
Advanced Time Series and Forecasting
Lecture 5

Structural Breaks

Bruce E. Hansen

Summer School in Economics and Econometrics
University of Crete
July 23-27, 2012

Bruce Hansen (University of Wisconsin) Structural Breaks July 23-27, 2012 1 / 99



Organization

Detection of Breaks

Estimating Breaks

Forecasting after Breaks
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Types of Breaks

Breaks in Mean

Breaks in Variance

Breaks in Relationships

Single Breaks

Multiple Breaks

Continuous Breaks
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Example
Simple AR(1) with mean and variance breaks

yt = ρyt−1 + µt + et
et ∼ N(0, σ2t )

Eyt =
µt
1− ρ

var(yt ) =
σ2t

1− ρ2

µt and/or σ2t may be constant or may have a break at some point in
the sample
Sample size n
Questions: Can you guess:

I Is there a structural break?
I If so, when?
I Is the shift in the mean or variance? How large do you guess?
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Terminology

Sample Period: t = 1, ..., n

Breakdate: T1
I Date of change

Breakdate fraction: τ1 = T1/n
Pre-Break Sample: t = 1, ...,T1

I T1 observations

Post-Break Sample: t = T1 + 1, ..., n
I n− T1 observations

Bruce Hansen (University of Wisconsin) Structural Breaks July 23-27, 2012 7 / 99



Structural Break Model

Full structural break

yt = β′1xt + et , t ≤ T1
yt = β′2xt + et , t > T1

or
yt = β′1xt1 (t ≤ T1) + β′2xt1 (t > T1) + et

Partial structural break

yt = β′0zt + β′1xt1 (t ≤ T1) + β′2xt1 (t > T1) + et
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Variance Break Model

yt = β′xt + et ,

var (et ) = σ21, t ≤ T1
var (et ) = σ22, t > T1

Breaks do not necessarily affect point forecasts

Affects forecast variances, intervals, fan charts, densities
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Detection of Breaks
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Testing for a Break

Classic Test (Chow)

Assume T1 is known

Test H0 : β1 = β2
Use classic linear hypothesis test (F, Wald, LM, LR)

Least-Squares

yt = β̂
′
0zt + β̂

′
1xt1 (t ≤ T1) + β̂

′
2xt1 (t > T1) + êt
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Full Break Model

Y1 = X1β1 + e1
Y2 = X1β2 + e2

β̂1 = (X ′1X1)
−1(X ′1Y1)

β̂2 = (X ′2X2)
−1(X ′2Y2)

ê1 = Y1 − X1 β̂1

ê2 = Y2 − X2 β̂2

SSE (T1) = ê ′1 ê1 + ê
′
2 ê2

σ̂2(T1) =
1

n−m
(
ê ′1 ê1 + ê

′
2 ê2
)
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F Test Statistic

F test

F (T1) =
(SSE − SSE (T1)) /k
SSE (T1)(n−m)

where k = dim(β1), m =all parameters,

SSE = ẽ ′ẽ

σ̃2 =
1

n− k
(
ẽ ′ẽ
)

ẽ = Y − X β̃

(full sample estimate)
I F test assumes homoskedasticity, better to use Wald test
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Wald Test Statistic

W (T1) = n
(

β̂1 − β̂2

)′ (
V̂1
n
T1
+ V̂2

n
n− T1

)−1 (
β̂1 − β̂2

)
where V̂1 and V̂2 are standard asymptotic variance estimators for β̂1 and
β̂2 (on the split samples:

V̂1 = Q̂−11 Ω̂1Q̂−11
V̂2 = Q̂−12 Ω̂2Q̂−12

Q̂1 =
1
T1
X ′1X1

Q̂2 =
1

n− T1
X ′2X2
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HAC variance options
For iid et

Ω̂1 = σ̃2Q̂1
Ω̂2 = σ̃2Q̂2

For homoskedastic (within regiome

σ̂21 =
1

T1 − k
(
ê ′1 ê1

)
σ̂22 =

1
n− T1 − k

(
ê ′2 ê2

)
For serially uncorrelated but possibly heteroskedastic

Ω̂1 =
1

T1 − k
T1

∑
t=1
xtx′t ê

2
t

Ω̂2 =
1

n− T1 − k
n

∑
t=T1+1

xtx′t ê
2
t
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For serially correlated (e.g. h > 1)

Ω̂1 =
1

T1 − k
T1

∑
t=1
xtx′t ê

2
t

+
1

T1 − k
h−1
∑
j=0

T1−j
∑
t=1

(
xtx′t+j êt êt+j + xt+jx

′
t êt+j êt

)
Ω̂2 =

1
n− T1 − k

n

∑
t=T1+1

xtx′t ê
2
t

+
1

n− T1 − k
h−1
∑
j=0

n−j
∑

t=T1+1

(
xtx′t+j êt êt+j + xt+jx

′
t êt+j êt

)
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Classic Theory

Under H0, if the number of observations pre- and post-break are
large, then

F (T1)→d
χ2k
k

under homoskedasticity, and in general

W (T1)→d χ2k

We can reject H0 in favor of H1 if the test exceeds the critical value
I Thus “find a break” if the test rejects
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Modern Approach

Break dates are unknown

Sup tests (Andrews, 1993)

SupF = sup
T1
F (T1)

SupW = sup
T1
W (T1)

The sup is taken over all break dates T1 in the region [t1, t2] where
t1 >> 1 and t2 << n

I The region [t1, t2 ] are candidate breakdates. If the proposed break is
too near the beginning or end of sample, the estimates and tests will be
misleading

I Recommended rule t1 = [.15n], t2 = [.85n]

Numerically, calculate SupW using a loop
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Example

US GDP example presented yesterday

Quarterly data 1960:2011

k = 7
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Evidence for Structural Break?

SupW=27

Is this significant?
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Theorem (Andrews)

Under H0, if the regressors xt are strictly stationary, then
I SupF, SupW, etc, converge to non-standard asymptotic distributions
which depend on

F k (the number of parameters tested for constancy
F π1 = t1/n
F π2 = t2/n
F Only depend on π1 and π2 through λ = π2(1− π1)/(π1(1− π2))

Critical values in Andrews (2003, Econometrica, pp 395-397)

p-value approximation function in Hansen (1997 JBES, pp 60-67)

Critical values much larger than chi-square
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Evidence for Structural Break?

SupW=27

k = 7

1% asymptotic critical value = 26.72

Asymptotic p-value=0.008
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Non-Constancy in Marginal or Conditional?

The model is

yt = β′0zt + β′1xt1 (t ≤ T1) + β′2xt1 (t > T1) + et

The goal is to check for non-constancy in the conditional relationship
(in the coeffi cients β) while being agnostic about the marginal (the
distribution of the regressors xt)
Andrews assume that xt are strictly stationary, which excludes
structural change in the regressors

In Hansen (2000, JoE) I show that this assumption is binding
I If xt has a structural break in its mean or variance, the asymptotic
distribution of the SupW test changes

I This can distort inference (a large test may be due to instability in xt ,
not regression instability)

There is a simple solution: Fixed Regressor Bootstrap
I Requires h = 1 (no serial correlation)
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Fixed Regressor Bootstrap

Similar to a bootstrap, a method to simulate the asymptotic null
distribution

Fix (zt , xt , êt ), t = 1, ..., n
Let y ∗t be iid N(0, ê

2
t ), t = 1, ..., n

Estimate the regression

y ∗t = β̂
∗′
0 zt + β̂

∗′
1 xt1 (t ≤ T1) + β̂

∗′
2 xt1 (t > T1) + ê

∗
t

Form the Wald, SupW statistics on this simulated data

W ∗(T1) = n
(

β̂
∗
1(T1)− β̂

∗
2(T1)

)′ (
V̂ ∗1 (T1)

n
T1
+ V̂ ∗2 (T1)

n
n− T1

)−1
(

β̂
∗
1(T1)− β̂

∗
2(T1)

)
SupW∗ = sup

T1
W ∗(T1)
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Repeat this B ≥ 1000 times.
Let SupW∗b denote the b’th value

Fixed Regressor bootstrap p-value

p =
1
B

N

∑
b=1

1 (SupW∗b ≥ SupW∗)

Fixed Regressor bootstrap critical values are quantiles of empirical
distribution of SupW∗b
Important restriction: Requires serially uncorrelated errors (h = 1)
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Evidence for Structural Break?

SupW=27

Asymptotic p-value=0.008

Fixed regressor bootstrap p-value=0.106

Bootstrap eliminates significance!
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Recommendation

In small samples, the SupW test highly over-rejects

The Fixed Regressor Bootstrap (h = 1) greatly reduces this problem

Furthermore, it makes the test robust to structural change in the
marginal distribution

For h > 1, tests not well investigated
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Testing for Breaks in the Variance

yt = β′xt + et ,

var (et ) = σ21, t ≤ T1
var (et ) = σ22, t > T1

Since var (et ) = Ee2t , this is the same as a test for a break in a
regression of e2t on a constant

Estimate constant-parameter model

yt = β̂
′
xt + êt

Obtain squared residuals ê2t
Apply Andrews SupW test to a regression of ê2t on a constant

k = 1 critical values
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GDP Example: Break in Variance?

Apply test to squared OLS residuals
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Break in Variance?

SupW=15.96

k = 1

1% asymptotic critical value =12.16

Asymptotic p-value=0.002

Fixed regressor bootstrap p-value=0.000

Strong rejection of constancy in variance
I Great moderation
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End-of-Sample Breaks
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End-of-Sample Breaks

The SupW tests are powerful against structural changes which occur
in the interior of the sample

T1 ∈ [.15n, .85n]
Have low power against breaks at the end of the sample

Yet for forecasting, this is a critical period

Classic Chow test allows for breaks at end of sample
I But requires finite sample normality

New end-of-sample instability test by Andrews (Econometrica, 2003)
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End-of-Sample Test

Write model as

Y1 = X1β1 + e1
Y2 = X1β2t + e2

where Y1 is n× 1, Y2 is m× 1 and X has k regressors

m is known but small

Test is for non-constancy in β2t

Let β̂ be full sample (n+m) LS estimate, ê = Y − X β̂ full-sample
residuals

Partition ê = (ê1, ê2)

Test depends on Σ = E (e2e ′2)
First take case Σ = Imσ2
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Ifm ≥ d
S = ê ′2X2

(
X ′2X2

)−1 X ′2 ê2
If m < d

P = ê ′2X2X
′
2 ê2

If m is large we could use a chi-square approximation

But when m is small we cannot
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Andrews suggests a subsampling-type p-value

p =
1

n−m+ 1
n−m+1

∑
j=1

1 (S ≤ Sj )

Sj = ê ′jXj
(
X ′j Xj

)−1 X ′j êj
Xj = {xt : t = j , ..., j +m− 1}
Yj = {yt : t = j , ..., j +m− 1}
êj = Yj − Xj β̂(j)

and β̂(j) is least-squares using all observations except for
t = j , ..., j + [m/2]
Similar for P test

You can reject end-of-sample stability if p is small (less than 0.05)
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Weighted Tests

Andrews suggested improved power by exploiting correlation in e2

S = ê ′2Σ̂
−1X2

(
X ′2Σ̂

−1X2
)−1

X ′2Σ̂
−1 ê2

where

Σ̂ =
1

n+ 1

n+1

∑
j=1

(
Yj − Xj β̂

) (
Yj − Xj β̂

)′
The subsample calculations are the same as before except that

Sj = ê ′j Σ̂
−1Xj

(
X ′j Σ̂

−1Xj
)−1

X ′j Σ̂
−1 êj
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Example: End-of-Sample Instability in GDP Forecasting?

m = 12 (last 3 years)

S statistics (p-values)

Unweighted Weighted
h = 1 .20 .21
h = 2 .08 .36
h = 3 .02 .29
h = 4 .18 .27
h = 5 .95 .94
h = 6 .91 .83
h = 7 .86 .70
h = 8 .78 .86

Evidence does not suggest end-of-sample instability
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Breakdate Estimation
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Breakdate Estimation

The model is a regression

yt = β′0zt + β′1xt1 (t ≤ T1) + β′2xt1 (t > T1) + et

Thus a natural estimator is least squares

The SSE function is

S(β,T1) =
1
n

n

∑
t=1

(
yt − β′0zt − β′1xt1 (t ≤ T1)− β′2xt1 (t > T1)

)2
(β̂, T̂1) = argmin S(β,T1)

The function is quadratic in β, nonlinear in T1
I Convenient solution is concentration
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Least-Squares Algorithm

(β̂, T̂1) = argmin
β,T1

S(β,T1)

= argmin
T1

min
β
S(β,T1)

= argmin
T1

S(T1)

where

S(T1) = min
β
S(β,T1)

=
1
n

n

∑
t=1
êt (T1)2

and êt (T1) are the OLS residuals from

yt = β̂
′
0zt + β̂

′
1xt1 (t ≤ T1) + β̂

′
2xt1 (t > T1) + êt (T1)

with T1 fixed.
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Least-Squares Estimator

T̂1 = argmin
T1

S(T1)

For each T1 ∈ [t1, t2], estimate structural break regression, calculate
residuals and SSE S(T1)

Find T1 which minimizes S(T1)

Even if n is large, this is typically a quick calculation.

Plots of S(T1) against T1 are useful

The sharper the “peak”, then better T1 is identified
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Example: Breakdate Estimation in GDP

Plot SSE as function of breakdate

Break Date Estimate is lowest point of graph
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Break Date Estimate

T̂1 (minimum of SSE (T1) = 1980:4 (82nd observation)

Minimum not well defined

Consistent with weak break or no break
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Example: Breakdate Estimation for GDP Variance

Plot SSE as function of breakdate
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Break Date Estimate for Variacne

T̂1 (minimum of SSE (T1) = 1983:4 (93rd observation)

Well defined minimum

Sharp V shape

Consistent with strong single break
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Distribution Theory and Confidence Intervals
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Distribution of Break-Date Estimator

Bai (Review of Economics and Statistics, 1997)

Define
I Q = E (xtx′t )
I Ω = E

(
xtx′te2t

)
I δ = β2 − β1
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Theorem

[If δ→ 0, and the distribution of (xt , et ) does not change at T1, then](
δ′Qδ

)2
δ′Ωδ

(
T̂1 − T1

)
→d ζ = argmax

s

[
W (s)− |s |

2

]
where W (s) is a double-sided Brownian motion. The distribution of ζ for
x ≥ 0 is

G (x) = 1+

√
x
2π

exp
(
−x
8

)
− x + 5

2
Φ
(
−
√
x
2

)
+
3ex

2
Φ
(
−3
√
x
2

)
and G (x) = 1− G (−x).
If the errors are iid, then Ω1 = Q1σ21 and

δ′Q1δ
σ21

(
T̂1 − T1

)
→d ζ
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Critical Values (Bai Method)

Critical values for ζ can be solved by inverting G (x) :

Coverage c
80% 4.7
90% 7.7
95% 11.0
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Confidence Intervals for Break Date (Bai Method)
Point Estimate T̂1

Theorem: T̂1 ∼ T1 +
δ′Ωδ(
δ′Qδ

)2 ζ

Confidence interval is then

T̂1 ±
δ̂
′
Ω̂δ̂(

δ̂
′
Q̂ δ̂
)2 c

where

δ̂ = β̂2 − β̂1

Q̂ =
1
n

n

∑
t=1
xtx′t

Ω̂ =
1

n− k
n

∑
t=1
xtx′t ê

2
t +

1
n− k

h−1
∑
j=0

T1−j
∑
t=1

(
xtx′t+j êt êt+j + xt+jx

′
t êt+j êt

)
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Confidence Intervals under Homoskedasticity

T̂1 ±
nσ̂2(

β̂2 − β̂1

)′
(X ′X )

(
β̂2 − β̂1

)c
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Example

Break for GDP Forecast
I Point Estimate: 1980:4
I Bai 90% Interval: 1979:2 - 1982:2

Break for GDP Variance
I Point Estimate: 1983:3
I Bai 90% Interval: 1983:2 - 1983:4
I Very tight
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Confidence Intervals (Elliott-Mueller)

Elliott-Mueller (JoE, 2007) argue that Bai’s confidence intervals
systematically undercover when breaks are small to moderate

They recommend an alternative simple procedure

For each breakdate T1 for which the regression can be estimated
I Calculate the regression

yt = β̂
′
0zt + β̂

′
1xt1 (t ≤ T1) + β̂

′
2xt1 (t > T1) + êt
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yt = β̂
′
0zt + β̂

′
1xt1 (t ≤ T1) + β̂

′
2xt1 (t > T1) + êt

Ω̂1 =
1

T1 − k

(
T1

∑
t=1
xtx′t ê

2
t +

h−1
∑
j=0

T1−j
∑
t=1

(
xtx′t+j êt êt+j + xt+jx

′
t êt+j êt

))

Ω̂2 =
1

n− T1 − k

(
n

∑
t=T1+1

xtx′t ê
2
t +

h−1
∑
j=0

n−j
∑

t=T1+1

(
xtx′t+j êt êt+j + xt+jx

′
t êt+j êt

))

Sj =
j

∑
t=1
xt êt

U(T1) =
1
T 21

T1

∑
j=1
S ′j Ω̂

−1
1 Sj +

1

(n− T1)2
n

∑
j=T1+1

S ′j Ω̂
−1
2 Sj
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Theorem (Elliott-Muller)

U(T1)→d
∫ 1
0 B(s)

′B(s)ds where B(s) is a 2k × 1 Brownian bridge,
k = dim(xt )
This is the Cramer-vonMises distribution

To form a confidence set for T1, find the set of T1 for which U(T1)
are less than the critical value

The Elliott-Muller intervals can be much larger than Bai’s
I Unclear if they are perhaps too large
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Critical Values for Confidence Intervals(Elliott-Muller
Method)

Coverage

99% 97.5% 95% 92.5% 90% 80%
k = 1 1.07 0.90 0.75 0.67 0.61 0.47
k = 2 1.60 1.39 1.24 1.14 1.07 0.88
k = 3 2.12 1.89 1.68 1.58 1.49 1.28
k = 4 2.59 2.33 2.11 1.99 1.89 1.66
k = 5 3.05 2.76 2.54 2.40 2.29 2.03
k = 6 3.51 3.18 2.96 2.81 2.69 2.41
k = 7 3.90 3.60 3.34 3.19 3.08 2.77
k = 8 4.30 4.01 3.75 3.58 3.46 3.14
k = 9 4.73 4.40 4.14 3.96 3.83 3.50
k = 10 5.13 4.79 4.52 4.36 4.22 3.86
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Examples: Breakdates for GDP Forecast and Variance

Plot U(T1) as function of T1
Plot 90% critical value

90% confidence region is set of values where U(T1) is less than
critical value
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Example

Break for GDP Forecast
I Point Estimate: 1980:4
I Bai 90% Interval: 1979:2 - 1982:2
I Elliott-Muller: 1981:2 - 2011:2

Break for GDP Variance
I Point Estimate: 1983:3
I Bai 90% Interval: 1983:2 - 1983:4
I Elliott-Muller: 1980:4 - 1993:4

Elliott-Muller intervals are much wider
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Slope Estimators

Estimate slopes from regression with estmate T̂1

yt = β̂
′
0zt + β̂

′
1xt1 (t ≤ T1) + β̂

′
2xt1 (t > T1) + êt (T1)

In the case of full structural change, this is the same as estimation on
each sub-sample.

Asymptotic Theory:
I The sub-sample slope estimates are consistent for the true slopes
I If there is a structural break, their asymptotic distributions are
“conventional”

F You can treat the structural break as if known

I Compute standard erros using conventional HAC formula
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Example: Variance Estimates

Pre 1983: σ̂21 = 14.8 (2.3)

Post 193: σ̂22 = 4.9 (1.0)
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Multiple Breaks
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Multiple Structural Breaks

Breaks T1 < T2

yt = β′0zt + β′1xt1 (t ≤ T1) + β′2xt1 (T1 < t ≤ T2)
+β′3xt1 (t > T2) + et

Testing/estimation: Two approaches
I Joint testing/estimation
I Sequential

Major contributors: Jushan Bai, Pierre Perron
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Joint Methods

Testing
I Test the null of constant parameters against the alternative of two
(unknown) breaks

I Given T1,T2, construct Wald test for non-constancy
I Take the largest test over T1 < T2
I Asymptotic distribution a generalization of Andrews

Estimation
I The sum-of-squared errors is a function of (T1,T2)
I The LS estimates (T̂1, T̂2) jointly minimize the SSE
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Joint Methods - Computation

For 2 breaks, these tests/estimates require O(n2) regressions
I cumbersome but quite feasible

For 3 breaks, naive estimation requires O(n3) regressions,
I not feasible

Bai-Perron developed effi cient computer code which solves the
problem of order O(n2) for arbitrary number of breaks
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Sequential Method

If the truth is two breaks, but you estimate a one-break model, the
SSE will (asymptotically) have local minima at both breakdates

Thus the LS breakdate estimator will consistently estimate one of the
two breaks, e.g. T̂1 for T1
Given an estimated break, you can split the sample and test for
breaks in each subsample

I You can then find T̂2 for T2

Refinement estimator:
I Split the entire sample at T2
I Now re-estimate the first break T̂1
I The refined estimators are asymptotically effi cient
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Forecasting Focuses on Final Breakdate

If you only want to find the last break

First test for structural change on the full sample

If it rejects, split the sample

Test for structural change on the second half

If it rejects, split again...
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Forecasting After Breaks
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Forecasting After Breaks

There is no good theory about how to forecast in the presence of
breaks

There is a multitude of comflicting recommendations

One important contribution:
I Pesaran and Timmermann (JoE, 2007)

They show that in a regression with a single break, the optimal
window for estimation includes all of the observations after the break,
and some of the observations before the break
By including more observations you decrease variance at the cost of
some bias

They provide empirical rules for selecting sample sizes

Bruce Hansen (University of Wisconsin) Structural Breaks July 23-27, 2012 75 / 99



Recommentation

The simulations in Persaran-Timmermann suggest that there little
gain for the complicated procedures

The simple rule —Split the sample at the estimated break — seems to
work as well as anything else

My recommendation
I Test for structural breaks using the Andrews or Bai/Perron tests
I If there is evidence of a break, estimate its date using Bai’s
least-squares estimator

I Calculate a confidence interval to assess accuracy (calculate both Bai
and Elliott-Muller for robustness)

I Split the sample at the break, use the post-break period for estimation
I Use economic judgment to enhance statistical findings
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Examples Revisited
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Examples from Beginning of Class

Simple AR(1) with mean and variance breaks

yt = ρyt−1 + µt (1− ρ) + et
et ∼ N(0, σ2t (1− ρ2))

µt and/or σ2t may be constant or may have a break at some point in
the sample

Sample size n

Questions: Can you guess the timing and type of structural break?
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Model A
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Results - Regression

SupW = 0.01 (fixed regressor bootstrap p-value)

Breakdate Estimate = 62
I Bai Interval = [55, 69]

Estimates

yt = 0.03
(.60)

+ 0.69
(.67)

yt−1 + et , t ≤ 62

yt = 0.69
(.99)

+ 0.59
(.53)

yt−1 + et , t > 62
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Results - Variance

SupW for Variance = 0.57 (fixed regressor bootstrap p-value)

Breakdate Estimate = 78
I Bai Interval = [9, 100]

Estimates

σ̂2 = 0.37
(.60)

, t ≤ 78

σ̂2 = 0.19
(.24)

, t > 78
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DGP (Model A)

T1 = 60

µ1 = 0.2

µ2 = 0.4

σ21 = σ22 = 0.36

ρ = 0.8
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Model B
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Results - Regression

SupW = 0.07 (fixed regressor bootstrap p-value)

Breakdate Estimate = 37
I Bai Interval = [20, 54]

Estimates

yt = 0.53
(1.12)

+ 0.82
(.40)

yt−1 + et , t ≤ 37

yt = 0.10
(.70)

+ 0.85
(.40)

yt−1 + et , t > 37
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Results - Variance

SupW for Variance = 0.06 (fixed regressor bootstrap p-value)

Breakdate Estimate = 15
I Bai Interval = [0, 69]

Estimates

σ̂2 = 0.17
(.17)

, t ≤ 15

σ̂2 = 0.40
(.55)

, t > 15
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DGP (Model B)

T1 = 40

µ1 = 0.5

µ2 = 0.2

σ21 = σ22 = 0.36

ρ = 0.8
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Model C
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Results

SupW = 0.11 (fixed regressor bootstrap p-value)

Regression Breakdate Estimate = 84
I Bai Interval = [78, 90]

Estimates

yt = 0.27
(1.02)

+ 0.73
(.70)

yt−1 + et , t ≤ 37

yt = 1.53
(2.44)

+ −0.11
(1.47)

yt−1 + et , t > 37
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Results - Variance
SupW for Variance = 0.13 (fixed regressor bootstrap p-value)
Breakdate Estimate = 69

I Bai Interval = [65, 73]

Estimates

σ̂2 = 0.43
(.51)

, t ≤ 69

σ̂2 = 1.77
(3.06)

, t > 69
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DGP (Model C)

T1 = 70

µ1 = µ2 = 0.2

σ21 = 0.36

σ22 = 1.44

ρ = 0.8
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Assignment

Take your favorite model

Estimate the model allowing for one-time structure change in the
mean

Test the model for one-time structural change in the mean

If appropriate, revise your forecasts

Bruce Hansen (University of Wisconsin) Structural Breaks July 23-27, 2012 99 / 99


