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Today’s Schedule

Density Forecasts

Threshold Regression Models

Nonparametric Regression Models
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Density Forecasts

The conditional distribution is

Ft (y) = P (yt+1 ≤ y | It )

The conditional density is

ft (y) =
d
dy
P (yt+1 ≤ y | It )

Density plots are useful summaries of forecast uncertainty

May also be useful as inputs for other purposes
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Density Forecasts

yt+1 = µt + σt εt+1

µt = E (yt+1|It )
σ2t = var (εt+1|It )

Assume εt+1 is independent of It , with density f ε(u) =
d
dy
F ε(u)

Forecast density for yn+1

fn(y) =
1

σn
f ε

(
y − µn

σn

)
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Normal Error Model

Assume εt+1 ∼ N(0, 1), then f ε(u) = φ(u)

f̂n(y) =
1

σ̂n
φ

(
y − β̂

′
xn

σ̂n

)

Probably should not be used
I Contains no information beyond and σ̂t
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Nonparametric Density Forecast

We can estimate f̂ ε(ε) from the normalized residuals ε̂t+1 using a
standard kernel estimator.

I Discuss this shortly

Then the forecast density for yn+1 is

f̂n(y) =
1

σ̂n
f̂ ε

(
y − β̂

′
xn

σ̂n

)
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Examples:

Interest Rate

GDP Nowcast
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Nonparametric Density Estimation

Let Xi be a random variable with density f (x)

Observations i = 1, ..., n

[For example, ε̂t+1 for t = 0, ..., n− 1.]
The kernel density estimator of f (x) is

f̂ (x) =
1
nb

n

∑
i=1
k
(
Xi − x
b

)
where k(u) is a kernel function and b is a bandwidth
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Kernel Functions

A kernel function k(u) : R→ R is any function which satisfies∫ ∞
−∞ k(u)du = 1.

A non-negative kernel satisfies k(u) ≥ 0 for all u. In this case, k(u)
is a probability density function.

A symmetric kernel function satisfies k(u) = k(−u) for all u.
The order of a kernel, ν, is the first non-zero moment.

I A standard kernel is non-negative, symmetric, and second-order
I A kernel is higher-order kernel if ν > 2. These kernels will have
negative parts and are not probability densities. They are also referred
to as bias-reducing kernels.
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Common Second-Order Kernels

Kernel Equation R(k) κ2 eff
Uniform k0(u) = 1

21 (|u| ≤ 1) 1/2 1/3 1.0758
Epanechnikov k1(u) = 3

4

(
1− u2

)
1 (|u| ≤ 1) 3/5 1/5 1.0000

Biweight k2(u) = 15
16

(
1− u2

)2 1 (|u| ≤ 1) 5/7 1/7 1.0061
Triweight k3(u) = 35

32

(
1− u2

)3 1 (|u| ≤ 1) 350/429 1/9 1.0135

Gaussian kφ(u) = 1√
2π
exp

(
− u22

)
1/2
√

π 1 1.0513
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Choice of Kernel

Not as important as bandwidth

Epanechnikov (quadratic) is optimal for minimizing IMSE of f̂ (x)

Gaussian is convenient as it is infinitely smooth and has positive
support everywhere

I I am using Gaussian here
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Kernel Density Estimator

f̂ (x) =
1
nb

∑n
i=1 k

(
Xi − x
b

)
∫ ∞
−∞ f̂ (x)dx =

∫ ∞
−∞

1
n ∑n

i=1
1
b
k
(
Xi − x
b

)
dx =

1
n ∑n

i=1

∫ ∞
−∞

1
b
k
(
Xi − x
b

)
dx = 1

n ∑n
i=1 1 = 1

since by the change of variables u = (Xi − x)/h∫ ∞
−∞

1
b
k
(
Xi − x
b

)
dx =

∫ ∞
−∞ k (u) du = 1.

Thus f̂ (x) is a density
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First Moment

∫ ∞

−∞
xf̂ (x)dx =

1
n

n

∑
i=1

∫ ∞

−∞
x
1
b
k
(
Xi − x
b

)
dx

=
1
n

n

∑
i=1

∫ ∞

−∞
(Xi + uhb) k (u) du

=
1
n

n

∑
i=1
Xi
∫ ∞

−∞
k (u) du +

1
n

n

∑
i=1
b
∫ ∞

−∞
uk (u) du

=
1
n

n

∑
i=1
Xi

the sample mean of the Xi .
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Second Moment

∫ ∞

−∞
x2 f̂ (x)dx =

1
n

n

∑
i=1

∫ ∞

−∞
x2
1
b
k
(
Xi − x
b

)
dx

=
1
n

n

∑
i=1

∫ ∞

−∞
(Xi + ub)

2 k (u) du

=
1
n

n

∑
i=1
X 2i +

2
n

n

∑
i=1
Xib

∫ ∞

−∞
k(u)du +

1
n

n

∑
i=1
b2
∫ ∞

−∞
u2k (u) du

=
1
n

n

∑
i=1
X 2i + b

2κ2

where κ2 =
∫ ∞
−∞ u

2k (u) du (1 in the case of Gaussian)
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Kernel Density Variance

∫ ∞

−∞
x2 f̂ (x)dx −

(∫ ∞

−∞
xf̂ (x)dx

)2
=

1
n

n

∑
i=1
X 2i + b

2κ2 −
(
1
n

n

∑
i=1
Xi

)2
= σ̂2 + b2κ2

where σ̂2 is the sample variance of Xi
In the case of the normalized residuals ε̂t+1, which have mean zero and
sample variance 1, and using a Gaussian kernel:
f̂ ε(u) has

A mean of zero

A variance of 1+ b2

Bruce Hansen (University of Wisconsin) Foundations July 23-27, 2012 17 / 87



Numerical Implementation for Forecast Density
Pick a set of grid points for ε, e.g. u1, ..., uG
For each ε on grid, evalulate

f̂ ε(ε) =
1
nb

n−1
∑
t=0

φ

(
ε− ε̂t+1
b

)
or

f̂ ε
j =

1
nb

n−1
∑
t=0

φ

(
uj − ε̂t+1

b

)
Set the translated gridpoints yj = β̂

′
xn + σ̂nuj , for j = 1, ...,G , and

f̂j =
1

σ̂n
f̂ ε
j

The rescaling is the Jacobian of the transformation from uj to yj
Plot f̂j on y -axis against yj on x-axis. This is a plot of

f̂n(y) =
1

σ̂n
f̂ ε

(
y − β̂

′
xn

σ̂n

)
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Bias of Kernel Estimator

Ef̂ (x) = E
1
b
k
(
Xi − x
b

)
=
∫ ∞

−∞

1
b
k
(
z − x
b

)
f (z)dz

Using the change-of variables u = (z − x)/b, this equals∫ ∞

−∞
k (u) f (x + bu)du

Now take a Taylor expansion of f (x + bu) about f (x) :

f (x + bu) ' f (x) + f (1)(x)bu + 1
2
f (2)(x)b2u2

Integrating term-by term,∫ ∞
−∞ k (u) f (x + bu)du '∫ ∞
−∞ k (u) f (x) + f

(1)(x)b
∫ ∞
−∞ k (u) u +

1
2 f
(2)(x)b2

∫ ∞
−∞ k (u) u

2du

= f (x) + 1
2 f
(2)(x)b2κ2
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Variance of Kernel Estimator

varf̂ (x) =
1
n

var
1
b
k
(
Xi − x
b

)
' 1

nb2

∫ ∞

−∞
k
(
z − x
b

)2
f (z)dz

=
1
nb

∫ ∞

−∞
k (u)2 f (x + bu)du

' f (x)
nb

∫ ∞

−∞
k (u)2 du

=
f (x)R(k)

nb

where R(k) =
∫ ∞
−∞ k (u)

2 du is called the roughness of the kernel.

Bruce Hansen (University of Wisconsin) Foundations July 23-27, 2012 20 / 87



Asymptotic MSE of Kernel Estimator

AMSE (f̂ (x)) = Bias(f̂ (x))2 + var
(
f̂ (x)

)
=

κ22
4

(
f (2)(x)

)2
b4 +

f (x)R(k)
nb
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Mean Integrated Squared Error (MISE) of Kernel Estimator

AMISE =
∫ ∞

−∞
AMSE (f̂ (x))dx

=
∫ ∞

−∞

κ22
4

(
f (2)(x)

)2
b4dx +

∫ ∞

−∞

f (x)R(k)
nb

dx

=
κ22
4
R(f )b4 +

R(k)
nb

where R(f ) =
∫ ∞
−∞

(
f (2)(x)

)2
dx is the roughness of f (2)
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Optimal bandwidth

The AMISE takes the form Ab4 + B/nb
The bandwidth b which minimizes the AMISE is

b =
(
4R(k)
4κ22

)1/5

R(f )−1/5n−1/5

The unknown component is R(f )−1/5

The “rougher” is f (x), the larger is R(f ) so the optimal b is smaller
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Rule of Thumb

Silverman proposed that we take f = φ as a baseline (or reference)

Calculate the optimal bandwidth for this case.
I The “Rule of Thumb”

b = σ̂Cn−1/5 where

C = 2
(

π1/22R(k)
4!κ22

)1/5

Rule of Thumb Constants
Epanechnikov 2.34
Biweight 2.78
Triweight 3.15
Gaussian 1.06
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Plug-in bandwidth Methods

Estimate R̂(f )
Use

b =
(
4R(k)
4κ22

)1/5

R̂(f )−1/5n−1/5
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Cross-Validation for Density Bandwidth

Mean integrated squared error (MISE). Given b

MISE (b) =
∫ (

f̂ (x)− f (x)
)2
dx

=
∫
f̂ (x)2dx − 2

∫
f̂ (x)f (x)dx +

∫
f (x)2dx

We know the first term, not the second, and the third does not
depend on b so we ignore it
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First Term
The first term is∫

f̂ (x)2dx =
∫ ( 1

bh

n

∑
i=1
k
(
Xi − x
b

))2
dx

=
1
n2b2

n

∑
i=1

n

∑
j=1

∫
k
(
Xi − x
b

)
k
(
Xj − x
b

)
dx

Make the change of variables u =
Xi − x
h

,

1
b

∫
k
(
Xi − x
b

)
k
(
Xi − x
b

)
dx =

∫
k (u) k

(
u − Xi − Xj

b

)
du

= k∗
(
Xi − Xj
b

)
where k∗(x) =

∫
k (u) k (x − u) du is the convolution of k with itself.

I If k(x) = φ(x) then k∗(x) = 2−1/2φ(x/
√
2) = exp(−x2/4)/

√
4π.
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The first term is thus∫
f̂ (x)2dx =

1
n2b2

n

∑
i=1

n

∑
j=1
k∗
(
Xi − Xj
b

)
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Second Term
The second term is −2 times∫

f̂ (x)f (x)dx

an integral with respect to the density of Xi , or an expectation with
respect to Xi
We can estimate expectations using sample averages, e.g.
1
n

∑n
i=1 f̂ (Xi ), but f̂ depends on Xi , so this is biased

The solution is to use a leave-one-out estimator for f̂ ,

f̂−i (x) =
1

(n− 1) b ∑
j 6=i
k
(
Xj − x
b

)
Then an unbiased estimate of the second term is

1
n

n

∑
i=1
f̂−i (Xi ) =

1
n (n− 1) b

n

∑
i=1

∑
j 6=i
k
(
Xj − Xi
b

)
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Cross-Validation Criterion

MISE (b) =
∫
f̂ (x)2dx − 2

∫
f̂ (x)f (x)dx +

∫
f (x)2dx

CV (b) =
1
n2b2

n

∑
i=1

n

∑
j=1
k∗
(
Xi − Xj
b

)
− 2
n (n− 1) b

n

∑
i=1

∑
j 6=i
k
(
Xj − Xi
b

)
In the case of a Gaussian kernel

CV (b) =
1

n2b2
√
2

n

∑
i=1

n

∑
j=1

φ

(
Xi − Xj√

2b

)
− 2
n (n− 1) b

n

∑
i=1

∑
j 6=i

φ

(
Xj − Xi
b

)

CV selected bandwidth

b̂ = argminCV (b)
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Evaluation

Form a grid for b

If br is the rule-of-thumb bandwidth, search over [br/3, 3br ] or
something similar

Many authors define the CV bandwidth as the largest local minimizer

In the end, an eyeball reality check of your estimated density is
important.
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Theory

CV selected bandwidth is consistent

Let b0 minimize the AMISE

b̂− b0
b0

→p 0

But the rate of convergence is slow, n−10
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Examples

10-Year Bond Rate

GDP Growth Rate

Bruce Hansen (University of Wisconsin) Foundations July 23-27, 2012 33 / 87



Bruce Hansen (University of Wisconsin) Foundations July 23-27, 2012 34 / 87



Bruce Hansen (University of Wisconsin) Foundations July 23-27, 2012 35 / 87



Bruce Hansen (University of Wisconsin) Foundations July 23-27, 2012 36 / 87



Bruce Hansen (University of Wisconsin) Foundations July 23-27, 2012 37 / 87



Threshold Models

A type of nonlinear time series models

Strong nonlinearity

Allows for switching effects

Most typically univariate (for simplicity)
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Threshold Models

Threshold Variable qt
I qt = 100(log(GDPt )− log(GDPt−4)) = annual growth

Threshold γ

Split regression
I Coeffi cients switch if qt ≤ γ or qt > γ
I If growth has been above or below the threshold

yt+1 = β′1xt1 (qt ≤ γ) + β′2xt1 (qt > γ) + et+1

=

{
β′1xt + et qt ≤ γ
β′2xt + et qt > γ
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Partial Threshold Model

yt+1 = β′0zt + β′1xt1 (qt ≤ γ) + β′2xt1 (qt > γ) + et+1

Coeffi cients on zt do not switch
More parsimonious

Bruce Hansen (University of Wisconsin) Foundations July 23-27, 2012 40 / 87



Estimation

yt+1 = β′0zt + β′1xt1 (qt ≤ γ) + β′2xt1 (qt > γ) + et+1

Least Squares (β̂0, β̂1, β̂2, γ̂) minimize sum-of-squared errors

Equation is non-linear, so NLLS, not OLS

Simple to compute by concentration method
I Given γ, model is linear in β
I Regressors are zt , xt1 (qt ≤ γ) and xt1 (qt > γ)
I Estimate by least-squares
I Save residuals, sum of squared errors
I Repeat for all thresholds γ. Find value which minimizes SSE
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Estimation Details
For a grid on γ (can use sample values of qt )

I Define dummy variables d1t (γ) = 1 (qt ≤ γ) and d2t (γ) = 1 (qt > γ)
I Define interaction variables x1t (γ) = xtd1t (γ) and x2t (γ) = xtd2t (γ)
I Regress yt+1 on zt , x1t (γ), x2t (γ)

yt+1 = β̂
′
0zt + β̂

′
1x1t (γ) + β̂

′
2x2t (γ) + êt+1(γ)

I Sum of squared errors

S(γ) =
n

∑
t=1

êt+1(γ)
2

I Write this explicity as a function of γ as the estimates, residuals and
SSE vary with γ

Find γ̂ which minimizes S(γ)
I Useful to view plot of S(γ) against γ

Given γ̂, repeat above steps to find estimates (β̂0, β̂1, β̂2)
Forecasts made from fitted model
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Example: GDP Forecasting Equation

qt = 100(log(GDPt )− log(GDPt−4)) = annual growth

Threshold estimate: γ̂ = 0.18
I Splits regression depend if past year’s growth is above or below 0.18%
≈ 0%
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Multi-Step Forecasts

Nonlinear models (including threshold models) do not have simple
iteration method for multi-step forecasts

Option 1: Specify direct threshold model

Option 2: Iterate one-step threshold model by simulation:
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Multi-Step Simulation Method

Take fitted model

yt+1 = β̂
′
0zt + β̂

′
1xt1 (qt ≤ γ̂) + β̂

′
2xt1 (qt > γ̂) + êt+1

Draw iid errors ê∗n+1, ..., ê
∗
n+h from the residuals {ê1, ..., ên}

Create y ∗n+1(b), y
∗
n+2(b), ..., y

∗
n+h(b) forward by simulation

b indexes the simulation run

Repeat B times (a large number)

{y ∗n+h(b) : b = 1, ...,B} constitute an iid sample from the forecast
distribution for yn+h

I Point forecast fn+h =
1
B

∑Bb=1 y
∗
n+h(b)

I Interval forecast: α and 1− α quantiles of y∗n+h(b)
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Testing for a Threshold

Null hypothesis: No threshold (linearity)

Null Model: No threshold

yt+1 = β̂
′
0zt + β̂

′
1xt + êt+1

S0 =
n

∑
t=1
ê2t+1

Alternative: Single Threshold

yt+1 = β̂
′
0zt + β̂

′
1x1t (γ) + β̂

′
2x2t (γ) + êt+1(γ)

S1(γ) =
n

∑
t=1
êt+1(γ)2

S1 = S1(γ̂) = min
γ
S1(γ)
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Threshold F Test

No Threshold against one threshold

F (γ) = n
(
S0 − S1(γ)
S1(γ)

)

F = n
(
S0 − S1
S1

)
= max

γ
F (γ)
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NonStandard Testing
Test is non-standard.
Critical values obtained by simulation or bootstrap
Fixed Regressor Bootstrap

I Similar to a bootstrap, a method to simulate the asymptotic null
distribution

I Fix (zt , xt , êt ), t = 1, ..., n
I Let y∗t be iid N(0, ê

2
t ), t = 1, ..., n

I Estimate the regressions as before

y∗t+1 = β̂
∗′
0 zt + β̂

∗
1xt + ê

∗
t+1

S∗0 =
n

∑
t=1

ê∗2t+1

y∗t+1 = β̂
∗′
0 zt + β̂

∗′
1 x1t (γ) + β̂

∗′
2 x2t (γ) + ê

∗
t+1(γ)

S∗1 (γ) = min
γ

n

∑
t=1

ê∗t+1(γ)
2
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Bootstrap Test Statistics

S∗1 = S1(γ̂) = minγ
S1(γ)

F ∗(γ) = n
(
S∗0 − S∗1 (γ)
S∗1 (γ)

)

F ∗ = n
(
S∗0 − S∗1
S∗1

)
= max

γ
F ∗ (γ)
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Repeat this B ≥ 1000 times.
Let F ∗01(b) denote the b’th value

Fixed Regressor bootstrap p-value

p =
1
B

N

∑
b=1

1 (F ∗01(b) ≥ F01)

Fixed Regressor bootstrap critical values are quantiles of empirical
distribution of F ∗01(b)

Important restriction: Requires serially uncorrelated errors (h = 1)
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Example: GDP Forecasting Equation

qt = 100(log(GDPt )− log(GDPt−4)) = annual growth

Bootstrap p-value for threshold effect: 10.6%
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Inference in Threshold Models

Threshold Estimate has NonStandard Distribution

Confidence intervals by inverting F statistic

F Test: Kknown Threshold against Estimated threshold

LR(γ) = n
(
S1(γ)− S1

S1

)
I [Call it LR(γ) to distinguish from F (γ) from earlier slide.]

Theory: [Hansen, 2000] LR(γ)→d ξ = maxs [2W (s)− |s |]
P(ξ ≤ x) =

(
1− e−x/2)2

Critical values:

P(ξ ≤ c) 0.80 .90 .95 .99
c 4.50 5.94 7.35 10.59
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Confidence Intervals for Threshold

All γ such that LR(γ) ≤ c where c is critical value
Easy to see in graph of LR(γ) against γ
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Threshold Estimates

Estimate: γ̂ = 0.18

Confidence Interval = [−1.0, 2.2]
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Inference on Slope Parameters

Conventional

As if threshold is known
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Threshold Model Estimates

qt = 100(log(GDPt )− log(GDPt−4))

qt ≤ 0.18 qt > 0.18
Intercept -10.3 (4.6) -0.23 (1.11)
∆ log(GDPt ) 0.36 (0.21) 0.16 (0.08)
∆ log(GDPt−1) -0.22 (0.21) 0.20 (0.09)
Spreadt 1.3 (0.8) 0.71 (0.20)
Default Spreadt -0.22 (1.26) -2.3 (0.9)
Housing Startst 2.5 (10.6) 4.1 (2.3)
Building Permitst 7.8 (10.5) -2.2 (2.0)
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NonParametric/NonLinear Time Series Regression

Optimal point forecast is g (xn) where

g (x) = E (yt+1|xt = x)

and xt are all relevant variables.
In general, the form of g (x) is unknown and nonlinear
Linear models used for simplicity, but they are not “true”
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NonParametric/NonLinear Time Series Regression

Model

yt+1 = g (xt ) + et+1
E (et+1|xt ) = 0

The conditional mean zero restriction holds true by construction

et+1 not necessarily iid
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Additively Separable Model

xt = (x1t , ..., xpt )

g (xt ) = g1(x1t ) + g2(x2t ) + · · ·+ gp(xpt )

Then
yt+1 = g1(x1t ) + g2(x2t ) + · · ·+ gp(xpt ) + et+1

Greatly reduces degree of nonlinearity

Useful simplification, but should be viewed as such, not as “true”
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Partially Linear Model

Partition xt = (x1t , x2t )

g (xt ) = g1(x1t ) + β′x2t

x2t typically includes dummy variables, controls
x1t main variables of importance
For example, if primary dependence through first lag

yt+1 = g1(yt ) + β1yt−1 + · · ·+ βpyt−p + et+1
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Sieve Models

For simplicity, suppose xt is scalar (real-valued)

WLOG in additively separable and partially linear models

Approximate g(x) by a sequence gm(x), m = 1, 2, ..., of increasing
complexity

Linear sieves
gm(x) = Zm(x)′βm

where Zm(x) = (z1m(x), ..., zKm(x)) are nonlinear functions of x .

“Series”: Zm(x) = (z1(x), ..., zK (x))

“Sieves”: Zm(x) = (z1m(x), ..., zKm(x))
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Polynomial (power series)

zj (x) = x j

gm(x) =
p

∑
j=1

βjx
j

Stone-Weierstrass Theorem: Any continuous function g(x) can be
arbitrarily well approximated on a compact set by a polynomial of
suffi ciently high order

I For any ε > 0 there exists coeffi cients p and βj such that X

sup
x∈X
|gm(x)− g(x)| ≤ ε

Runge’s phenomenon:
I Polynomials can be poor at interpolation (can be erratic)
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Splines

Piecewise smooth polynomials

Join points are called knots
Linear spline with one knot at τ

gm(x) =


β00 + β01 (x − τ) x < τ

β10 + β11 (x − τ) x ≥ τ

To enforce continuity, β00 = β10,

gm(x) = β0 + β1 (x − τ) + β2 (x − τ) 1 (x ≥ τ)

or equivalently

gm(x) = β0 + β1x + β2 (x − τ) 1 (x ≥ τ)
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Quadratic Spline with One Knot

gm(x) =


β00 + β01 (x − τ) + β02 (x − τ)2 x < τ

β10 + β11 (x − τ) + β12 (x − τ)2 x ≥ τ

Continuous if β00 = β10
Continuous first derivative if β01 = β11
Imposing these constraints

gm(x) = β0 + β1x + β2x
2 + β3 (x − τ)2 1 (x ≥ τ) .
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Cubic Spline with One Knot

gm(x) = β0 + β1x + β2x
2 + β3x

3 + β4 (x − τ)3 1 (x ≥ τ)

Bruce Hansen (University of Wisconsin) Foundations July 23-27, 2012 68 / 87



General Case

Knots at τ1 < τ2 < · · · < τN

gm(x) = β0 +
p

∑
j=1

βjx
j +

N

∑
k=1

βp+k (x − τk )
p 1 (x ≥ τk )
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Uniform Approximation
Stone-Weierstrass Theorem: Any continuous function g(x) can be
arbitrarily well approximated on a compact set by a polynomial of
suffi ciently high order

I For any ε > 0 there exists coeffi cients p and βj such that X

sup
x∈X
|gm(x)− g(x)| ≤ ε

Strengthened Form:
I if the s’th derivative of g(x) is continuous then the uniform
approximation error satisfies

sup
x∈X
|gm(x)− g(x)| = O

(
K−α
m

)
where Km is the number of terms in gm(x)

This holds for polynomials and splines
Runge’s phenomenon:

I Polynomials can be poor at interpolation (can be erratic)
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Illustration

g(x) = x1/4(1− x)1/2

Polynomials of order K = 3, K = 4, and K = 6

Cubic splines are quite similar
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Runge’s Phenomenon
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Placement of Knots

If support of x is [0, 1], typical to set τj = j/(N + 1)
If support of x is [a, b], can set τj = a+ (b− a)/(N + 1)
Alternatively, can set τj to equal the j/(n+ 1) quantile of the
distribution of x
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Estimation

Fix number and location of knots

Estimate coeffi cients by least-squares

Quadratic spline

y = β0 + β1x + β2x
2 +

N

∑
k=1

β2+k (x − τk )
2 1 (x ≥ τk ) + e

Linear model in x , x2, (x − τ1)
2 1 (x ≥ τ1) , ..., (x − τN )

2 1 (x ≥ τN )
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Selection of Number of Knots

Model selection

Pick N to minimize Cross-validation function

CV is an estimate of
I MSFE
I IMSE (integrated mean-squared error)

CV selection (and combination) is asymptotically optimal for
minimization of the MSFE and IMSE
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Example: GDP Growth

yt =GDP Growth

xt =Housing Starts

Partially Linear Model

yt+1 = g(xt ) + β1yt−1 + β2yt−2 + et+1

Polynomial

Cubic Spline
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CV Selection

Polynomial in Housing Starts

p 1 2 3 4 5 6
CV 10.4 10.5 10.6 9.9 10.0 10.0

Cubic Spline in Housing Starts

N 1 2 3 4 5 6
CV 9.97 10.0 10.0 10.0 10.1 10.2

Best fitting regression is quartic polynomial (p = 4)
Cubic spline with 1 knot is close
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Polynomial=solid line
Cubic Spline=dashed line
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Estimated Cubic Spline

Knot=1.5

β̂ s(β̂)
Intercept 29 (8)
∆yt 0.18 (0.08)
∆yt−1 0.10 (0.08)
HSt −86 (26)
HS2t 79 (23)
HS3t −22 (6)
(HSt − 1.5)2 1 (HSt > 1.5) 43 (13)
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New Example: Long and Short Rates

Bi-variate model of Long (10-year) and short (3-month) bond rates

Key variable: Spread: Long-Short

Rt =Long Rate

rt =Short Rate

Zt = Rr − rt =Spread
Model

∆Rt+1 = α0 + αp1(L)∆Rt + βp1(L)∆rt + g1(Zt ) + e1t
∆rt+1 = γ0 + γp2(L)∆Rt + δp2(L)∆rt + g2(Zt ) + e2t
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CV Selection

Separately for each equation
I Long Rate and Short Rate
I Select over number of lags
I Number of spline terms for nonlinearity in Spread
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CV Selection: Long Rate Equation

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
Linear .0844 .0782 .0760 .0757 .0757 .0766 .0736
Quadratic .0846 .0781 .0763 .0760 .0760 .0767 .0742
Cubic .0813 .0794 .0775 .0772 .0771 .0779 .0748
1 Knot .0821 .0758 .0741 .0739 .0739 .0746 .0719
2 Knots .0820 .0767 .0750 .0747 .0747 .0754 .0724
3 Knots .0828 .0774 .0758 .0755 .0755 .0762 .0730

Selected Model: p = 6, Cubic spline with 1 knot at 1.53
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CV Selection: Short Rate Equation

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
Linear .206 .183 .181 .186 .189 .193 .186
Quadratic .203 .178 .177 .181 .185 .187 .183
Cubic .200 .16979 .172 .176 .179 .181 .179
1 Knot .198 .16977 .172 .176 .179 .180 .179
2 Knots .200 .172 .174 .178 .182 .183 .181
3 Knots .201 .171 .174 .179 .182 .183 .181

Selected Model: p = 1, Cubic spline with 1 knot at 1.53
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Forecasting

For h > 1, need to use forecast simulation

Simulate Rn+1, rn+1 forward using iid draws from residuals

Create time paths

Take means to estimate point forecasts

Take quantiles to construct forecats intervals
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Assignment

Construct a nonlinear model to forecast the unemployment rate.

Use either a threshold or nonparametric model

Use appropriate methods to select the model and variables

Make a one-step forecast

If time, use simulation to create 1 through 12 step forecast
distributions. Use this to calculate point forecasts, intervals and a fan
chart.
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