Time Series and Forecasting Lecture 4 NonLinear Time Series

Bruce E. Hansen

Summer School in Economics and Econometrics University of Crete July 23-27, 2012

Today's Schedule

- Density Forecasts
- Threshold Regression Models
- Nonparametric Regression Models

A 🖓 h

Density Forecasts

• The conditional distribution is

$$F_t(y) = P\left(y_{t+1} \le y \mid I_t\right)$$

• The conditional density is

$$f_t(y) = \frac{d}{dy} P\left(y_{t+1} \le y \mid I_t\right)$$

- Density plots are useful summaries of forecast uncertainty
- May also be useful as inputs for other purposes

Density Forecasts

$$y_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1}$$

$$\mu_t = E(y_{t+1}|I_t)$$

$$\sigma_t^2 = \operatorname{var}(\varepsilon_{t+1}|I_t)$$

Assume ε_{t+1} is independent of I_t, with density f^ε(u) = d/dy F^ε(u)
Forecast density for y_{n+1}

$$f_n(y) = \frac{1}{\sigma_n} f^{\varepsilon} \left(\frac{y - \mu_n}{\sigma_n} \right)$$

イロト 不得下 イヨト イヨト 二日

Normal Error Model

• Assume $arepsilon_{t+1} \sim \mathit{N}(0,1)$, then $f^arepsilon(u) = \phi(u)$

$$\widehat{f}_n(y) = \frac{1}{\widehat{\sigma}_n} \phi\left(\frac{y - \widehat{\boldsymbol{\beta}}' \mathbf{x}_n}{\widehat{\sigma}_n}\right)$$

- Probably should not be used
 - Contains no information beyond and $\hat{\sigma}_t$

A (10) A (10)

Nonparametric Density Forecast

- We can estimate $\hat{f}^{\varepsilon}(\varepsilon)$ from the normalized residuals $\hat{\varepsilon}_{t+1}$ using a standard kernel estimator.
 - Discuss this shortly
- Then the forecast density for y_{n+1} is

$$\widehat{f}_n(y) = rac{1}{\widehat{\sigma}_n} \widehat{f}^{\varepsilon} \left(rac{y - \widehat{oldsymbol{eta}}' \mathbf{x}_n}{\widehat{\sigma}_n}
ight)$$

- Interest Rate
- GDP Nowcast

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

10-Year Bond Rate Forecast Density

3

イロト イポト イヨト イヨト

GDP Forecast Density

Nonparametric Density Estimation

- Let X_i be a random variable with density f(x)
- Observations i = 1, ..., n
- [For example, $\widehat{\varepsilon}_{t+1}$ for t = 0, ..., n-1.]
- The kernel density estimator of f(x) is

$$\widehat{f}(x) = \frac{1}{nb} \sum_{i=1}^{n} k\left(\frac{X_i - x}{b}\right)$$

• where k(u) is a kernel function and b is a bandwidth

Kernel Functions

- A kernel function $k(u) : \mathbb{R} \to \mathbb{R}$ is any function which satisfies $\int_{-\infty}^{\infty} k(u) du = 1$.
- A non-negative kernel satisfies k(u) ≥ 0 for all u. In this case, k(u) is a probability density function.
- A symmetric kernel function satisfies k(u) = k(-u) for all u.
- The **order** of a kernel, ν , is the first non-zero moment.
 - > A standard kernel is non-negative, symmetric, and second-order
 - ► A kernel is higher-order kernel if v > 2. These kernels will have negative parts and are not probability densities. They are also referred to as bias-reducing kernels.

Common Second-Order Kernels

R(k)Kernel eff Equation κ_2 $k_0(u) = \frac{1}{2}1(|u| \le 1)$ 1/2 Uniform 1/31.0758 $k_1(u) = \frac{3}{4} (1 - u^2) 1 (|u| \le 1)$ Epanechnikov 3/5 1/51.0000 $k_2(u) = \frac{15}{16} (1 - u^2)^2 \mathbf{1} (|u| \le 1)$ Biweight 5/71/71.0061 $k_3(u) = \frac{35}{32} (1-u^2)^3 \mathbf{1} (|u| \le 1)$ 350/429 1/91.0135 Triweight $k_{\phi}(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$ Gaussian $1/2\sqrt{\pi}$ 1 1.0513

- Not as important as bandwidth
- Epanechnikov (quadratic) is optimal for minimizing IMSE of $\hat{f}(x)$
- Gaussian is convenient as it is infinitely smooth and has positive support everywhere
 - I am using Gaussian here

Kernel Density Estimator

•
$$\hat{f}(x) = \frac{1}{nb} \sum_{i=1}^{n} k\left(\frac{X_i - x}{b}\right)$$

• $\int_{-\infty}^{\infty} \hat{f}(x) dx = \int_{-\infty}^{\infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{b} k\left(\frac{X_i - x}{b}\right) dx =$
 $\frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} \frac{1}{b} k\left(\frac{X_i - x}{b}\right) dx = \frac{1}{n} \sum_{i=1}^{n} 1 = 1$
since by the change of variables $u = (X_i - x)/h$
 $\int_{-\infty}^{\infty} \frac{1}{b} k\left(\frac{X_i - x}{b}\right) dx = \int_{-\infty}^{\infty} k(u) du = 1.$

• Thus $\hat{f}(x)$ is a density

3

Image: A mathematical states and a mathem

First Moment

$$\int_{-\infty}^{\infty} x \widehat{f}(x) dx = \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} x \frac{1}{b} k\left(\frac{X_i - x}{b}\right) dx$$
$$= \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} (X_i + uhb) k(u) du$$
$$= \frac{1}{n} \sum_{i=1}^{n} X_i \int_{-\infty}^{\infty} k(u) du + \frac{1}{n} \sum_{i=1}^{n} b \int_{-\infty}^{\infty} uk(u) du$$
$$= \frac{1}{n} \sum_{i=1}^{n} X_i$$

the sample mean of the X_i .

* ロ > * 個 > * 注 > * 注 >

3

Second Moment

$$\int_{-\infty}^{\infty} x^{2} \widehat{f}(x) dx = \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} x^{2} \frac{1}{b} k\left(\frac{X_{i}-x}{b}\right) dx$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} (X_{i}+ub)^{2} k(u) du$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} + \frac{2}{n} \sum_{i=1}^{n} X_{i}b \int_{-\infty}^{\infty} k(u) du + \frac{1}{n} \sum_{i=1}^{n} b^{2} \int_{-\infty}^{\infty} u^{2} k(u) du$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} + b^{2} \kappa_{2}$$

where $\kappa_{2}=\int_{-\infty}^{\infty}u^{2}k\left(u
ight)du$ (1 in the case of Gaussian)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Kernel Density Variance

$$\int_{-\infty}^{\infty} x^2 \widehat{f}(x) dx - \left(\int_{-\infty}^{\infty} x \widehat{f}(x) dx \right)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 + b^2 \kappa_2 - \left(\frac{1}{n} \sum_{i=1}^n X_i \right)^2 = \widehat{\sigma}^2 + b^2 \kappa_2$$

where $\hat{\sigma}^2$ is the sample variance of X_i In the case of the normalized residuals $\hat{\varepsilon}_{t+1}$, which have mean zero and sample variance 1, and using a Gaussian kernel: $\hat{f}^{\varepsilon}(u)$ has

- A mean of zero
- A variance of $1 + b^2$

Numerical Implementation for Forecast Density

• Pick a set of grid points for ε , e.g. $u_1, ..., u_G$

For each ε on grid, evalulate

$$\widehat{f}^{\varepsilon}(\varepsilon) = rac{1}{nb} \sum_{t=0}^{n-1} \phi\left(rac{\varepsilon - \widehat{\varepsilon}_{t+1}}{b}
ight)$$

or

$$\widehat{f}_{j}^{\varepsilon} = rac{1}{nb}\sum_{t=0}^{n-1}\phi\left(rac{u_{j}-\widehat{arepsilon}_{t+1}}{b}
ight)$$

• Set the translated gridpoints $y_j = \widehat{m{eta}}' {m{x}}_n + \widehat{\sigma}_n u_j$, for j = 1, ..., G, and

$$\widehat{f}_j = \frac{1}{\widehat{\sigma}_n} \widehat{f}_j^{\varepsilon}$$

The rescaling is the Jacobian of the transformation from u_j to y_j • Plot \hat{f}_j on y-axis against y_j on x-axis. This is a plot of

$$\widehat{f}_n(y) = \frac{1}{\widehat{\sigma}_n} \widehat{f}^{\varepsilon} \left(\frac{y - \widehat{\boldsymbol{\beta}}' \mathbf{x}_n}{\widehat{\sigma}_n} \right)$$

Bias of Kernel Estimator

$$\mathrm{E}\widehat{f}(x) = \mathrm{E}\frac{1}{b}k\left(\frac{X_i - x}{b}\right) = \int_{-\infty}^{\infty}\frac{1}{b}k\left(\frac{z - x}{b}\right)f(z)dz$$

Using the change-of variables u = (z - x)/b, this equals

$$\int_{-\infty}^{\infty} k(u) f(x+bu) du$$

Now take a Taylor expansion of f(x + bu) about f(x):

$$f(x + bu) \simeq f(x) + f^{(1)}(x)bu + \frac{1}{2}f^{(2)}(x)b^2u^2$$

Integrating term-by term, $\int_{-\infty}^{\infty} k(u) f(x+bu) du \simeq$ $\int_{-\infty}^{\infty} k(u) f(x) + f^{(1)}(x) b \int_{-\infty}^{\infty} k(u) u + \frac{1}{2} f^{(2)}(x) b^2 \int_{-\infty}^{\infty} k(u) u^2 du$ $= f(x) + \frac{1}{2} f^{(2)}(x) b^2 \kappa_2$

Variance of Kernel Estimator

$$\operatorname{var}\widehat{f}(x) = \frac{1}{n}\operatorname{var}\frac{1}{b}k\left(\frac{X_i - x}{b}\right)$$
$$\simeq \frac{1}{nb^2}\int_{-\infty}^{\infty}k\left(\frac{z - x}{b}\right)^2 f(z)dz$$
$$= \frac{1}{nb}\int_{-\infty}^{\infty}k(u)^2 f(x + bu)du$$
$$\simeq \frac{f(x)}{nb}\int_{-\infty}^{\infty}k(u)^2 du$$
$$= \frac{f(x)R(k)}{nb}$$

where $R(k) = \int_{-\infty}^{\infty} k(u)^2 du$ is called the roughness of the kernel.

- 32

Asymptotic MSE of Kernel Estimator

$$\begin{aligned} \mathsf{AMSE}(\widehat{f}(x)) &= \mathsf{Bias}(\widehat{f}(x))^2 + \operatorname{var}\left(\widehat{f}(x)\right) \\ &= \frac{\kappa_2^2}{4} \left(f^{(2)}(x)\right)^2 b^4 + \frac{f(x) R(k)}{nb} \end{aligned}$$

3

- ∢ ≣ →

Mean Integrated Squared Error (MISE) of Kernel Estimator

$$AMISE = \int_{-\infty}^{\infty} AMSE(\widehat{f}(x))dx$$

=
$$\int_{-\infty}^{\infty} \frac{\kappa_2^2}{4} \left(f^{(2)}(x)\right)^2 b^4 dx + \int_{-\infty}^{\infty} \frac{f(x) R(k)}{nb} dx$$

=
$$\frac{\kappa_2^2}{4} R(f) b^4 + \frac{R(k)}{nb}$$

where
$$R(f) = \int_{-\infty}^{\infty} \left(f^{(2)}(x) \right)^2 dx$$
 is the roughness of $f^{(2)}$

Bruce Hansen (University of Wisconsin)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The AMISE takes the form $Ab^4 + B/nb$ The bandwidth *b* which minimizes the AMISE is

$$b = \left(\frac{4R(k)}{4\kappa_2^2}\right)^{1/5} R(f)^{-1/5} n^{-1/5}$$

The unknown component is $R(f)^{-1/5}$

The "rougher" is f(x), the larger is R(f) so the optimal b is smaller

Rule of Thumb

- Silverman proposed that we take $f = \phi$ as a baseline (or reference)
- Calculate the optimal bandwidth for this case.
 - The "Rule of Thumb"
- $b = \hat{\sigma} C n^{-1/5}$ where

$$C = 2\left(\frac{\pi^{1/2} 2R(k)}{4!\kappa_2^2}\right)^{1/5}$$

Rule of Thumb Constants	
Epanechnikov	2.34
Biweight	2.78

-	
Triweight	3.15
Gaussian	1.06

- 3

- 4 週 ト - 4 三 ト - 4 三 ト

Plug-in bandwidth Methods

Estimate $\widehat{R}(f)$ Use

$$b = \left(\frac{4R(k)}{4\kappa_2^2}\right)^{1/5} \widehat{R}(f)^{-1/5} n^{-1/5}$$

Image: A math a math

3

Cross-Validation for Density Bandwidth

• Mean integrated squared error (MISE). Given b

$$MISE(b) = \int \left(\widehat{f}(x) - f(x)\right)^2 dx$$

= $\int \widehat{f}(x)^2 dx - 2 \int \widehat{f}(x) f(x) dx + \int f(x)^2 dx$

• We know the first term, not the second, and the third does not depend on *b* so we ignore it

First Term

The first term is

$$\int \widehat{f}(x)^2 dx = \int \left(\frac{1}{bh} \sum_{i=1}^n k\left(\frac{X_i - x}{b}\right)\right)^2 dx$$
$$= \frac{1}{n^2 b^2} \sum_{i=1}^n \sum_{j=1}^n \int k\left(\frac{X_i - x}{b}\right) k\left(\frac{X_j - x}{b}\right) dx$$

• Make the change of variables $u = \frac{X_i - x}{h}$,

$$\frac{1}{b}\int k\left(\frac{X_{i}-x}{b}\right)k\left(\frac{X_{i}-x}{b}\right)dx = \int k\left(u\right)k\left(u-\frac{X_{i}-X_{j}}{b}\right)du$$
$$= k^{*}\left(\frac{X_{i}-X_{j}}{b}\right)$$

where $k^*(x) = \int k(u) k(x-u) du$ is the convolution of k with itself. • If $k(x) = \phi(x)$ then $k^*(x) = 2^{-1/2}\phi(x/\sqrt{2}) = \exp(-x^2/4)/\sqrt{4\pi}$. The first term is thus

$$\int \widehat{f}(x)^2 dx = \frac{1}{n^2 b^2} \sum_{i=1}^n \sum_{j=1}^n k^* \left(\frac{X_i - X_j}{b} \right)$$

æ

・ロト ・聞ト ・ヨト ・ヨト

Second Term

• The second term is -2 times

$$\int \widehat{f}(x) f(x) dx$$

an integral with respect to the density of X_i , or an expectation with respect to X_i

- We can estimate expectations using sample averages, e.g. $\frac{1}{n}\sum_{i=1}^{n}\widehat{f}(X_i)$, but \widehat{f} depends on X_i , so this is biased
- The solution is to use a leave-one-out estimator for \widehat{f} ,

$$\widehat{f}_{-i}(x) = rac{1}{(n-1)b} \sum_{j \neq i} k\left(rac{X_j - x}{b}\right)$$

• Then an unbiased estimate of the second term is

$$\frac{1}{n}\sum_{i=1}^{n}\widehat{f}_{-i}\left(X_{i}\right)=\frac{1}{n\left(n-1\right)b}\sum_{i=1}^{n}\sum_{j\neq i}k\left(\frac{X_{j}-X_{i}}{b}\right)$$

Cross-Validation Criterion

$$MISE(b) = \int \hat{f}(x)^2 dx - 2 \int \hat{f}(x) f(x) dx + \int f(x)^2 dx$$

$$CV(b) = \frac{1}{n^2 b^2} \sum_{i=1}^{n} \sum_{j=1}^{n} k^* \left(\frac{X_i - X_j}{b}\right) - \frac{2}{n(n-1)b} \sum_{i=1}^{n} \sum_{j \neq i} k\left(\frac{X_j - X_i}{b}\right)$$

In the case of a Gaussian kernel

$$CV(b) = \frac{1}{n^2 b^2 \sqrt{2}} \sum_{i=1}^n \sum_{j=1}^n \phi\left(\frac{X_i - X_j}{\sqrt{2}b}\right) - \frac{2}{n(n-1)b} \sum_{i=1}^n \sum_{j \neq i} \phi\left(\frac{X_j - X_i}{b}\right)$$

• CV selected bandwidth

$$\widehat{b} = \operatorname{argmin} CV(b)$$

3 ×

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Evaluation

- Form a grid for b
- If b_r is the rule-of-thumb bandwidth, search over $[b_r/3, 3b_r]$ or something similar
- Many authors define the CV bandwidth as the largest local minimizer
- In the end, an eyeball reality check of your estimated density is important.

- CV selected bandwidth is consistent
- Let b_0 minimize the AMISE

$$\frac{\widehat{b}-b_0}{b_0}\to_p 0$$

• But the rate of convergence is slow, n^{-10}

< A >

3

Examples

- 10-Year Bond Rate
- GDP Growth Rate

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Bruce Hansen (University of Wisconsin)

July 23-27, 2012 34 / 87

10-Year Bond Rate Forecast Density

3

<ロ> (日) (日) (日) (日) (日)

GDP Forecast Density

Threshold Models

- A type of nonlinear time series models
- Strong nonlinearity
- Allows for switching effects
- Most typically univariate (for simplicity)

Threshold Models

- Threshold Variable q_t
 - ▶ $q_t = 100(\log(GDP_t) \log(GDP_{t-4})) = \text{annual growth}$
- Threshold γ
- Split regression
 - Coefficients switch if $q_t \leq \gamma$ or $q_t > \gamma$
 - If growth has been above or below the threshold

$$\begin{array}{ll} y_{t+1} &=& \pmb{\beta}_1' \mathbf{x}_t \mathbf{1} \left(q_t \leq \gamma \right) + \pmb{\beta}_2' \mathbf{x}_t \mathbf{1} \left(q_t > \gamma \right) + e_{t+1} \\ &=& \left\{ \begin{array}{ll} \pmb{\beta}_1' \mathbf{x}_t + e_t & q_t \leq \gamma \\ \pmb{\beta}_2' \mathbf{x}_t + e_t & q_t > \gamma \end{array} \right. \end{array}$$

- 3

くほと くほと くほと

Partial Threshold Model

$$y_{t+1} = \boldsymbol{\beta}_0' \mathbf{z}_t + \boldsymbol{\beta}_1' \mathbf{x}_t \mathbf{1} (q_t \leq \gamma) + \boldsymbol{\beta}_2' \mathbf{x}_t \mathbf{1} (q_t > \gamma) + \boldsymbol{e}_{t+1}$$

- Coefficients on **z**_t do not switch
- More parsimonious

-

3

Estimation

 $y_{t+1} = \boldsymbol{\beta}_0' \mathbf{z}_t + \boldsymbol{\beta}_1' \mathbf{x}_t \mathbf{1} \left(q_t \leq \gamma \right) + \boldsymbol{\beta}_2' \mathbf{x}_t \mathbf{1} \left(q_t > \gamma \right) + \boldsymbol{e}_{t+1}$

- Least Squares $(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2, \widehat{\gamma})$ minimize sum-of-squared errors
- Equation is non-linear, so NLLS, not OLS
- Simple to compute by concentration method
 - Given γ , model is linear in β
 - Regressors are z_t , $x_t 1 (q_t \leq \gamma)$ and $x_t 1 (q_t > \gamma)$
 - Estimate by least-squares
 - Save residuals, sum of squared errors
 - Repeat for all thresholds γ. Find value which minimizes SSE

Estimation Details

• For a grid on γ (can use sample values of q_t)

- Define dummy variables $d_{1t}(\gamma) = 1 (q_t \leq \gamma)$ and $d_{2t}(\gamma) = 1 (q_t > \gamma)$
- Define interaction variables $\mathbf{x}_{1t}(\gamma) = \mathbf{x}_t d_{1t}(\gamma)$ and $\mathbf{x}_{2t}(\gamma) = \mathbf{x}_t d_{2t}(\gamma)$
- Regress y_{t+1} on \mathbf{z}_t , $\mathbf{x}_{1t}(\gamma)$, $\mathbf{x}_{2t}(\gamma)$

$$\mathbf{y}_{t+1} = \widehat{\boldsymbol{\beta}}_0' \mathbf{z}_t + \widehat{\boldsymbol{\beta}}_1' \mathbf{x}_{1t}(\gamma) + \widehat{\boldsymbol{\beta}}_2' \mathbf{x}_{2t}(\gamma) + \widehat{\mathbf{e}}_{t+1}(\gamma)$$

Sum of squared errors

$$S(\gamma) = \sum_{t=1}^{n} \hat{\mathbf{e}}_{t+1}(\gamma)^2$$

- \blacktriangleright Write this explicity as a function of γ as the estimates, residuals and SSE vary with γ
- Find $\hat{\gamma}$ which minimizes $S(\gamma)$
 - Useful to view plot of $S(\gamma)$ against γ
- Given $\hat{\gamma}$, repeat above steps to find estimates $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$
- Forecasts made from fitted model

Example: GDP Forecasting Equation

- $q_t = 100(\log(\textit{GDP}_t) \log(\textit{GDP}_{t-4})) = \text{annual growth}$
- Threshold estimate: $\hat{\gamma}=0.18$
 - \blacktriangleright Splits regression depend if past year's growth is above or below 0.18% $\approx 0\%$

イロト イポト イヨト イヨト 二日

Bruce Hansen (University of Wisconsin)

July 23-27, 2012 44 / 87

э

→

Image: A math a math

Multi-Step Forecasts

- Nonlinear models (including threshold models) do not have simple iteration method for multi-step forecasts
- Option 1: Specify direct threshold model
- Option 2: Iterate one-step threshold model by simulation:

Multi-Step Simulation Method

Take fitted model

$$y_{t+1} = \widehat{\boldsymbol{\beta}}_0' \mathbf{z}_t + \widehat{\boldsymbol{\beta}}_1' \mathbf{x}_t \mathbf{1} \left(q_t \leq \hat{\gamma} \right) + \widehat{\boldsymbol{\beta}}_2' \mathbf{x}_t \mathbf{1} \left(q_t > \hat{\gamma} \right) + \hat{\mathbf{e}}_{t+1}$$

- Draw iid errors $\hat{e}^*_{n+1},...,\hat{e}^*_{n+h}$ from the residuals $\{\hat{e}_1,...,\hat{e}_n\}$
- Create $y_{n+1}^*(b), y_{n+2}^*(b), ..., y_{n+h}^*(b)$ forward by simulation
- b indexes the simulation run
- Repeat B times (a large number)
- {y^{*}_{n+h}(b) : b = 1, ..., B} constitute an iid sample from the forecast distribution for y_{n+h}
 - Point forecast $f_{n+h} = \frac{1}{B} \sum_{b=1}^{B} y_{n+h}^{*}(b)$
 - Interval forecast: α and 1α quantiles of $y_{n+h}^*(b)$

Testing for a Threshold

- Null hypothesis: No threshold (linearity)
- Null Model: No threshold

$$\begin{array}{lll} y_{t+1} & = & \widehat{\boldsymbol{\beta}}_0' \mathbf{z}_t + \widehat{\boldsymbol{\beta}}_1' \mathbf{x}_t + \widehat{\mathbf{e}}_{t+1} \\ S_0 & = & \sum_{t=1}^n \widehat{\mathbf{e}}_{t+1}^2 \end{array}$$

• Alternative: Single Threshold

$$y_{t+1} = \widehat{\beta}'_{0} \mathbf{z}_{t} + \widehat{\beta}'_{1} \mathbf{x}_{1t}(\gamma) + \widehat{\beta}'_{2} \mathbf{x}_{2t}(\gamma) + \widehat{\mathbf{e}}_{t+1}(\gamma)$$

$$S_{1}(\gamma) = \sum_{t=1}^{n} \widehat{\mathbf{e}}_{t+1}(\gamma)^{2}$$

$$S_{1} = S_{1}(\widehat{\gamma}) = \min_{\gamma} S_{1}(\gamma)$$

3

< 4 → <

Threshold F Test

No Threshold against one threshold

$$F(\gamma) = n\left(rac{S_0 - S_1(\gamma)}{S_1(\gamma)}
ight)$$

$$F = n\left(\frac{S_0 - S_1}{S_1}\right)$$
$$= \max_{\gamma} F(\gamma)$$

3

3

NonStandard Testing

- Test is non-standard.
- Critical values obtained by simulation or bootstrap
- Fixed Regressor Bootstrap
 - Similar to a bootstrap, a method to simulate the asymptotic null distribution
 - Fix $(\mathbf{z}_t, \mathbf{x}_t, \hat{\mathbf{e}}_t), t = 1, ..., n$
 - Let y_t^* be iid $N(0, \hat{e}_t^2)$, t = 1, ..., n
 - Estimate the regressions as before

$$y_{t+1}^{*} = \widehat{\beta}_{0}^{*'} z_{t} + \widehat{\beta}_{1}^{*} x_{t} + \hat{e}_{t+1}^{*}$$

$$S_{0}^{*} = \sum_{t=1}^{n} \hat{e}_{t+1}^{*2}$$

$$y_{t+1}^* = \widehat{\beta}_0^{*\prime} \mathbf{z}_t + \widehat{\beta}_1^{*\prime} \mathbf{x}_{1t}(\gamma) + \widehat{\beta}_2^{*\prime} \mathbf{x}_{2t}(\gamma) + \widehat{\mathbf{e}}_{t+1}^*(\gamma)$$

$$S_1^*(\gamma) = \min_{\gamma} \sum_{t=1}^n \widehat{\mathbf{e}}_{t+1}^*(\gamma)^2$$

Bootstrap Test Statistics

$$S_1^* = S_1(\hat{\gamma}) = \min_{\gamma} S_1(\gamma)$$
$$F^*(\gamma) = n \left(\frac{S_0^* - S_1^*(\gamma)}{S_1^*(\gamma)}\right)$$

$$F^* = n\left(\frac{S_0^* - S_1^*}{S_1^*}\right)$$
$$= \max_{\gamma} F * (\gamma)$$

Bruce Hansen (University of Wisconsin)

∃ → July 23-27, 2012 50 / 87

Image: A image: A

-

- Repeat this $B \ge 1000$ times.
- Let $F_{01}^*(b)$ denote the b'th value
- Fixed Regressor bootstrap p-value

$$p = \frac{1}{B} \sum_{b=1}^{N} \mathbb{1}(F_{01}^{*}(b) \ge F_{01})$$

- Fixed Regressor bootstrap critical values are quantiles of empirical distribution of $F^*_{01}(b)$
- Important restriction: Requires serially uncorrelated errors (h = 1)

Example: GDP Forecasting Equation

- $q_t = 100(\log(\textit{GDP}_t) \log(\textit{GDP}_{t-4})) = \text{annual growth}$
- Bootstrap p-value for threshold effect: 10.6%

イロト イポト イヨト イヨト 二日

Bruce Hansen (University of Wisconsin)

July 23-27, 2012 53 / 87

Inference in Threshold Models

- Threshold Estimate has NonStandard Distribution
- Confidence intervals by inverting F statistic
- F Test: Kknown Threshold against Estimated threshold

$$LR(\gamma) = n\left(\frac{S_1(\gamma) - S_1}{S_1}\right)$$

- [Call it $LR(\gamma)$ to distinguish from $F(\gamma)$ from earlier slide.]
- Theory: [Hansen, 2000] $LR(\gamma) \rightarrow_d \xi = \max_s \left[2W(s) |s| \right]$
- $P(\xi \le x) = (1 e^{-x/2})^2$
- Critical values:

$$P(\xi \le c) \quad 0.80 \quad .90 \quad .95 \quad .99 \ c \quad 4.50 \quad 5.94 \quad 7.35 \quad 10.59$$

- 4 個 ト 4 国 ト - 4 国 ト - 三日

Confidence Intervals for Threshold

- All γ such that $LR(\gamma) \leq c$ where c is critical value
- Easy to see in graph of $\mathit{LR}(\gamma)$ against γ

< A > < 3

э

→

Image: A math a math

Threshold Estimates

- Estimate: $\hat{\gamma} = 0.18$
- Confidence Interval = [-1.0, 2.2]

3

(日) (同) (三) (三)

Inference on Slope Parameters

- Conventional
- As if threshold is known

3

Image: A matrix

Threshold Model Estimates

$$q_t = 100(\log(\textit{GDP}_t) - \log(\textit{GDP}_{t-4}))$$

	$q_t \leq 0.18$	$q_t > 0.18$
Intercept	-10.3 (4.6)	-0.23 (1.11)
$\Delta \log(GDP_t)$	0.36 (0.21)	0.16 (0.08)
$\Delta \log(GDP_{t-1})$	-0.22 (0.21)	0.20 (0.09)
Spread _t	1.3 (0.8)	0.71 (0.20)
Default Spread _t	-0.22 (1.26)	-2.3 (0.9)
Housing Starts _t	2.5 (10.6)	4.1 (2.3)
Building Permits _t	7.8 (10.5)	-2.2 (2.0)

3

э.

・ロト ・日本・ ・ 日本

NonParametric/NonLinear Time Series Regression

• Optimal point forecast is $g(\mathbf{x}_n)$ where

$$g(\mathbf{x}) = E(y_{t+1}|\mathbf{x}_t = \mathbf{x})$$

and \mathbf{x}_t are all relevant variables.

- In general, the form of $g(\mathbf{x})$ is unknown and nonlinear
- Linear models used for simplicity, but they are not "true"

NonParametric/NonLinear Time Series Regression

Model

$$\begin{array}{rcl} y_{t+1} & = & g\left(\mathbf{x}_{t}\right) + e_{t+1} \\ E\left(e_{t+1} | \mathbf{x}_{t}\right) & = & 0 \end{array}$$

- The conditional mean zero restriction holds true by construction
- *e*_{t+1} not necessarily iid

Additively Separable Model

•
$$\mathbf{x}_t = (x_{1t}, ..., x_{pt})$$

 $g(\mathbf{x}_t) = g_1(x_{1t}) + g_2(x_{2t}) + \dots + g_p(x_{pt})$

Then

$$y_{t+1} = g_1(x_{1t}) + g_2(x_{2t}) + \cdots + g_p(x_{pt}) + e_{t+1}$$

- Greatly reduces degree of nonlinearity
- Useful simplification, but should be viewed as such, not as "true"

・ 何 ト ・ ヨ ト ・ ヨ ト

Partially Linear Model

• Partition
$$\mathbf{x}_t = (x_{1t}, \mathbf{x}_{2t})$$

$$g(\mathbf{x}_t) = g_1(x_{1t}) + \boldsymbol{\beta}' \mathbf{x}_{2t}$$

- **x**_{2t} typically includes dummy variables, controls
- **x**_{1t} main variables of importance
- For example, if primary dependence through first lag

$$y_{t+1} = g_1(y_t) + \beta_1 y_{t-1} + \dots + \beta_p y_{t-p} + e_{t+1}$$

Sieve Models

- For simplicity, suppose x_t is scalar (real-valued)
- WLOG in additively separable and partially linear models
- Approximate g(x) by a sequence g_m(x), m = 1, 2, ..., of increasing complexity
- Linear sieves

$$g_m(x) = Z_m(x)' \boldsymbol{\beta}_m$$

where $Z_m(x) = (z_{1m}(x), ..., z_{Km}(x))$ are nonlinear functions of x.

- "Series": $Z_m(x) = (z_1(x), ..., z_K(x))$
- "Sieves": $Z_m(x) = (z_{1m}(x), ..., z_{Km}(x))$

Polynomial (power series)

•
$$z_j(x) = x^j$$

$$g_m(x) = \sum_{j=1}^p \beta_j x^j$$

- Stone-Weierstrass Theorem: Any continuous function g(x) can be arbitrarily well approximated on a compact set by a polynomial of sufficiently high order
 - For any $\varepsilon > 0$ there exists coefficients p and β_i such that \mathcal{X}

$$\sup_{x\in\mathcal{X}}|g_m(x)-g(x)|\leq\varepsilon$$

• Runge's phenomenon:

Polynomials can be poor at interpolation (can be erratic)

Splines

- Piecewise smooth polynomials
- Join points are called knots
- Linear spline with one knot at au

$$g_m(x) = \begin{cases} \beta_{00} + \beta_{01} (x - \tau) & x < \tau \\ \\ \beta_{10} + \beta_{11} (x - \tau) & x \ge \tau \end{cases}$$

• To enforce continuity, $\beta_{00}=\beta_{10}$,

$$g_m(x) = \beta_0 + \beta_1 \left(x - \tau \right) + \beta_2 \left(x - \tau \right) \mathbf{1} \left(x \ge \tau \right)$$

or equivalently

$$g_m(x) = \beta_0 + \beta_1 x + \beta_2 (x - \tau) \mathbf{1} (x \ge \tau)$$

47 ▶

Quadratic Spline with One Knot

$$g_{m}(x) = \begin{cases} \beta_{00} + \beta_{01} (x - \tau) + \beta_{02} (x - \tau)^{2} & x < \tau \\ \\ \beta_{10} + \beta_{11} (x - \tau) + \beta_{12} (x - \tau)^{2} & x \ge \tau \end{cases}$$

- $\bullet~{\rm Continuous}$ if $\beta_{00}=\beta_{10}$
- $\bullet\,$ Continuous first derivative if $\beta_{01}=\beta_{11}$
- Imposing these constraints

$$g_m(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 (x - \tau)^2 \mathbf{1} (x \ge \tau).$$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cubic Spline with One Knot

$$g_{m}(x) = \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3} + \beta_{4}(x - \tau)^{3} \mathbf{1}(x \ge \tau)$$

* ロ > * 個 > * 注 > * 注 >

æ

General Case

• Knots at $au_1 < au_2 < \dots < au_N$

$$g_m(x) = \beta_0 + \sum_{j=1}^p \beta_j x^j + \sum_{k=1}^N \beta_{p+k} (x - \tau_k)^p \mathbf{1} (x \ge \tau_k)$$

Uniform Approximation

- Stone-Weierstrass Theorem: Any continuous function g(x) can be arbitrarily well approximated on a compact set by a polynomial of sufficiently high order
 - For any $\varepsilon > 0$ there exists coefficients p and β_i such that \mathcal{X}

$$\sup_{x\in\mathcal{X}}|g_m(x)-g(x)|\leq\varepsilon$$

- Strengthened Form:
 - ▶ if the s'th derivative of g(x) is continuous then the uniform approximation error satisfies

$$\sup_{x\in\mathcal{X}}|g_m(x)-g(x)|=O\left(K_m^{-\alpha}\right)$$

where K_m is the number of terms in $g_m(x)$

- This holds for polynomials and splines
- Runge's phenomenon:
 - Polynomials can be poor at interpolation (can be erratic)

Illustration

- $g(x) = x^{1/4}(1-x)^{1/2}$
- Polynomials of order K = 3, K = 4, and K = 6
- Cubic splines are quite similar

<20 ≥ 3

Image: A match a ma

July 23-27, 2012 72 / 87
Runge's Phenomenon

Bruce Hansen (University of Wisconsin)

73 / 87

Placement of Knots

- If support of x is [0, 1], typical to set $\tau_j = j/(N+1)$
- If support of x is [a, b], can set $\tau_j = a + (b a)/(N + 1)$
- Alternatively, can set τ_j to equal the j/(n+1) quantile of the distribution of x

< 4 **1** → 4

3

Estimation

- Fix number and location of knots
- Estimate coefficients by least-squares
- Quadratic spline

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \sum_{k=1}^{N} \beta_{2+k} (x - \tau_k)^2 \mathbf{1} (x \ge \tau_k) + e$$

• Linear model in x, x^2 , $(x - \tau_1)^2 \mathbf{1} (x \ge \tau_1)$, ..., $(x - \tau_N)^2 \mathbf{1} (x \ge \tau_N)$

Selection of Number of Knots

- Model selection
- Pick N to minimize Cross-validation function
- CV is an estimate of
 - MSFE
 - IMSE (integrated mean-squared error)
- CV selection (and combination) is asymptotically optimal for minimization of the MSFE and IMSE

Example: GDP Growth

- $y_t = \text{GDP Growth}$
- $x_t =$ Housing Starts
- Partially Linear Model

$$y_{t+1} = g(x_t) + \beta_1 y_{t-1} + \beta_2 y_{t-2} + e_{t+1}$$

- Polynomial
- Cubic Spline

3. 3

< A >

CV Selection

Polynomial in Housing Starts

Cubic Spline in Housing Starts

 N
 1
 2
 3
 4
 5
 6

 CV
 9.97
 10.0
 10.0
 10.0
 10.1
 10.2

Best fitting regression is quartic polynomial (p = 4)Cubic spline with 1 knot is close

Polynomial=solid line Cubic Spline=dashed line

Estimated Cubic Spline

Knot=1.5

	$\widehat{oldsymbol{eta}}$	$s(\widehat{eta})$
Intercept	29	(8)
Δy_t	0.18	(0.08)
Δy_{t-1}	0.10	(0.08)
HSt	-86	(26)
HS_t^2	79	(23)
HS_t^3	-22	(6)
$(HS_t - 1.5)^2 1 (HS_t > 1.5)$	43	(13)

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

New Example: Long and Short Rates

- Bi-variate model of Long (10-year) and short (3-month) bond rates
- Key variable: Spread: Long-Short
- $R_t =$ Long Rate
- $r_t = \text{Short Rate}$
- $Z_t = R_r r_t =$ Spread
- Model

$$\begin{aligned} \Delta R_{t+1} &= \alpha_0 + \alpha_{p_1}(L)\Delta R_t + \beta_{p_1}(L)\Delta r_t + g_1(Z_t) + e_{1t} \\ \Delta r_{t+1} &= \gamma_0 + \gamma_{p_2}(L)\Delta R_t + \delta_{p_2}(L)\Delta r_t + g_2(Z_t) + e_{2t} \end{aligned}$$

- 3

- 4 目 ト - 4 日 ト - 4 日 ト

CV Selection

- Separately for each equation
 - Long Rate and Short Rate
 - Select over number of lags
 - Number of spline terms for nonlinearity in Spread

___ ▶

CV Selection: Long Rate Equation

	p = 0	p=1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
Linear	.0844	.0782	.0760	.0757	.0757	.0766	.0736
Quadratic	.0846	.0781	.0763	.0760	.0760	.0767	.0742
Cubic	.0813	.0794	.0775	.0772	.0771	.0779	.0748
1 Knot	.0821	.0758	.0741	.0739	.0739	.0746	.0719
2 Knots	.0820	.0767	.0750	.0747	.0747	.0754	.0724
3 Knots	.0828	.0774	.0758	.0755	.0755	.0762	.0730

Selected Model: p = 6, Cubic spline with 1 knot at 1.53

CV Selection: Short Rate Equation

	p = 0	p=1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
Linear	.206	.183	.181	.186	.189	.193	.186
Quadratic	.203	.178	.177	.181	.185	.187	.183
Cubic	.200	.16979	.172	.176	.179	.181	.179
1 Knot	.198	.16977	.172	.176	.179	.180	.179
2 Knots	.200	.172	.174	.178	.182	.183	.181
3 Knots	.201	.171	.174	.179	.182	.183	.181

Selected Model: p = 1, Cubic spline with 1 knot at 1.53

Long and Short Rate as a function of Spread

Forecasting

- For h > 1, need to use forecast simulation
- Simulate R_{n+1} , r_{n+1} forward using iid draws from residuals
- Create time paths
- Take means to estimate point forecasts
- Take quantiles to construct forecats intervals

Assignment

- Construct a nonlinear model to forecast the unemployment rate.
- Use either a threshold or nonparametric model
- Use appropriate methods to select the model and variables
- Make a one-step forecast
- If time, use simulation to create 1 through 12 step forecast distributions. Use this to calculate point forecasts, intervals and a fan chart.