrix. Here, we have

1
9, gy
m(0) = [Sg5s(0] WO g0
All the statistics are defined as before using m . in place of m, . The
Hoffman—Pagan and Ghysels—Hall statistic are based on quadratic forms in

Bt = m( 1)

where bi—l is the partial sample estimator using information up to time t . This is
the backward cumulative score using the prediction error formulation. These authors
take the sample split t as known and fixed, and the authors acknowledge this as a
deficiency of the test. The power of the test may still be reasonable, as we know
from Theorem 4.3 that the Bt will reflect movements in the parameters vector.

These results also suggest how to improve the tests suggested by
Hoffman—Pagan and Ghysels—Hall. First, the tests can be made agnostic with respect
to a priori selection of a particular breakpoint by using the test statistic L or L.
Second, L should be used to reduce the computational burden. As pointed out by
Ghysels—Hall, however, L would be computationally burdensome, since estimation of
bt for each t requires iteration. Note that L is less computationally demanding
than even the breakpoint statistics suggested by Hoffman—Pagan and Ghysels—Hall.

On every criterion, the statistic L dominates.
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5.3 Hendry’s Forecast Chow Test

Hendry (1989) has advocated the use of a particular forecast stability test, and
has made it one of his standard diagnostic statistics. I will describe the test as I

understand briefly. The model is

i = x{f + g
estimated by least squares. The partial sample estimators {,Bt} are formed, and

then for each t , the vector

G = [l e - @B ©
is formed. ét consists of the forecast errors from period t through n , using the

partial sample estimate obtained at time t — 1. The idea is to see of ét is "close"

to zero as a vector. The natural statistic for this is

where Vt is an estimate of the covariance matrix for ét . This statistic is
calculated for each t , scaled by the 5% (say) critical value from a chi—square (or
F) distribution with n — t degrees of freedom, and plotted for all t > n, .

In large samples, the uncertainty in the partial sample estimators will diminish,
so the matrices V, will approach scaled identity matrices (of dimension n-—t), where
the scale gives the variance of the regression error. Thus in large samples, Ft is
essentially a cumulative sum of squared residuals from period t to period n, where
the residuals are evaluated at the parameter estimates obtained in period t—1. Thus
Ft is essentially an element of our prediction error cumulative sum of scores, Bt’ the
element corresponding to the variance of the regression error.

We can now see the strengths and weaknesses of this test. First, concerning
size. Of course the test as currently used is hard to evaluate, since an eyeball metric

is used to gauge the "significance" of the sequence of F—tests. This could be made
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rigorous using our theory, so is not a big concern. Less obvious, however, is the size
distortion induce by the use of the chi—square/F distributional approximation. This
cannot be shown to be an asymptotic approximation, but instead depends upon
distributional assumptions for the errors. This could be relaxed by using a normal
approximation for the centered sum of squared residuals.

Second, and more importantly, we have to examine power. The test will have
good power against local movements in the variance of the regression error. But the
test will have no asymptotic local power against movements in the other parameters.
Although Hendry and his coauthors have been among the most vocal in their advocacy
of testing the assumption of parameter stability, we can now see that the specific test

advocated was not a particularly useful choice.
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5. Conclusion

This paper has shown that powerful yet simple tests of the hypothesis of
parameter stability are possible. The best tests are obtained by forming backward
cumulative sums of scores, centered at the true parameter value. The next best test,
it appears, it to center the cumulative sums at the full-sample parameter estimates.
This requires no sample splitting. Only in the special case where a researcher is
testing for a structural break occurring at some known time is a sample split
necessary, or useful. Conventional wisdom based upon this special case has led most
applied researchers to advocate or use tests which are based on some form of sample
split. It is time to abandon this approach.

The performance of the tests was examined using the asymptotic local power
function. This should be viewed as a first—order approximation to the actual power
function. We found that many popular test statistics have zero asymptotic local
power against alternatives of interest. This does not mean that the tests have zero
power fixed alternatives of interest. They may well have power, but we would expect
their power to be substantial less than the power of the tests with non—zero
asymptotic local power. In particular examples this ranking may not obtain, but

without further analytic study we should not expect this to be the case.
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Appendix

Proof of Theorem 2.1. Take any r € [a,1]] . By the first order conditions

(A1) 0 = 7% Y m(B) -
i=1

Denote by m‘i" the a’th element of the vector mi(-). For each a and each i,

take a first—order Taylor series expansion about 0i :

nr nr nr
(A7) £Y w¥@) = ) =}6) + 3] MO A, - 6)
nr nr nr
= ) nfe) + 1) Mo @, - ) - 5] ML

where M?‘(-) is the a’th row of M(-) , and 6% is a random variable on a line
segment joining 9m and 0i .

Taking another set of Taylor’s series expansions,

nr nr nr
1 ab _ 1 ab 1 J jrab
(A3) nl MU = g} MG + 5} mp MU0 - 8)
i=1 i=1 i=1
nr
1 . .
= EE M?b(ﬂi) + op(l) uniformly in r
i=1
s rMab uniformly in r

under Assumption A (b),(h). The final convergence uses Hansen (1990a), Lemma 1,
with Assumption A (e). Theorem 4.1 of Hansen (1990b) shows that

nr
1
i g4 -, o

uniformly in r , so
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(A4) %12” M(6})Z, = M%Iir Z, + o) = M [gZ(s)ds .
(A1) — (Ad) tlo=glther yield =
(1 -0) = - [as op(l)]—l[vg.ﬁz ) - 1%
i
- - (rM)—l[B(r) _ Mj(r)Z] = -IvlBw + Iz, o

Proof of Theorem 4.1.
(a) By definition
nr nr
1 - _ 1 7
wl oM o= ) m -
i=1 i=1

Taking element by element Taylor’s series expansions
nr

71 mid)
i=1

nr nr nr
= Almd@ + 3] MEED -6 - 5] Mies
i=1 i=1 i=1
Using (A3), (A4) and Theorem 2.1,
nr
2] m® = BE + rM[——M_lB(I) 4 f(l)Z] - Mz
i=1

= B(r) - 1B(1) - MJ§Z + tM/}Z
= B*r) — MZ¥r) .
(b) From part (a),
2Y wih) = B - o uhre = VPP
i=1

Therefore
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L= 33 (B el el o

= j(l)[Vi/zP*(r)] [1/2P*(r)]dr = j(lJP*(r)’P*(r)dr

by the continuous mapping theorem. o

Proof of Theorem 4.2
(a) By definition

nr nr

1 ~ —1/2
A=) om o= (-0 m@ )
i=na i=na
Taking element by element Taylor’s series expansions

nr
(a2 Y w3, )
i=na
nr nr
- F[ﬂ mi(e) + ;) MODAG - 4) - § ] Mz
i=na i=na i=na
where 0’{} is on a line segment joining bi—l and 0i. Using Theorem 2.1

nr
(A5) %.2 MO WE(D_, - 6) = jZM[—:M—lB(s) + %—jgz]ds
1=na

= — 5B+ M/Y(sTUSz)ds

Using (A3), (A4) and (A5),

nr
711-1.2 m(h_,) = B()-B(e) - [BE)ds + M/ Sz)ds — M/IZ
1=na
= B() - Bg) - M[jle— j;(s_ljgz)ds]
(b)  Set
Sn(r) = 71117 Vﬁ/zsna+rn*’
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Then by part (a)

S,0) = S(zly | Batx(1-a)) - Bla) - M[f;(l"“)z _ jz(l_a)(s—ljf)Z)ds] ] .

Set W(r) = _1/ 2[B(a+r(1—a)) — B(a)]/yI=a . A routine but tedious calculation can
show that the process V 1/ 2B(r) is a mean—zero Gaussian process with the
covariance function of a Brownian motion (and therefore is a standard vector Brownian
motion.) One can also check that W(r) is also a standard Brownian motion. Now

t—na
0 n¥
~ _ 1,
) fdf o8y V718
t=na t-na-1
n¥

t—na
n¥
n

-y f slaysle) ar = J} St@yrsim ar = BB

t=na t-na-1
n¥

(c) Follows by analysis similar to that of parts (a) and (b). O

Proof of Theorem 4.3

~

(a) Denote 4

nr—1

by br’ The first order conditions are that Elllr_lmi(bnr_l) =0,

giving

1Ly 1y o
(A6) m.(f) = m. (4

yn Enr 1( r) Vo 21 1( r)
Element by element Taylor series expansions yield
1 1 7 1

(A7) & Bmi(B) = 2 3mi(6) + IMYG)AEGD - 6) — 35 Mg,
where 6% lies between ¢, and br . Using (A3), (A4), and Theorem 2.1, (A7)

converges weakly to
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B(1) + M[—%M"’lB(r) + j{)z] - M/yZ

= B() - 1B - M[j(l)Z _ %]SZ] .

) L = 2y
n

[ o I =]
o]
Sl
<

= (- a)2f [ nr] V—l[Vll_lBrllr] = (IITG)2 I ‘IZP(I)'P(r)dr
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TABLE 1: ASYMPTOTIC CRITICAL VALUES FOR L

Significance Level

Degrees of Freedom (m+1) 1% 25% 5% 7.5% 10% 20%
1 .7148 593 470 .398 .353 .243
2 1.07 .898 .749 .670 .610 .469
3 1.35 1.16 1.01 .913 .846 .679
4 1.60 139 124 114 1.07 .883
5 1.88 163 147 136 128 1.08
6 212 189 1.68 158 1.49 1.28
7 235 210 190 1.78 1.69 1.46
8 259 233 211 199 1.89 1.66
9 2.82 255 232 219 210 1.8
10 3.05 276 254 240 229 2.03
11 327 299 275 260 249 222
12 351 3.18 296 281 269 241
13 369 339 315 3.00 289 259
14 390 360 334 319 3.08 277
15 407 381 354 338 326 295
16 430 4.01 3.75 358 346 3.14
17 451 421 395 3.77 3.64 3.32
18 473 440 414 396 3.83 3.50
19 492 4.60 433 416 4.03 3.69
20 513 4.79 452 436 4.22 3.86

Source: Hansen (1990a), Table 1.
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