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ABSTRACT

It is well known that tests for cointegration have low power against reasonable
alternatives in typical sample sizes. This paper analyzes existing tests and isolates a
common problem. The distributional theory depends upon the dimensionality of the
system (the number of variables, n ), which is due to the fact that all n unit roots in the
system are estimated. This does not make effective use of the structure of the alternative
hypothesis, since typically the alternative of interest is a low dimensional cointegrating
space.

This paper proposes a simple, powerful test using Cochrane—Orcutt. Under the null
hypothesis of no cointegration, the asymptotic distribution of the AR(1) parameter
estimate is identical to the Dickey—Fuller coefficient test for a univariate series. Standard
unit root tests which allow for serial correlation may be employed on the Cochrane—Orcutt
residuals under the distributional theory for the univariate case. This result stands in stark
contrast to the results of Stock and Watson (1988), Johansen (1988) and Phillips and
Ouliaris (1990), whose distributional theory depends upon n , the dimensionality of the
system. Monte Carlo evidence is provided for the dramatic improvements in power
achieved by this approach.
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1. Introduction

Since Granger (1981) introduced the concept of cointegration, a number of authors
have suggested various tests to determine the number of cointegrating vectors in a system
of I(1) variables. Engle and Granger (1987) suggested using an Augmented Dickey—Fuller
(ADF) test on the ordinary least squares (OLS) residuals from a regression of one variable
upon the others. The asymptotic theory for this OLS "residual—based" approach has been
developed by Engle and Yoo (1988), Phillips and Ouliaris (1990) and Hansen (1990). A
likelihood ratio (LR) test using full information maximum likelihood estimation (MLE)
was proposed and developed by Johansen (1988, 1989). Alternative tests have been
proposed by Phillips and Durlauf (1986), Stock and Watson (1988), Phillips and Ouliaris
(1988), Stock (1988), and Park, Ouliaris, and Choi (1988), among others.

Despite the large number of papers, the theory is still undeveloped. The large
number of tests, each with their own non—standard distributions, is confusing to many
applied researchers. The relationship between the Stock—Watson, Johansen, and
residual—based tests has not been examined in the previous literature.

This paper discusses these tests in a unified framework with some promising results.
The distributions of existing test statistics are shown to depend upon the number of
variables in the system. One effect is that power decreases with the size of the system.
The common cause of this dependence is that the tests estimate all the unit roots under the
null. This ignores the structure of the alternative hypothesis, which most commonly is a
low dimensional cointegrating space. For example, in a two variable system, the null
hypothesis is no cointegration, or the presence of two unit roots. The alternative is that
the variables are cointegrated, or that the two variables have one unit root between them.
It therefore seems superfluous to estimate both roots.

An alternative GLS approach is proposed which avoids this problem. The procedure

is quite simple to implement, reducing in a single equation setting to iterated



Cochrane—Orcutt regression. The asymptotic distribution of the AR(1) coefficient is
identical to the distribution of a univariate Dickey—Fuller coefficient test. Some size
distortion exists in finite samples, which a Monte Carlo analysis suggests can be corrected
by an bias adjustment. Corrections for residual serial correlation can be made, as in
Phillips (1987), Said and Dickey (1984), Stock (1988), or Park and Choi (1988).

The rest of the paper is organized as follows. Section 2 introduces the model and
assumptions. Section 3 reviews the common cointegration tests: Stock—Watson, Johansen,
and Phillips—Ouliaris, and demonstrates their curse of dimensionality. Section 5 studies
Cochrane—Orcutt estimation in a single equation setting and derives the asymptotic null
distribution. Section 5 presents an adjustment which reduces size distortion in small
samples and presents evidence on power comparisons. Section 6 extends the analysis to
allow for serial correlation. Section 7 extends the analysis to allow for fitted intercepts and
trends. Section 8 extends the model to allow for tests for multiple cointegrating vectors.

Some notational conventions are given as follows. The symbol " = " denotes
weak convergence of probability measures, " =" denotes equality in distribution, BM(f)
denotes a process distributed as a vector Brownian motion with covariance matrix
"[c]" denote the greatest integer less than or equal to ¢, and I(1) denotes a stochastic
process integrated of order one. Arguments of functionals on the space [0,1] are
frequently suppressed, and integrals on the space [0,1] such as [ (l)B(s) are written as
/ (l)B and sometimes as [B to reduce notation. All limits are taken as the sample size T

diverges to positive infinity. Proofs are left to an appendix.



2. Model

The question is whether or not the n x 1 stochastic process {xt: t=1,..} is
cointegrated. This requires a maintained assumption that each element of X, is I(1), or
"difference stationary". Under standard assumptions (finite second moments and

asymptotically independent increments) this allows the application of the invariance

principle:
—-1/2 =
(1) T/ xry = B() = BM(D)
where
. -1 )
(2) Q = limp, T "E(xpxg) -

The null hypothesis is of no cointegration, which may be specified as
H:Q>0.

The alternative is that  is of deficient rank. If n > 2, it is also of interest to uncover
the number of distinct cointegrating vectors, which is equivalent to the rank deficiency of
2. These issues are fairly well understood and have been discussed at length in the existing
literature.

The asymptotic theory used in this paper will also require convergence to the matrix

stochastic integral:

(3) T 15Ty

’ 1 ’ — 1
1%18%; = [;BdB” + A, A = lim

1T Ny
Tow T 27 E(x,_AX]) .

An assumption that is sufficient for (1) and (3) and the other results in this paper is

(4) {Ax,} is weakly stationary and strong mixing with mixing coefficients
{a } satisfying E;':1=1m2a§1_1/ T<w, and sup,y,E| Ax,;Axt|2r <o, for

some r>1.



3. Cointegration Tests and the Curse of Dimensionality

There are two broad classes of tests which take the null of no cointegration. The
first generalizes the Dickey—Fuller univariate unit root testing methodology directly to the
multivariate case. This includes the Stock—Watson common trends test (Stock and
Watson, 1988) and Johansen’s likelihood ratio (LR) test (Johansen, 1988). The second
class of tests apply a standard (univariate) unit root test to a least squares residual. This
includes most of the tests discussed by Engle and Granger (1987), Engle and Yoo (1988),
Phillips and Ouliaris (1990), Hansen (1990), and Park, Ouliaris and Choi (1988).

Stock and Watson (1988) fit by multivariate least squares

X = Rx 4 + i
and base their test upon R , for under the null hypothesis, R —»p I 0 Serial correlation
in Ax, can be incorporated via prefiltering (as in Dickey and Fuller (1979)) or bias
correction (as in Phillips (1987)). Stock—Watson suggest examining the latent roots of R .

Johansen’s test is quite similar in spirit. Serial correlation is directly handled by

estimating

x, = Rx, | + A(L)Ax,_; + e,

by maximum likelihood. Under the null of no cointegration, R = In , which Johansen
suggests testing by the likelihood ratio statistic. When the innovations are normal, this
reduces to the Wald statistic for the test of R =1 .1 Both the Stock—Watson and
Johansen tests can be seen as multivariate generalizations of the univariate unit root
testing methodology: they take the null hypothesis that the n—variable system has n

unit roots in the autoregressive representation, and test that all the leading roots are

Johansen actually discusses a more general situation which allows for r cointegrating
vectors under the null, where r < n. This is rarely used in practice, and not discussed
here.



unity.
The second class of cointegration tests attempt to reduce the multivariate problem
to a univariate test upon a least squares residual. Partition X, as
xp = (x4 Xp¢)’
1 -1
and note that under the null hypothesis of no cointegration, for any (n—1) x 1 vector a,

if we define

U = Xy T Xy
then u, =1I(1) and if we fit an AR(1) to u,:
u = p u 4 + ét
then p —>p 1 . Under the alternative, some vector « exists such that for some p <1,
u, = I(0) and thus p —p P In practice, a is unknown and the common practice is to
use a least squares regression of X 4 UPOD Xo, .

Unfortunately, the distributional theory of this procedure is not identical to the
theory for the univariate case. Under the null, the OLS coefficient estimate & does not
converge to a constant, but stays random in the limit. This is part of the phenomenon of
spurious regression; see Granger and Newbold (1974) and Phillips (1986). This
inconsistency affects the behavior of the test statistics constructed from the residuals. It is

not that difficult to see how this happens. The least squares residuals are
A T T -1
Uy = Xp — B1%%pf [21x2t 2t] Xot

so standard invariance principle arguments give

(5) T_1/2ﬁ[Tr] = T_l/le[Tr] - [ 87y x 2t][ 28 xgyx 2t] I[T_1/2x2[Tr]]
= B,(r) - /1B,B [jOB B'] “IB,r) = B*().

B* is the residual from the continuous time regression of B, upon B, . Unit root tests



constructed from {ﬁt} can be shown to depend upon this random element, which depends
upon n , the number of elements in the system.

This dependence upon dimensionality is important. Examination of the critical
values in the tables of Stock and Watson (1988), Johansen (1988) and Phillips and Ouliaris
(1990) reveals that the asymptotic distributions of the test statistics shift away from the
origin as the dimensionality increases. Thus larger test statistics are needed for rejection,
implying that smaller estimated AR(1) parameters are needed. This is expected to reduce
power. To illustrate this fact I report a simple Monte Carlo experiment2. 5000 draws of

samples of length 100 were made from the process

X1 = PXp41 T ey
Xot = Xgi1 T Co4

e, = (egp€97)” = N(OIL ).

No corrections for serial correlation were made. The (size—adjusted) power functions for
5% size tests are displayed in table 1 for the Stock—Watson, Johansen and
Phillips—Ouliaris tests. Rejection frequencies are given as a function of p, for systems of
size 2 through 5 variables. As expected, all three tests show dramatic reductions in
power as the size of the system increases. It is also interesting to note that the
residual—based tests (Phillips—Ouliaris) have much better power than the Johansen and
Stock—Watson tests.

This dependence renders the tests fairly ineffective in moderate sample sizes with
moderately large systems. We could term this problem a "curse of dimensionality" for
cointegration testing. The reason why the test distributions depend upon the
dimensionality of the system is because they involve estimation of all n wunit roots in the

system. The Stock—Watson and Johansen tests do this explicitly by estimating an n

2All calculations in this paper were made in GAUSS386 on a 386/33.



equation VAR. The residual-based procedure does this implicitly, as the first stage
regression is spurious and implicitly estimates the n —1 unit roots of the regressors, while
the test itself estimates the remaining unit root.

Since it rarely is the case that all unit roots need to be tested, it seems sensible to
design tests which only estimate the number of unit roots which are under scrutiny. To be
specific, in the common two—variable system, if it is agreed that each variable is roughly
described as I(1), then the question of interest is whether the variables are cointegrated,
which means that the system has one unit root, as opposed to two unit roots. The above
procedures estimate both roots, and hence possess distributions which reflect this fact. An
alternative procedure which circumvents this curse of dimensionality is developed in the

next section.

Table 1. Finite Sample Power. T = 100
A. Stock—Watson

0 n=2 n=3 n=4 n=235
1.00 .05 .0 .0 .05
0.95 .10 .06 .06 .05
0.90 .28 13 .09 .07
0.85 .56 27 .16 .10
0.80 .82 .50 .29 .18
0.75 .96 .73 49 .30
B. Johansen
/. n=2 n=3 n=4 n=325
1.00 .05 .0 .05 .05
0.95 .08 .05 .05 .05
0.90 .20 .10 .07 .06
0.85 A1 19 12 .09
0.80 .66 .32 .20 12
0.75 .86 .51 .30 A7
C. Phillips—Ouliaris
o n=2 n=3 n=4 n=2>5
1.00 .05 .05 .05 05
0.95 13 .09 .08 07
0.90 36 23 A7 13
0.85 .68 .46 .33 .26
0.80 91 .12 .56 44
0.75 .98 .92 N 65



4. Cochrane—Orcutt

The residual—based test estimates the two—equation system
(6) Xy = Xgi0 + U,
(7) u o= pu g+ €
sequentially by least squares. Denote these estimators by (&, p).

In a classic paper, Cochrane and Orcutt (1949) suggested estimation of (a, p) as

following. Quasi—difference the data:
(8) Xy = Xy~ Xpp?

. B .
Xot = Xot — X9t1F

and then apply OLS to the transformed equation
* %/ <
(9) xj, = x5 + & .
It is well known that if {x,} is covariance stationary and E(e, | ‘71;—1) =0, then

these estimates are consistent and asymptotically normal. It is also known that if Xy
I(1) and Xy, 1s cointegrated with x,, , then @ converges stochastically to the

cointegrating vectorand p —_ p <1 . See, for example, Phillips and Park (1988).

This estimator has not ‘:een studied in the context of integrated variables which are
not cointegrated. It is not, however, particularly difficult. As shown by Phillips and
Ouliaris (1990), under no cointegration, T(p — 1) has a limiting distribution (implying
that p -5 1 atrate T). Thus x’{t and xgt asymptotically are first differences of

X14 and Xoy and & estimates the regression coefficient of Axlt upon szt.

Theorem 1. Under the null hypothesis of no cointegration

- -1
(10) & - = [E(Ax2tAxét)] E(Axg Ax,) -
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Theorem 1 demonstrates that under the null hypothesis of no cointegration, the
Cochrane—Orcutt estimate of a converges to a constant, not to a random variable as does
the least squares estimator. This suggests that a test for cointegration constructed using
residuals from the Cochrane—Orcutt estimates will not display the curse of dimensionality.

Using the definition of a given in (10), define the error u, by (6) , and ¢, = Au,.

The second—stage residuals are given by

(11) i, = x|, — x50

Consider the regression of @, upon &, , :

(12) ﬁt = ﬁﬁt—l + Et,
so that
T. .
Yo i, .1
(13) b = 2Tt;1_£ ,
Yoty

Theorem 2. Under the null hypothesis of no cointegration

(®) rIl_l/zﬁ[Tr] = o W(r),
(b) T(—1) = %[W(l)z — o7/ ‘72] _ [GWAW  + A/o?
[ow? fiw?

where o® = Q>0 , n=(1 —a’)’, A=1n'An, 02 = E(eg), and W(r) is standard

Brownian motion.

Corollary 1. If in addition to the null hypothesis of theorem 2, u, 8 a martingale difference

sequence ,

j(l,de

T(p—1) =

1452
[oW
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The distributions in theorem 2 and corollary 1 do not depend upon the dimension of
the system, which is unique among existing tests of the null of no cointegration. The
distributions are identical in form to the results given in Phillips (1987) for the univariate
Dickey—Fuller unit root test. These results are quite promising, for they suggest that the
curse of dimensionality is not an inherent property of tests for cointegration, and may be

circumvented by appropriate techniques.

5. Adjusting for Size

Continuing to abstract from residual serial correlation, it is of interest to address
how well the asymptotic theory approximates the finite sample behavior. Theorem 1 shows
that the second—round Cochrane—Orcutt estimator asymptotically achieves the
Dickey—Fuller distribution, but it seems reasonable that iteration will improve finite
sample performance. Figures 1 and 2 display non—parametric estimates3 of the finite
sample (T = 100) density functions of the statistic T(p —1) after various iterations. The
innovations are iid normals with no serial correlation. The densities in Figure 1 are
calculated for a system with two variables. The Cochrane—Orcutt densities are
substantially shifted away from the OLS residual density at all iterations. The right—most
density is calculated with fixed regression coefficients, and is thus the finite—sample
Dickey—Fuller distribution. After multiple iterations, the Cochrane—Orcutt estimator
comes quite close to the Dickey—Fuller distribution. In figure 2 the experiment is repeated

for a system of five variables. In this case the iterated estimator does not come as close to

3A normal kernel was applied to 10,000 draws.
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the Dickey—Fuller distribution, indicating that the curse of dimensionality has not been
completely avoided. The fatter tails indicate that the null rejection frequency will be too
high if asymptotic critical values are used.

The source of this distortion lies in the fact that the serial correlation coefficient
used to quasi—difference the data is estimated, and thus tends to take on values less than
unity. Since the data is not fully differenced in finite samples, an I(1) component persists,
contaminating the finite sample distribution. This conjecture is verified by the following
Monte Carlo experiment under the null: difference the data, estimate the OLS coefficient,
then calculate the Dickey—Fuller test on the levels residuals. These results are not
reported here, for they merely reveal that the size distortion disappears. Unfortunately,
this procedure is not a valid test as it is not generally powerful, since the OLS estimate on
differenced data will not converge to the cointegrating vector under the alternative, except
in special cases.

‘This experiment suggests a possible remedy. Since the estimated serial correlation
coefficient is downwardly biased under the null, and hence under—differences the data, we
can use a bias adjustment to achieve an improved rate of convergence. Consider the

following procedure. Denote by & and p the OLS estimates from (6) — (7). Define
(14) pt=p + ¢/T

where ¢ > 0 is a fixed constant. Quasi—difference the data as in (8) using this
bias—adjusted estimator p*. Now estimate a using this quasi—difference data as in (9) ;
denote this estimator by «a*. Iterate if desired. At the final stage, estimate p without
the bias adjustment, in order to use the standard tables. (Alternatively, subtract ¢/T
from p*.) Since the adjustment term vanishes at rate T , the asymptotic theory of the
previous section is unaltered.

The obvious question is how to select the value ¢ . Standard Cochrane—Orcutt

implicitly uses ¢ = 0. Consider the adjustment term in the leading case of normally
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distributed, iid errors. This allows the use of Monte Carlo integration methods. Figures 3
and 4 display the rejection frequencies of the Dickey—Fuller test applied to the
bias—adjusted Cochrane—Orcutt residuals (4 iterations) using the asymptotic 5% critical
value for a variety of adjustment parameters along the horizontal axis. Figure 3 sets T =
50 and figure 4 sets T = 150. Figures for T =100 and T = 200 were calculated but
not reported here for the results were qualitatively similar. Note that the intersection
points on the vertical axis correspond to the rejection frequency of unadjusted
Cochrane—Orcutt (¢ = 0).

The graphs yield a fair amount of information. First, unadjusted Cochrane—Orcutt
displays considerable size distortion for n large and T small. Second, bias adjustment
can reduce the magnitude of this problem even in small samples. Third, setting ¢ = 10
appears to minimize the rejection frequency for all sample and system sizes. This
minimum sometimes lies below the nominal size, but not excessively so. Fourth, the choice
of bias adjustment parameter is not critical for small n or large T.

The recommendation that emerges from this analysis is to set ¢ = 10 . That is,

iterate on
p* = p + 10/T .

Although admittedly ad hoc, this procedure appears to work quite well. To assess
the practical impact of these procedures, table 2 reports (size adjusted) power of a 5% size
test from a Monte Carlo experiment with 3000 replications, sample size of 100, and iid
normal errors. The AR parameter of the dependent variable was varied from 0.85 to 1
in steps of 0.05. Three tests were applied: Phillips—Ouliaris (Dickey—Fuller applied to
the OLS residuals), unadjusted Cochrane—Orcutt, and bias—adjusted (¢ = 10)
Cochrane—Orcutt. The Cochrane—Orcutt tests are uniformly more powerful than the
Phillips—Ouliaris (OLS) test. For example, in a four variable system, a 5% size OLS test
rejects the null 19% of the time when p = 0.9, while the bias—adjusted Cochrane—Orcutt



test rejects 59% of the time. It is not an overstatement to call this improvement
dramatic. Note as well that the power of the two Cochrane—Orcutt procedures are close,

with the adjusted procedure having moderately better local power.

Table 2. Finite Sample Power. T = 100.

A. N=2
) LS Coch—Orc Coch—Orc (Biased Adjusted)
1.00 05 .05 05
0.95 15 .26 31
0.90 38 .65 70
0.85 70 901 91
B. N=14
0 LS Coch—Orc Coch—Orc (Biased Adjusted)
1.00 .05 .05 .05
0.95 .09 .19 27
0.90 .19 .49 .59
0.85 .36 .80 .82
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6. Incorporating Serial Correlation

This section extends the previous analysis to allow for serial correlation in the
residual {ut} . Several popular techniques are considered: (a) Phillips’ Z, and Z; (b)
Augmented Dickey—Fuller (ADF); (c) Stock quadratic variation; and (d) Park—Choi

variables addition. In each of the theorems, W denotes standard Brownian motion.
(a) Phillips’ Z, andZ

Phillips (1987) suggested correcting for serial correlation in unit root testing by
using a bias correction. This technique extends directly to the Cochrane—Orcutt
cointegration test. If {f,} are the levels residuals from (possibly bias adjusted)
Cochrane—Orcutt iteration, and p and €, are givenin (12) —(13) , then define the

covariance estimates

1 ’-EF
¥ =T [N ;
m t=m+1 t—m 't
the bias and variance estimates
. M o 3
)\=m£1Wm'ym a='yo+2)\,

and the bias—corrected coefficient estimate

T~ - -~
. 22ut_1ut - TA
T.2
Yoti g

Note that this bias correction is distinct from the bias adjustment of the previous section.
The weights W, are usually selected so that for each m limMTm w, =1, while the
truncation parameter M is selected to grow to infinity slowly with sample size. Some
proofs, such as Newey and West (1987), require M = o(Tl/ 4) . Andrews obtains
consistency if M = o(T) under our conditions. One simple choice for the weights is the

Bartlett window w_ =1— |m|/(M+1).
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Phillips (1987) suggested the following test statistics to test for a unit root:

— 2%k
z,= T(p*-1)
i -1 2 _ [¢T<2 ]-1.2
Zy = T 50 = | Tl )

We have the following theory.

Theorem 3. Under the null of no cointegration:

1
[EWAW
(i) 7 = 0
@ 1,2
foW
j(l)WdW
(ii) Z, =

[fcl)wz] 1/2

The distributions in theorem 2 are the standard Dickey—Fuller coefficient and t

distribution, which are tabulated in Fuller (1976).

(b)  Augmented Dickey—Fuller (ADF)

Said and Dickey (1984) suggested using an autoregressive approximation to capture
the serial correlation properties of the residuals in tests for unit roots. Engle and Granger
(1987) suggested the ADF test on the OLS residuals as a cointegration test. Phillips and
Ouliaris (1990) demonstrated that this test statistic possesses an asymptotic distribution
which is free of nuisance parameters other than the dimensionality of the system. We can
consider two combinations of this approach with the Cochrane—Orcutt procedure.

First, consider taking the Cochrane—Orcutt residuals {ﬁt} from the procedure

discussed in the previous sections. Then fit by OLS

i, = pi, 4 + 01Aut_1 + 02Aut_2 + -0 + apAut—p + ¢ -



17

The ADF statistic is the t—statistic for the hypothesis that p = 1. Denote this by ADFt.
It is usually assumed that p T » at some controlled rate such as p = o(Tl/ 3). Under

these conditions we find.

Theorem 4. Under the null of no cointegration and the assumption that {Axt} is generated
by a finite—order ARMA process,

[eWaW

ADFt = — .
14,21 1/2
[row?] Y
This shows that the ADF statistics possesses the standard Dickey—Fuller
distribution if the Cochrane—Orcutt residuals are used, in contrast to the case when the
OLS residuals are used.

Alternatively, we could estimate the two equation system
X3p = X ,E a + u,

y =pu 4 + 6Au ; + -0+ HpAu + €

t—p 1

by Cochrane—Orcutt using an AR(p+1) correction. (GLS or MLE could alternatively be
used with no change in the asymptotic theory.) The t—statistic for the hypothesis that

p =1 will again possess an asymptotic Dickey—Fuller distribution. This procedure may be
preferred in finite samples to the first ADF procedure for it takes the serial correlation into

account at all iterations. Note that the test that p = 1 is equivalent to the test that

211):} 0i =1 in the equation

u = 01ut_1 + 02“1;—2 + .-+ Hp +1%—p—1 + &
which is the parameterization appearing in many statistics packages. This procedure has

the advantage that it is quite simple to implement.
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(c)  Stock Quadratic variation
Stock (1988) proposed a class of tests for unit roots, a leading candidate being
—2aT 2, .2
g1(2) =T Elut [,

where & is the long—run variance of {Au,} , as described in the section on the Phillips’
tests. Under the null hypothesis of a unit root, this statistic has the asymptotic

distribution
1,2
(16) g1(2) = jOW .

Under the alternative, g,;(2) vanishes, so the test is to reject for significantly small
values. Stock also discusses tests for cointegration, by replacing u, by the OLS residual
from a candidate cointegrating regression. The limiting distribution of this test statistic
depends upon the number of variables and thus displays the curse of dimensionality.

If, however, Cochrane—Orcutt residuals are used, then result (16) still holds.

Theorem 5. Under the null hypothesis of no cointegration
~ —2¢L~2 ; .2 15,2
§,(2) = T 750 /5" = [(W".

(d) Park—Choi Variables addition

Park, Ouliaris, and Choi (POC) (1988) proposed a test for cointegration based upon
variable addition. If {ﬁt} is the OLS residual from a non—cointegrating regression POC
suggest regressing ﬁt against "spurious" trends. Abstracting from their inclusion of time

trends under the null, they effectively suggest the linear regression

t

(17) i, =a+ 0k + &, k= [t

2} , say .

The trend function kt may contain a variety of powers of time trends. Using &2 to

denote the standard coefficient of determination, the F—statistic for testing =0 is
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F=T 2
o)
T 0 _ 1T
Now, for 6 = 0 T2 and k=T Elkt’ we have
(18) Figy - F) = |5 | = x
18 k —k) = = k(r), say.
Thus using (5) and (18)
-1
. [B*k’([kk’ ) "L [kB*
R = = R2(B*, k) , say.
J(B*-/B¥)”
Hence
2
. R°(B*,k)
i=1F
1 — R%(B* k)

Under the alternative hypothesis of no unit root, the F—statistic has a limiting chi—square
distribution so the J statistic vanishes. Thus POC suggest rejecting the null hypothesis
of no cointegration when J is sufficiently small. As in the other tests based upon OLS
residuals, this distributional theory depends upon n (as B* depends upon n ).

Consider using Cochrane—Orcutt residuals in place of the OLS residuals in
regression (17). Denote the coefficient of determination from this regression by R% . This
statistic has the same asymptotic behavior as that obtained by Park and Choi (1988) in

the context of unit root testing:
Theorem 6. Under the null hypothesis of no cointegration
JWk'(fkk -) " Ljxw

(a) R2 = = Rz(W) k) )
[(W=1W)?

2
. N R%(W, k)
(b) j=1% =

1 — R2(W,k)
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7. Allowing for Intercepts and Trends

If desired, the data may be demeaned, or demeaned and detrended, before applying
the test for cointegration. Detrending is desirable if the data are thought of as "I(1) with
drift". Demeaning is desirable if the cointegrating relationship may contain a constant. If
the data is demeaned or detrended, then it is important to recognize that the distributions
of the test statistics are different. It is not difficult to see that the appropriate
distributions for the Z,,2, and ADFt statistics are given by the unit root test
distributions in Fuller (1976) for models with intercepts and trends. Similarly, the Stock
and Park—Choi statistics should be compared with the appropriate tables which take
detrending into account.

An alternative method of detrending has been proposed in Schmidt (1990) and
analyzed in Schmidt and Phillips (1989). This method could be applied to cointegration
tests as well. Note that if

x, = X0 + 7t
where xg = I(1) , then the "detrended" variable

, ]
= % T TXr
is free of the deterministic trend. This is equivalent to resumming the demeaned first
differences of Xy - Schmidt and Phillips propose demeaning x{ and using this variable in

standard unit root tests. Since
—1/2
71/ X{ry = B@-1B(1),

a Brownian bridge, the limiting distributions are somewhat different then those tabulated
in Fuller (1976) and therefore have been tabulated in Schmidt and Phillips (1989). If

demeaned X{ is used in a Cochrane—Orcutt cointegration test then these critical values

could be used.
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8. Testing for Multiple Cointegrating Relationships

Suppose n > 2 and the question is how many cointegrating vectors exist. Most of
the papers written on testing for cointegration do not attempt to address this issue (other
than Stock and Watson (1988)). I sketch here an outline of how the Cochrane—Orcutt
approach can be extended to handle this testing situation.

Partition X,

% = (g X)’

as

T M
where n, contains the maximum number of cointegrating relationships to be discovered.

Consider the parameterization

(18) X, = Axy, + U,
(19) u =Ru | + ¢
HO: R=1I.

This parameterization reduces the number of unit roots which will be examined to
n, , when (18) and (19) are jointly estimated. A vector generalization of Cochrane—Orcutt,
for example, may be used. Under the null hypothesis, no cointegrating vectors exist, and
thus R b I. The Stock—Watson approach may now be applied to the matrix R
(adjusted for serial correlation as in their paper, yielding R* ), for the eigenvalues of the
adjusted matrix T(R* —1I) will converge to the limiting distributions given in their paper,
where critical values are tabulated. One cointegrating relationship is found if the smallest
root of T(R* —1) is significantly less than zero; two cointegrating relationships are found
if the second smallest root of T(R* —1I) is significantly less than zero ; etc.

A practical problem emerges in this approach in that no unique partition of Xy into
X1 and Xoy exists. No general selection method appears to exist, and choices may have

to be made on a case—by—case basis.
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APPENDIX
Proof of Theorem 1. Note that

~ —lT**,—l—lT**
a—[T 2xx] T 22x2tx1t.

27272t
Now
~1,T 1T . e
T Bgxgpxst = T Tglhxgy —xgp o (p-1)] [Axgy —x5; (1))
10T ) 1T s
= T "85 Ax5,Axs, — T "35%,, 1 Ax) (p-1)
1T . 2T , s
= T8 Axgxs, (P-1) + T “Bgxg, (x5, [T(p-1)](p—1)
= T'5TAx, Axs, + o (1) —_ E|Ax, Ax
- 277267721 P p 2t 72t -
Similarly,

—1sT 4« _«
T “ToxyX]y —p E[Ax2tAx1t] )

from which it follows that

5 o \)-1
& -, [E(AXZtAx2t] E(Axy,Ax ) . o
Proof of Theorem 2.
. —1/2.  _ o—1/2 p—
(1) Ty = T "y —&T xgpy
= B(r) — a’By(r)
1/2
= 7B = (ran?we)
—1.T. - 1(~2 2 T, -
T “Y¥5i, ,Ai in — u] — Y Al
y ) 9l 18U ET[T 1~ %9 t]
() -1 = 2yT.2 - 2¢ 7T .2
T “%5uy 4 T Yoty 4



. %[02W(1)2 - ai] _ %[W(l)2 — 02/0‘2]

2,1y5,2 1,2
ajOW jOW

where the convergence uses part (i), the continuous mapping theorem, and the fact that
10T 5 =2 1T L, 2
T 55A0 = T "35[Au, — (& — ) Axy,]
—1,T 2 ~ —1,T
=T Ty¢; — 2(a@—a)’'T %5 € Axq,

- —1aT -
+ (&= a)'T "55Ax,,Axyt (& — 0)

- 0'2
p €’
The equality in part (ii) follows by Ito’s lemma and the observation
2 2 —_— /7 7 /
0" — 0, = 9'Qn—n E(AxOAxo)n

= n'[Q—E(AxOAx())]n = n’[A+A']7] = 29'Anp. O

Proof of Theorem 3.

g =8 —ph ) =A% —(p-1) T,
= ﬁ’AXt - (p-1) ﬁlxt_l .
Thus
3 M ~ ~,wM —1 ~
(A1) A=Y w1, = puy w, T EtAxt—mAxi'; =y n”Anp = A,
and
(A2) 52 - o2
Hence
T 56, Ad, - X
Z, = T(*~1) =
T—22T~2

|
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021(1)de F A=A j(l)WdW
= = .

2 ;14,2 15,2
ajOW jOW

The result for Zt follows similarly.

Proof of Theorem 4. The proof is identical to that of theorem 4.2 in Phillips and Ouliaris
(1990), except that 7 =5 1 This gives

[524Q [gWdW

t [I(l)Qz]l/z [n’ﬂn] 1/2 [f(l)w2] 1/2

where Q =7'B= oW .
Proof of Theorem 5. Immediate from theorem 2(i) and (A2) .
Proof of Theorem 6.

—3/2 ~ 1 v, =1 [mle L1 vy oy, =1)—1—3/2¢ 1, ©a
2 T 125 5, (k —E) 67 [T 5, 67 (k—k) (k) 5T‘] T3/%5, - kg,

-2y 1= —ly & 12
T 7% [0 — (T "%4,)]

ofWk'( [k’ ) L kWe  [Wk'(Jkk /) L/kW
=1 =

[ (oW—[ W) [ (W= W)?
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