Time Series and Forecasting Lecture 3 Forecast Intervals, Multi-Step Forecasting

Bruce E. Hansen

Summer School in Economics and Econometrics University of Crete July 23-27, 2012

Bruce Hansen (University of Wisconsin)

Today's Schedule

- Review
- Forecast Intervals
- Forecast Distributions
- Multi-Step Direct Forecasts
- Fan Charts
- Iterated Forecasts

47 ▶

Review

- Optimal point forecast of y_{n+1} given information I_n is the conditional mean $E(y_{n+1}|I_n)$
- Estimate linear approximations by least-squares
- Combine point forecasts to reduce MSFE
- Select estimators and combination weights by cross-validation
- Estimate GARCH models for conditional variance

Interval Forecasts

- Take the form [a, b]
- Should contain y_{n+1} with probability $1-2\alpha$

$$1 - 2\alpha = P_n (y_{n+1} \in [a, b]) = P_n (y_{n+1} \le b) - P_n (y_{n+1} \le a) = F_n(b) - F_n(a)$$

where $F_n(y)$ is the forecast distribution

It follows that

$$a = q_n(\alpha)$$

$$b = q_n(1-\alpha)$$

• $a = \alpha$ 'th and $b = (1 - \alpha)$ 'th quantile of conditional distribution

(日) (同) (三) (三)

Interval Forecasts are Conditional Quantiles

- The ideal 80% forecast interval, is the 10% and 90% quantile of the conditional distribution of y_{n+1} given I_n
- Our feasible forecast intervals are estimates of the 10% and 90% quantile of the conditional distribution of y_{n+1} given I_n
- The goal is to estimate conditional quantiles.

Mean-Variance Model

Write

$$y_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1}$$

$$\mu_t = E(y_{t+1}|I_t)$$

$$\sigma_t^2 = \operatorname{var}(y_{t+1}|I_t)$$

- Assume that ε_{t+1} is independent of I_t .
- Let $q_t(\alpha)$ and $q^{\varepsilon}(\alpha)$ be the α 'th quantiles of y_{t+1} and ε_{t+1} . Then

$$q_t(\alpha) = \mu_t + \sigma_t q^{\varepsilon}(\alpha)$$

• Thus a $(1-2\alpha)$ forecast interval for y_{n+1} is

$$[\mu_n + \sigma_n q^{\varepsilon}(\alpha), \quad \mu_n + \sigma_n q^{\varepsilon}(1-\alpha)]$$

3

(人間) トイヨト イヨト

Mean-Variance Model

• Given the conditional mean μ_n and variance σ_n^2 , the conditional quantile of y_{n+1} is a linear function $\mu_n + \sigma_n q^{\varepsilon}(\alpha)$ of the conditional quantile $q^{\varepsilon}(\alpha)$ of the normalized error

$$\varepsilon_{n+1}=\frac{e_{n+1}}{\sigma_n}$$

• Interval forecasts thus can be summarized by μ_n , σ_n^2 , and $q^{\varepsilon}(\alpha)$

Normal Error Quantile Forecasts

- Make the approximation $\varepsilon_{t+1} \sim N(0, 1)$
 - Then $q^{\varepsilon}(\alpha) = Z(a)$ are normal quantiles
 - Useful simplification, especially in small samples
- 0.10, 0.25, 0.75, 0.90 quantiles are
 - ► -1.285, -0.675, 0.675, 1.285
- Forecast intervals

$$[\widehat{\mu}_n + \widehat{\sigma}_n Z(\alpha), \quad \widehat{\mu}_n + \widehat{\sigma}_n Z(1-\alpha)]$$

3

Nonparametric Error Quantile Forecasts

• Let $\varepsilon_{t+1} \sim F$ be unknown

We can estimate q^ε(α) as the empirical quantiles of the residuals
 Set

$$\widehat{\varepsilon}_{t+1} = \frac{\widetilde{e}_{t+1}}{\widehat{\sigma}_t}$$

• Sort
$$\hat{\varepsilon}_1, ..., \hat{\varepsilon}_n$$
.
• $\hat{q}^{\varepsilon}(\alpha)$ and $\hat{q}^{\varepsilon}(1-\alpha)$ are the α 'th and $(1-\alpha)$ 'th percentiles

$$[\widehat{\mu}_n + \widehat{\sigma}_n \widehat{q}^{\varepsilon}(\alpha), \quad \widehat{\mu}_n + \widehat{\sigma}_n \widehat{q}^{\varepsilon}(1-\alpha)]$$

- Computationally simple
- Reasonably accurate when $n \ge 100$
- Allows asymmetric and fat-tailed error distributions

Constant Variance Case

- If $\hat{\sigma}_t = \hat{\sigma}$ is a constant, there is no advantage for estimation of $\hat{\sigma}$ for forecast interval
- Let $\widehat{q}^e(\alpha)$ and $\widehat{q}^e(1-\alpha)$ be the α 'th and $(1-\alpha)$ 'th percentiles of original residuals \widetilde{e}_{t+1}
- Forecast Interval:

$$[\widehat{\mu}_n + \widehat{q}^{\varepsilon}(\alpha), \quad \widehat{\mu}_n + \widehat{q}^{e}(1-\alpha)]$$

• When the estimated variance is a constant, this is numerically identical to the definition with rescaled errors $\hat{\varepsilon}_{t+1}$

Computation in R

- quadreg package
 - may need to be installed
 - library(quadreg)
 - rq command
- If *e* is vector of (normalized) residuals and *a* is the quantile to be evalulated
 - rq(e~1,a)
 - q=coef(rq(e~1,a))
 - Quantile regression of e on an intercept

Example: Interest Rate Forecast

- n = 603 observations • $\hat{\varepsilon}_{t+1} = \frac{\widetilde{e}_{t+1}}{\widehat{\sigma}_{t}}$ from GARCH(1,1) model
- 0.10, 0.25, 0.75, 0.90 quantiles
- -1.16, -0.59, 0.62, 1.26
- Point Forecast = 1.96
- 50% Forecast interval = [1.82, 2.10]
- 80% Forecast interval = [1.69, 2.25]

Example: GDP

- n = 207 observations • $\hat{\varepsilon}_{t+1} = \frac{\tilde{e}_{t+1}}{\hat{\sigma}_t}$ from GARCH(1,1) model
- 0.10, 0.25, 0.75, 0.90 quantiles
- −1.18, −0.63, 0.57, 1.26
- Point Forecast = 1.31
- 50% Forecast interval = [0.04, 2.4]
- 80% Forecast interval = $\begin{bmatrix} -1.07, & 3.8 \end{bmatrix}$

3

< /⊒ > <

Mean-Variance Model Interval Forecasts - Summary

• The key is to break the distribution into the mean μ_t , variance σ_t^2 and the normalized error ε_{t+1}

$$y_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1}$$

- Then the distribution of y_{n+1} is determined by μ_n , σ_n^2 and the distribution of ε_{n+1}
- Each of these three components can be separately approximated and estimated
- $\bullet\,$ Typically, we put the most work into modeling (estimating) the mean μ_t
 - The remainder is modeled more simply
 - For macro forecasts, this reflects a belief (assumption?) that most of the predictability is in the mean, not the higher features.

Alternative Approach: Quantile Regression

- Recall, the ideal $1 2\alpha$ interval is $[q_n(\alpha), q_n(1-\alpha)]$
- $q_n(\alpha)$ is the α 'th quantile of the one-step conditional distribution

•
$$F_n(y) = P(y_{n+1} \leq y \mid I_n)$$

• Equivalently, let's directly model the conditional quantile function

Quantile Regression Function

• The conditional distribution is

$$P(y_{n+1} \leq y \mid I_n) \simeq P(y_{n+1} \leq y \mid \mathbf{x}_n)$$

• The conditional quantile function $q_{\alpha}(\mathbf{x})$ solves

$$P(y_{n+1} \leq q_{\alpha}(\mathbf{x}) \mid \mathbf{x}_n = \mathbf{x}) = \alpha$$

- $q_{.5}(\mathbf{x})$ is the conditional median
- $q_{.1}(\mathbf{x})$ is the 10% quantile function
- $q_{.9}(\mathbf{x})$ is the 90% quantile function

Quantile Regression Functions

- For each α , $q_{\alpha}(\mathbf{x})$ is an arbitrary function of \mathbf{x}
- For each **x**, $q_{\alpha}(\mathbf{x})$ is monotonically increasing in α
- Quantiles are well defined even when moments are infinite
- When distributions are discrete then quantiles may be intervals we ignore this
- We approximate the functions as linear in $q_{\alpha}(\mathbf{x})$

$$q_{\alpha}(\mathbf{x}) \simeq \mathbf{x}' \boldsymbol{\beta}_{\alpha}$$

(after possible transformations in \mathbf{x})

• The coefficient vector $\mathbf{x}' \boldsymbol{\beta}_{\alpha}$ depends on α

Linear Quantile Regression Functions

•
$$q_{\alpha}(\mathbf{x}) = \mathbf{x}' \boldsymbol{\beta}_{\alpha}$$

If only the intercept depends on α,

$$q_{\alpha}(\mathbf{x}) \simeq \mu_{\alpha} + \mathbf{x}' \boldsymbol{\beta}$$

then the quantile regression lines are parallel

- This is when the error e_{t+1} in a linear model is independent of the regressors
- Strong conditional homoskedasticity
- In general, the coefficients are functions of α
 - Similar to conditional heteroskedasticity

Interval Forecasts

• An ideal $1 - 2\alpha$ interval forecast interval is

 $\begin{bmatrix} \mathbf{x}'_n \boldsymbol{\beta}_{\alpha}, & \mathbf{x}'_n \boldsymbol{\beta}_{1-\alpha} \end{bmatrix}$

- Note that the ideal point forecast is $\mathbf{x}'_n \boldsymbol{\beta}$ where $\boldsymbol{\beta}$ is the best linear predictor
- An alternative point forecast is the conditional median $\mathbf{x}'_n \boldsymbol{\beta}_{0.5}$
 - ► This has the property of being the best linear predictor in *L*₁ (mean absolute error)
- All are linear functions of \mathbf{x}_n , just different functions
- A feasible forecast interval is

$$\begin{bmatrix} \mathbf{x}_n' \widehat{\boldsymbol{\beta}}_{lpha}, \quad \mathbf{x}_n' \widehat{\boldsymbol{\beta}}_{1-lpha} \end{bmatrix}$$

where $\widehat{oldsymbol{eta}}_{lpha}$ and $\widehat{oldsymbol{eta}}_{1-lpha}$ are estimates of $oldsymbol{eta}_{lpha}$ and $oldsymbol{eta}_{1-lpha}$

Image: A match a ma

Check Function

- Recall that the mean $\mu = EY$ minimizes the L_2 risk $E(Y-m)^2$
- Similarly the median $q_{0.5}$ minimizes the L_1 risk $E\left|Y-m\right|$
- The α 'th quantile q_{α} minimizes the "check function risk

$$E\rho_{\alpha}\left(Y-m\right)$$

where

$$\rho_{\alpha}(u) = \begin{cases} -u(1-\alpha) & u < 0 \\ \\ u\alpha & u \ge 0 \\ \\ = u(\alpha - 1(u < 0)) \end{cases}$$

- This is a tilted absolute value function
- To see the equivalence, evaluate the first order condition for minimization

Extremum Representation

• $q_{\alpha}(\mathbf{x})$ solves

$$q_{\alpha}(\mathbf{x}) = \operatorname*{argmin}_{m} E\left(\rho_{\alpha}\left(y_{t+1}-m\right) | \mathbf{x}_{t} = \mathbf{x}\right)$$

• Sample criterion

$$S_{\alpha}(\boldsymbol{\beta}) = \frac{1}{n} \sum_{t=0}^{n-1} \rho_{\alpha} \left(y_{t+1} - \mathbf{x}_{t}^{\prime} \boldsymbol{\beta} \right)$$

• Quantile regression estimator

$$\widehat{\boldsymbol{\beta}}_{\alpha} = \operatorname*{argmin}_{\boldsymbol{\beta}} S_{\alpha}(\boldsymbol{\beta})$$

- Computation by linear programming
 - Stata
 - ► R
 - Matlab

Computation in R

- quantreg package
 - may need to be installed
 - library(quantreg)
 - ▶ For quantile regression of *y* on *x* at *a*'th quantile
 - \star do not include intercept in x, it will be automatically included
 - ▶ rq(y~x,a)
 - For coefficients,
 - * b=coef(rq(y~x,a))

< 🗗 🕨 🔸

Distribution Theory

- The asymptotic theory for the dependent data case is not well developed
- The theory for the cross-section (iid) case is Angrist, Chernozhukov and Fernandez-Val (Econometrica, 2006)
- Their theory allows for quantile regression viewed as a best linear approximation

$$\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{\alpha}-\boldsymbol{\beta}_{\alpha}\right)\overset{d}{\longrightarrow}N(0,V_{\alpha})$$

$$V_{\alpha} = J_{\alpha}^{-1} \Sigma_{\alpha} J_{\alpha}$$

$$J_{\alpha} = E \left(f_{y} \left(\mathbf{x}_{t}' \boldsymbol{\beta}_{\alpha} | \mathbf{x}_{t} \right) \mathbf{x}_{t} \mathbf{x}_{t}' \right)$$

$$\Sigma_{\alpha} = E \left(\mathbf{x}_{t} \mathbf{x}_{t}' u_{t}^{2} \right)$$

$$u_{t} = 1 \left(y_{t+1} < \mathbf{x}_{t}' \boldsymbol{\beta}_{\alpha} \right) - \alpha$$

- Under correct specification, $\Sigma_{\alpha} = \alpha (1-\alpha) E\left(\mathbf{x}_t \mathbf{x}_t'
 ight)$
- I suspect that this theorem extends to dependent data if the score is uncorrelated (dynamics are well specified)

Standard Errors

- The asymptotic variance depends on the conditional density function
 - Nonparametric estimation!
- To avoid this, most researchers use bootstrap methods
- For dependent data, this has not been explored
- Recommend: Use current software, but be cautious!

Crossing Problem and Solution

- The conditional quantile functions $q_{\alpha}(\mathbf{x})$ are monotonically increasing in α
- But the linear quantile regression approximations $q_{\alpha}(\mathbf{x}) \simeq \mathbf{x}' \boldsymbol{\beta}_{\alpha}$ cannot be globally monotonic in α , unless all lines are parallel
- The regression approximations may cross!
- The estimates $\widehat{q}_{lpha}(\mathbf{x}) = \mathbf{x}' \widehat{oldsymbol{eta}}_{lpha}$ may cross!
- If this happens, forecast intervals may be inverted:
 - ► A 90% interval may not nest an 80% interval
- Simple Solution: Reordering
 - If $\widehat{q}_{\alpha_1}(\mathbf{x}) > \widehat{q}_{\alpha_2}(\mathbf{x})$ when $\alpha_1 < \alpha_2 < \frac{1}{2}$, simply set $\widehat{q}_{\alpha_1}(\mathbf{x}) = \widehat{q}_{\alpha_2}(\mathbf{x})$, and conversely quantiles above $\frac{1}{2}$
 - Take the wider interval
 - Then the endpoint of the two intervals will be the same

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Model Selection and Combination

- To my knowledge, no theory of model selection for median regression or quantile regression, even in iid context
- A natural conjecture is to use cross-validation on the sample check function
 - But no current theory justifies this choice
- My recommendation for model selection (or combination)
 - Select the model for the conditional mean by cross-validation
 - Use the same variables for all quantiles
 - Select the weights by cross-validation on the conditional mean
 - For each quantile, estimate the models with positive weights
 - Take the weighted combination using the same weights.

Example: Interest Rates

• AR(2) Specification (selected for regression by CV)

$$y_{t+1} = \beta_0 + \beta_1 y_t + \beta_2 y_{t-1} + e_t$$

	$\alpha = 0.10$	$\alpha = 0.25$	$\alpha = 0.75$	$\alpha = 0.90$
β_0	-0.31	-0.14	0.15	0.29
β_1	0.46	0.31	0.35	0.34
β_2	-0.22	-0.17	-0.21	-0.25

• Forecast 10% quantile

$$q_{0.1}(x_n) = -0.31 + 0.46y_n - 0.22y_{n-1}$$

- 50% Forecast interval = [1.84, 2.12]
- 80% Forecast interval = [1.65, 2.25]
- Very close to those from mean-variance estimates

Example: GDP

• Leading Indicator Model

 $y_{t+1} = \beta_0 + \beta_1 y_t + \beta_2 Spread_t + \beta_3 HighYield + \beta_4 Starts + \beta_5 Permits +$

	$\alpha = 0.10$	$\alpha = 0.25$	$\alpha = 0.75$	$\alpha = 0.90$
β_0	-2.72	-0.14	0.10	2.0
β_1	0.28	0.14	0.33	0.28
β_2	1.17	0.75	0.31	-0.14
β_3	-2.12	-1.83	0.62	0.37
β_4	-2.20	-0.44	6.68	11.4
β_5	3.45	1.61	-4.87	-9.53

• 50% Forecast interval = $\begin{bmatrix} 0.1, & 3.2 \end{bmatrix}$

• 80% Forecast interval = [-1.8, 4.0]

Distribution Forecasts

• The conditional distribution is

$$F_t(y) = P\left(y_{t+1} \le y \mid I_t\right)$$

• It is not common to directly report $F_t(y)$

• or the one-step forecast distribution $F_n(y)$

- However, $F_t(y)$ may be used as an input
- For example, simulation
- We thus may want an estimate $\widehat{F}_t(y)$ of $F_t(y)$

Mean-Variance Model Distribution Forecasts

Model

$$y_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1}$$

with ε_{t+1} is independent of I_t .

- Let ε_{t+1} have distribution $F^{\varepsilon}(u) = P(\varepsilon_t \leq u)$.
- The conditional distribution of y_{t+1} is

$$F_t(y) = F^{\varepsilon}\left(\frac{y_{t+1} - \mu_t}{\sigma_t}\right)$$

Estimation

$$\widehat{F}_t(y) = \widehat{F}^{\varepsilon}\left(\frac{y_{t+1} - \widehat{\mu}_t}{\widehat{\sigma}_t}\right)$$

where $\widehat{F}^{\varepsilon}(u)$ is an estimate of $F^{\varepsilon}(u) = P(\varepsilon_t \leq u)$.

Normal Error Model

• Under the assumption $\varepsilon_{t+1} \sim N(0, 1)$, $F^{\varepsilon}(u) = \Phi(u)$, the normal CDF

$$\widehat{F}_t(y) = \Phi\left(\frac{y - \widehat{\mu}_t}{\widehat{\sigma}_t}\right)$$

- To simulate from $\widehat{F}_t(y)$
 - Calculate $\hat{\mu}_t$ and $\hat{\sigma}_t$
 - Draw ε_{t+1}^* iid from N(0, 1)
 - $\flat y_{t+1}^* = \widehat{\mu}_t + \widehat{\sigma}_t \varepsilon_{t+1}^*$
- The normal assumption can be used when sample size n is very small
- But then $\widehat{F}_t(y)$ contains no information beyond $\widehat{\mu}_t$ and $\widehat{\sigma}_t$

Nonparametric Error Model

- Let $\widehat{F}_n^{\varepsilon}$ be the empirical distribution function (EDF) of the normalized residuals $\widehat{\varepsilon}_{t+1}$
- The EDF puts probability mass 1/n at each point $\{\widehat{\varepsilon}_1,...,\widehat{\varepsilon}_n\}$

$$\widehat{F}_n^{\varepsilon}(u) = n^{-1} \sum_{t=0}^{n-1} \mathbb{1}\left(\widehat{\varepsilon}_{t+1} \leq u\right)$$

$$\begin{aligned} \widehat{F}_t(y) &= \widehat{F}_n^{\varepsilon} \left(\frac{y - \widehat{\mu}_t}{\widehat{\sigma}_t} \right) \\ &= n^{-1} \sum_{j=0}^{n-1} \mathbb{1} \left(\frac{y - \widehat{\mu}_t}{\widehat{\sigma}_t} \le \widehat{\varepsilon}_{j+1} \right) \\ &= n^{-1} \sum_{j=0}^{n-1} \mathbb{1} \left(y \le \widehat{\mu}_t + \widehat{\sigma}_t \widehat{\varepsilon}_{j+1} \right) \end{aligned}$$

• Notice the summation over j, holding $\hat{\mu}_t, \hat{\sigma}_t$ fixed

Simulate Estimated Conditional Distribution

- To simulate
 - \blacktriangleright Calculate $\widehat{\boldsymbol{\mu}}_t$ and $\widehat{\boldsymbol{\sigma}}_t$
 - Draw ε_{t+1}^* iid from normalized residuals $\{\widehat{\varepsilon}_1, ..., \widehat{\varepsilon}_n\}$
 - $y_{t+1}^* = \hat{\mu}_t + \hat{\sigma}_t \varepsilon_{t+1}^*$
 - y_{t+1}^* is a draw from $\widehat{F}_t(y)$

Plot Estimated Conditional Distribution

•
$$\widehat{F}_n(y) = n^{-1} \sum_{t=0}^{n-1} \mathbb{1} \left(y \leq \widehat{\mu}_n + \widehat{\sigma}_n \widehat{\varepsilon}_{t+1} \right)$$

- A step function, with steps of height 1/n at $\hat{\mu}_n + \hat{\sigma}_n \hat{\varepsilon}_{t+1}$
- Calculation
 - $\blacktriangleright \text{ Calculate } \widehat{\mu}_n, \, \widehat{\sigma}_n, \, \text{and} \, y_{t+1}^* = \widehat{\mu}_n + \widehat{\sigma}_n \widehat{\varepsilon}_{t+1}, \, t = 0, ..., n-1$
 - Sort y^{*}_{t+1} into order statistics y^{*}_(i)
 - Equivalently, sort $\hat{\varepsilon}_{t+1}$ into order statistics $\hat{\varepsilon}_{(1)}$ and set $y_{(j)}^* = \hat{\mu}_n + \hat{\sigma}_n \hat{\varepsilon}_{(j)}$
 - ▶ Plot on the y-axis $\{1/n, 2/n, 3/n, ..., 1\}$ against on the x-axis $y^*_{(1)}, y^*_{(2)}, ..., y^*_{(n)}$

- Interest Rate
- GDP

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Figure: GDP Forecast Distribution

Bruce Hansen (University of Wisconsin)

July 23-27, 2012 37 / 102

Quantile Regression Approach

- The distribution function may also be recovered from the estimated quantile functions.
- $F_n(q_\alpha(\mathbf{x}_n)) = \alpha$
- $\widehat{F}_n(\widehat{q}_\alpha(\mathbf{x}_n)) = \alpha$
- $\widehat{q}_{\alpha}(\mathbf{x}_n) = \mathbf{x}'_n \widehat{\boldsymbol{\beta}}_{\alpha}$
- Compute $\widehat{q}_{\alpha}(\mathbf{x}_n) = \mathbf{x}'_n \widehat{\boldsymbol{\beta}}_{\alpha}$ for a set of quantiles $\{\alpha_1, ..., \alpha_J\}$
- Plot α_j on the y-axis against $\widehat{q}_{\alpha_j}(\mathbf{x}_n)$ on the x-axis

• The plot is
$$\widehat{F}_n(y)$$
 at $y = \widehat{q}_{\alpha_j}(\mathbf{x}_n)$

- If the quantile lines cross, then the plot will be non-monotonic
- The reordering method flattens the estimated distribution at these points

- 本間 と えき と えき とうき

Multi-Step Forecasts

- Forecast horizon: h
- We say the forecast is "multi-step" if h > 1
- Forecasting y_{n+h} given I_n
- e.g., forecasting GDP growth for 2012:3, 2012:4, 2013:1, 2013:2
- The forecast distribution is $y_{n+h} \mid I_n \sim F_h(y_{n+h} \mid I_n)$

• $f_{n+h|h}$ minimizes expected squared loss

$$f_{n+h|h} = \operatorname{argmin}_{f} E\left(\left(y_{n+h} - f\right)^{2} | I_{n}\right)$$
$$= E\left(y_{n+h} | I_{n}\right)$$

• Optimal point forecasts are *h*-step conditional means

< 4 ₽ × <

Relationship Between Forecast Horizons

• Take an AR(1) model

$$y_{t+1} = \alpha y_t + u_{t+1}$$

Iterate

$$y_{t+1} = \alpha (\alpha y_{t-1} + u_t) + u_{t+1} \\ = \alpha^2 y_{t-1} + \alpha u_t + u_{t+1}$$

or

$$y_{t+2} = \alpha^2 y_t + e_{t+2}$$

 $u_{t+2} = \alpha u_{t+1} + u_{t+2}$

• Repeat *h* times

$$y_{t+h} = \alpha^h y_t + e_{t+h}$$

 $e_{t+h} = u_{t+h} + \alpha u_{t+h-1} + \alpha^2 u_{t+h-2} + \dots + \alpha^{h-1} u_{t+1}$

AR(1)

h-step forecast

$$y_{t+h} = \alpha^h y_t + e_{t+h}$$

$$e_{t+h} = u_{t+h} + \alpha u_{t+h-1} + \alpha^2 u_{t+h-2} + \dots + \alpha^{h-1} u_{t+1}$$

$$E(y_{n+h}|I_n) = \alpha^h y_n$$

- h-step point forecast is linear in y_n
- *h*-step forecast error e_{n+h} is a MA(h-1)

2

イロン イ団と イヨン ト

AR(2) Model

• 1-step AR(2) model

$$y_{t+1} = \alpha_0 + \alpha_1 y_t + \alpha_2 y_{t-1} + u_{t+1}$$

2-steps ahead

$$y_{t+2} = \alpha_0 + \alpha_1 y_{t+1} + \alpha_2 y_t + u_{t+2}$$

Taking conditional expectations

$$E(y_{t+2}|I_t) = \alpha_0 + \alpha_1 E(y_{t+1}|I_t) + \alpha_2 E(y_t|I_t) + E(e_{t+2}|I_t) = \alpha_0 + \alpha_1 (\alpha_0 + \alpha_1 y_t + \alpha_2 y_{t-1}) + \alpha_2 y_t = \alpha_0 + \alpha_1 \alpha_0 + (\alpha_1^2 + \alpha_2) y_t + \alpha_1 \alpha_2 y_{t-1}$$

which is linear in (y_t, y_{t-1})

 In general, a 1-step linear model implies an h-step approximate linear model in the same variables

AR(k) h-step forecasts

lf

$$y_{t+1} = \alpha_0 + \alpha_1 y_t + \alpha_2 y_{t-1} + \cdots + \alpha_k y_{t-k+1} + u_{t+1}$$

then

$$y_{t+h}=\beta_0+\beta_1y_t+\beta_2y_{t-1}+\dots+\beta_ky_{t-k+1}+e_{t+h}$$
 where e_{t+h} is a MA(h-1)

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Leading Indicator Models

lf

$$y_{t+1} = \mathbf{x}_t' \boldsymbol{\beta} + u_t$$

then

$$E(y_{t+h}|I_t) = E(\mathbf{x}_{t+h-1}|I_t)'\boldsymbol{\beta}$$

If $E(\mathbf{x}_{t+h-1}|I_t)$ is itself (approximately) a linear function of \mathbf{x}_t , then

$$E(y_{t+h}|I_t) = \mathbf{x}'_t \gamma$$
$$y_{t+h} = \mathbf{x}'_t \gamma + e_{t+h}$$

Common Structure: *h*-step conditional mean is similar to 1-step structure, but error is a MA.

イロト 不得下 イヨト イヨト 二日

Forecast Variable

- We should think carefully about the variable we want to report in our forecast
- The choice will depend on the context
- What do we want to forecast?
 - Future level: y_{n+h}
 - ★ interest rates, unemployment rates
 - Future differences: Δy_{t+h}
 - Cummulative Change: Δy_{t+h}
 - ★ Cummulative GDP growth

Forecast Transformation

• $f_{n+h|n} = E(y_{n+h}|I_n) = \text{expected future level}$

Level specification

$$y_{t+h} = \mathbf{x}'_t \boldsymbol{\beta} + e_{t+h}$$

 $f_{n+h|n} = \mathbf{x}'_t \boldsymbol{\beta}$

Difference specification

$$\Delta y_{t+h} = \mathbf{x}'_t \boldsymbol{\beta}_h + \mathbf{e}_{t+h}$$

$$f_{n+h|n} = y_n + \mathbf{x}'_t \boldsymbol{\beta}_1 + \dots + \mathbf{x}'_t \boldsymbol{\beta}_h$$

Multi-Step difference specification

$$y_{t+h} - y_t = \mathbf{x}'_t \boldsymbol{\beta} + e_{t+h}$$
$$f_{n+h|n} = y_n + \mathbf{x}'_t \boldsymbol{\beta}$$

3

く 同 ト く ヨ ト く ヨ ト

Direct and Iterated

- There are two methods of multistep (h > 1) forecasts
- Direct Forecast
 - Model and estimate $E(y_{n+h}|I_n)$ directly
- Iterated Forecast
 - Model and estimate one-step $E(y_{n+1}|I_n)$
 - Iterate forward h steps
 - Requires full model for all variables
- Both have advantages and disadvantages
 - ► For now, we will forcus on direct method.

Direct Multi-Step Forecasting

- Markov approximation
 - $E(y_{n+h}|I_n) = E(y_{n+h}|x_n, x_{n-1}, ...) \approx E(y_{n+h}|x_n, ..., x_{n-p})$
- Linear approximation
 - $E(y_{n+h}|x_n,...,x_{n-p}) \approx \beta' \mathbf{x}_n$
- Projection Definition

$$\blacktriangleright \beta = \left(E\left(\mathsf{x}_{t} \mathsf{x}_{t}' \right) \right)^{-1} \left(E\left(\mathsf{x}_{t} y_{t+h} \right) \right)$$

Forecast error

•
$$e_{t+h} = y_{t+h} - \beta' \mathbf{x}_t$$

< 🗗 🕨 🔸

Multi-Step Forecast Model

$$y_{t+h} = \boldsymbol{\beta}' \mathbf{x}_t + e_{t+h}$$
$$\boldsymbol{\beta} = (E(\mathbf{x}_t \mathbf{x}_t'))^{-1} (E(\mathbf{x}_t y_{t+h}))$$
$$E(\mathbf{x}_t e_{t+h}) = 0$$
$$\sigma^2 = E(e_{t+h}^2)$$

Bruce Hansen (University of Wisconsin)

July 23-27, 2012 50 / 102

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Properties of the Error

- $E(\mathbf{x}_t e_{t+h}) = 0$
 - Projection
- $E(e_{t+h}) = 0$
 - Inclusion of an intercept
- The error e_{t+h} is NOT serially uncorrelated
- It is at least a MA(h-1)

3

→

< A > < 3

Least Squares Estimation

$$\widehat{\boldsymbol{\beta}} = \left(\sum_{t=0}^{n-1} \mathbf{x}_t \mathbf{x}_t'\right)^{-1} \left(\sum_{t=0}^{n-1} \mathbf{x}_t y_{t+h}\right)$$
$$\widehat{y}_{n+h|n} = \widehat{f}_{n+h|n} = \widehat{\boldsymbol{\beta}}' \mathbf{x}_n$$

Image: A image: A

Distribution Theory - Consistent Estimation

By the WLLN,

$$\widehat{\boldsymbol{\beta}} = \left(\sum_{t=0}^{n-1} \mathbf{x}_t \mathbf{x}_t'\right)^{-1} \left(\sum_{t=0}^{n-1} \mathbf{x}_t y_{t+h}\right)$$
$$= \frac{\stackrel{p}{\longrightarrow} \left(E\mathbf{x}_t \mathbf{x}_t'\right)^{-1} \left(E\mathbf{x}_t y_{t+h}\right)}{\boldsymbol{\beta}}$$

2

ヘロト 人間 ト 人 ヨト 人 ヨトー

Distribution Theory - Asymptotic Normality By the dependent CLT,

$$\frac{1}{n}\sum_{t=0}^{n-1}\mathbf{x}_t e_{t+h} \stackrel{d}{\longrightarrow} N(0,\Omega)$$

$$\Omega = E\left(\mathbf{x}_{t}\mathbf{x}_{t}'e_{t+h}^{2}\right) + \sum_{j=1}^{\infty}\left(\mathbf{x}_{t}\mathbf{x}_{t+j}'e_{t+h}e_{t+h+j} + \mathbf{x}_{t+j}\mathbf{x}_{t}'e_{t+h}e_{t+h+j}\right)$$
$$\simeq E\left(\mathbf{x}_{t}\mathbf{x}_{t}'e_{t+h}^{2}\right) + \sum_{j=1}^{h-1}\left(\mathbf{x}_{t}\mathbf{x}_{t+j}'e_{t+h}e_{t+h-j} + \mathbf{x}_{t+j}\mathbf{x}_{t}'e_{t+h}e_{t+h+j}\right)$$

- A long-run (HAC) covariance matrix
- If model is correctly specified, the errors are a MA(h-1) and the sum truncates at h-1
- Otherwise, this is an approximation
- It does not simplify to the iid covariance matrix

Distribution Theory

•
$$\sqrt{n}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}\right) \stackrel{d}{\longrightarrow} N(0, V)$$

•
$$V = Q^{-1}\Omega Q^{-1}$$

•
$$\Omega \approx E\left(\mathbf{x}_{t}\mathbf{x}_{t}'e_{t+h}^{2}\right) + \sum_{j=1}^{h-1}\left(\mathbf{x}_{t}\mathbf{x}_{t+j}'e_{t+h}e_{t+h-j} + \mathbf{x}_{t+j}\mathbf{x}_{t}'e_{t+h}e_{t+h+j}\right)$$

• HAC variance matrix

æ

メロト メポト メヨト メヨト

Residuals

• Least-squares residuals

$$\mathbf{\hat{e}}_{t+h} = y_{t+h} - \widehat{\boldsymbol{\beta}}' \mathbf{x}_t$$

- Standard, but overfit
- Leave-one-out residuals

$$\bullet \ \widetilde{\mathbf{e}}_{t+h} = y_{t+h} - \widehat{\boldsymbol{\beta}}'_{-t} \mathbf{x}_{t}$$

- Does not correct for MA errors
- Leave *h* out residuals

$$\widetilde{\boldsymbol{e}}_{t+h} = \boldsymbol{y}_{t+h} - \widehat{\boldsymbol{\beta}}'_{-t,h} \boldsymbol{x}_t$$
$$\widehat{\boldsymbol{\beta}}_{-t,h} = \left(\sum_{|j+h-t| \ge h} \boldsymbol{x}_j \boldsymbol{x}'_j\right)^{-1} \left(\sum_{|j+h-t| \ge h} \boldsymbol{x}_j y_{j+h}\right)$$

• The summation is over all observations outside h-1 periods of t+h.

Algebraic Computation of Leave h out residuals

- Loop across each observation $t = (y_{t+h}, \mathbf{x}_t)$
- Leave out observations t h + 1, ..., t, ..., t + h 1
- R command
 - For positive integers i
 - x[-i] returns elements of x excluding indices i
 - Consider
 - * ii=seq(i-h+1,i+h-1)
 - ★ ii<-ii[ii>0]
 - ★ yi=y[-ii]
 - ★ xi=x[-ii,]
 - This removes t h + 1, ..., t, ..., t + h 1 from y and x

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Variance Estimator

• Asymptotic variance (HAC) estimator with leave-h-out residuals

$$\begin{split} \widehat{V} &= \widehat{Q}^{-1}\widehat{\Omega}\widehat{Q}^{-1} \\ \widehat{Q} &= \frac{1}{n}\sum_{t=0}^{n-1}\mathbf{x}_{t}\mathbf{x}_{t}' \\ \widehat{\Omega} &= \frac{1}{n}\sum_{t=1}^{n}\mathbf{x}_{t}\mathbf{x}_{t}'\widetilde{e}_{t+h}^{2} + \frac{1}{n}\sum_{j=1}^{n-1}\sum_{t=1}^{n-j}\left(\mathbf{x}_{t}\mathbf{x}_{t+j}'\widetilde{e}_{t+h}\widetilde{e}_{t+h+j} + \mathbf{x}_{t+j}\mathbf{x}_{t}'\widetilde{e}_{t+h}\widetilde{e}_{t+h-j}\right) \end{split}$$

- Can use least-squares residuals \hat{e}_{t+h} instead of leave-h-out residuals, but then multiply \hat{V} by $n/(n \dim(\mathbf{x}_t))$.
- Standard errors for $\widehat{m{eta}}$ are the square roots of the diagonal elements of $n^{-1}\widehat{V}$

Example: GDP Forecast

 $y_t = 400 \log(GDP_t)$

Forecast Variable: GDP growth over next h quarters, at annual rate

$$\frac{y_{t+h} - y_t}{h} = \beta_0 + \beta_1 \Delta y_t + \beta_1 \Delta y_{t-1} + Spread_t + HighYield_t + \beta_2 HS_t + e_{t+h}$$

 $HS_t = Housing Starts_t$

	h=1	h = 2	h = 3	h = 4
β_0	-0.33(1.0)	-0.38 (1.3)	-0.01 (1.6)	0.47 (1.8)
Δy_t	0.16 (.10)	0.18 (.09)	0.13 (.08)	0.13 (.09)
Δy_{t-1}	0.09 (.10)	0.04 (.05)	0.05 (.07)	0.02 (.06)
Spread _t	0.61 (.23)	0.65(.19)	0.65 (.22)	0.65 (.25)
$HighYield_t$	-1.10 (.75)	-0.68 (.70)	-0.48 (.90)	-0.41 (1.01)
HS_t	1.86 (.65)	1.64 (.70)	1.31 (.80)	1.01 (.94)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example: GDP Forecast

Cummulative Annualized Growth

2012:2	1.3
2012:3	1.6
2012:4	2.9
2013:1	2.2
2013:2	2.4
2013:3	2.7
2013:4	2.9
2014:1	3.2

(日) (同) (三) (三)

Selection and Combination for h step forecasts

- AIC routinely used for model selection
- PLS (OOS MSFE) routinely used for model evaluation
- Neither well justified

Point Forecast and MSFE

• Given an estimate $\widehat{oldsymbol{eta}}(m)$ of $oldsymbol{eta}$, the point forecast for y_{n+h} is

$$f_{n+h|n} = \widehat{oldsymbol{eta}}' \mathbf{x}_n$$

• The mean-squared-forecast-error (MSFE) is

$$\begin{aligned} \mathsf{MSFE} &= \mathsf{E}\left(\mathsf{e}_{n+h} - \mathsf{x}_n'\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)\right)^2 \\ &\simeq \sigma^2 + \mathsf{E}\left(\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)' \mathsf{Q}\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)\right) \end{aligned}$$

where $Q = E\left(\mathbf{x}_{n}\mathbf{x}_{n}'\right)$ and $\sigma^{2} = E\left(e_{n+h}^{2}\right)$

• Same form as 1-step case

Residual Fit

$$\widehat{\sigma}^{2} = \frac{1}{n} \sum_{t=0}^{n-1} e_{t+h}^{2} + \frac{1}{n} \sum_{t=0}^{n-1} \left(\mathbf{x}_{t}^{\prime} \left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) \right)^{2}$$
$$- \frac{2}{n} \sum_{t=0}^{n-1} e_{t+h} \mathbf{x}_{t}^{\prime} \left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right)$$
$$\simeq MSFE - \frac{2}{n} \mathbf{e}^{\prime} \mathbf{P} \mathbf{e}$$
$$E \left(\widehat{\sigma}^{2} \right) \simeq MSFE_{n} - \frac{2}{-B}$$

$$E\left(\widehat{\sigma}^{2}\right)\simeq MSFE_{n}-\frac{2}{n}I$$

where $B = E(\mathbf{e'Pe})$ Save form as 1-step case

イロト イヨト イヨト

Asymptotic Penalty

$$\mathbf{e}'\mathbf{P}\mathbf{e} = \left(\frac{1}{\sqrt{n}}\mathbf{e}'\mathbf{X}\right) \left(\frac{1}{n}\mathbf{X}'\mathbf{X}\right)^{-1} \left(\frac{1}{\sqrt{n}}\mathbf{X}'\mathbf{e}\right)$$
$$\rightarrow_d Z'Q^{-1}Z$$

where $Z \sim N(0, \Omega)$, with $\Omega = HAC$ variance.

$$B = E(\mathbf{e}'\mathbf{P}\mathbf{e})$$

$$\longrightarrow \operatorname{tr}(Q^{-1}E(ZZ'))$$

$$= \operatorname{tr}(Q^{-1}\Omega)$$

Bruce Hansen (University of Wisconsin)

æ

イロト イヨト イヨト イヨト

Ideal MSFE Criterion

$$C_n(m) = \hat{\sigma}^2(m) + \frac{2}{n} \operatorname{tr} \left(Q^{-1} \Omega \right)$$
$$Q = E \left(\mathbf{x}_t \mathbf{x}_t' \right)$$
$$\Omega = E \left(\mathbf{x}_t \mathbf{x}_t' e_{t+h}^2 \right) + \sum_{j=1}^{h-1} \left(\mathbf{x}_t \mathbf{x}_{t+j}' e_{t+h} e_{t+h-j} + \mathbf{x}_{t+j} \mathbf{x}_t' e_{t+h} e_{t+h+j} \right)$$

メロト メポト メヨト メヨト

H-Step Robust Mallows Criterion

$$C_n(m) = \widehat{\sigma}^2(m) + \frac{2}{n} \operatorname{tr}\left(\widehat{Q}^{-1}\widehat{\Omega}\right)$$

where $\widehat{\Omega}$ is a HAC covariance matrix

3

H-Step Cross-Validation for Selection

$$CV_n(m) = \frac{1}{n} \sum_{i=0}^{n-1} \widetilde{e}_{t+h}(m)^2$$
$$\widetilde{e}_{t+h} = y_{t+h} - \widehat{\beta}'_{-t,h} \mathbf{x}_t$$
$$\widehat{\beta}_{-t,h} = \left(\sum_{|j+h-t| \ge h} \mathbf{x}_j \mathbf{x}'_j\right)^{-1} \left(\sum_{|j+h-t| \ge h} \mathbf{x}_j y_{j+h}\right)$$

Theorem: $E(CV_n(m)) \simeq MSFE(m)$ Thus $\hat{m} = \operatorname{argmin} CV_n(m)$ is an estimate of $m = \operatorname{argmin} MSFE_n(m)$, but there is no proof of optimality

3

イロト イポト イヨト イヨト

H-Step Cross-Validation for Forecast Combination

$$CV_n(\mathbf{w}) = \frac{1}{n} \sum_{t=1}^n \widetilde{e}_{t+1}(\mathbf{w})^2$$

= $\frac{1}{n} \sum_{t=1}^n \left(\sum_{m=1}^M w(m) \widetilde{e}_{t+1}(m) \right)^2$
= $\sum_{m=1}^M \sum_{\ell=1}^M w(m) w(\ell) \frac{1}{n} \sum_{t=1}^n \widetilde{e}_{t+1}(m) \widetilde{e}_{t+1}(\ell)$
= $\mathbf{w}' \widetilde{\mathbf{S}} \mathbf{w}$

where

$$\widetilde{\mathbf{S}} = \frac{1}{n} \widetilde{e}' \widetilde{e}$$

is covariance matrix of leave-h-out residuals.

Cross-validation Weights

Combination weights found by constrained minimization of $CV_n(\mathbf{w})$

$$\min_{\mathbf{w}} CV_n(\mathbf{w}) = \mathbf{w}' \widetilde{\mathbf{S}} \mathbf{w}$$
subject to

$$\sum_{m=1}^{M} w(m) = 1$$
$$0 \le w(m) \le 1$$

æ

Illustration 1

- k = 8 regressors
 - intercept
 - normal AR(1)'s with coefficient ho= 0.9
- *h*-step error
 - normal MA(h-1)
 - equal coefficients
- Regression coefficients
 - ▶ β = (μ, 0, ..., 0)
 - ▶ *n* = 50
 - MSPE plotted as a function of μ

3

- 4 ⊒ →

A 🖓 h

Estimators

- Unconstrained Least-Squares
- Leave-1-out CV Selection
- Leave-h-out CV Selection
- Leave-1-out CV Combination
- Leave-h-out CV Combination

MSFE, n=50, h=4, k=8

Bruce Hansen (University of Wisconsin)

July 23-27, 2012 72 / 102

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二国
Illustration 2

Model

$$y_t = \alpha y_{t-1} + u_t$$

Unconstrained model: AR(3)

$$y_t = \hat{\mu} + \hat{\beta}_1 y_{t-h} + \hat{\beta}_2 y_{t-h-1} + \hat{\beta}_3 y_{t-h-2} + \hat{e}_t$$

メロト メポト メヨト メヨト

æ

MSFE, n=50, h=4, k=4

July 23-27, 2012 74 / 102

MSFE, n=50, h=12, k=4

Bruce Hansen (University of Wisconsin)

July 23-27, 2012 75 / 102

Example: GDP Forecast Weights by Horizon

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

h-step Variance Forecasting

- Not well developed using direct methods
- Suggest using constant variance specification

h-step Interval Forecasts

- Similar to 1-step interval forecasts
 - ▶ But calculated from *h*−step residuals
- Use constant variance specification
- Let $\widehat{q}^e(\alpha)$ and $\widehat{q}^e(1-\alpha)$ be the α 'th and $(1-\alpha)$ 'th percentiles of residuals \widetilde{e}_{t+h}
- Forecast Interval:

$$[\widehat{\mu}_n + \widehat{q}^{\varepsilon}(\alpha), \quad \widehat{\mu}_n + \widehat{q}^{e}(1-\alpha)]$$

Quantile Regression Approach

- $F_n(y) = P(y_{n+h} \leq y \mid I_n)$
- $q_{\alpha}(\mathbf{x}) \simeq \mathbf{x}' \boldsymbol{\beta}_{\alpha}$
- Estimate quantile regression of y_{t+h} on \mathbf{x}_t
- $1-2\alpha$ forecast interval is $[\mathbf{x}'_n \widehat{\boldsymbol{\beta}}_{\alpha}, \, \mathbf{x}'_n \widehat{\boldsymbol{\beta}}_{1-\alpha}]$
- Asymptotic theory not developed for *h*-step case
 - Developed for 1-step case
 - Extension is expected to work

Example: GDP Forecast Intervals (80%)

Using quantile regression approach

	$\widehat{y}_{n+h n}$	Interval
2012:2	1.3	[-1.8, 4.1]
2012 : 3	1.6	[-0.4, 3.6]
2012:4	2.0	[-0.6, 4.6]
2013 : 1	2.2	[-0.3, 4.1]
2013 : 2	2.4	[0.2, 4.2]
2013 : 3	2.7	[0.6, 3.8]
2013:4	2.9	[0.7, 4.8]
2014 : 1	3.2	[1.5, 4.8]

3

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Fan Charts

- Plots of a set of interval forecasts for multiple horizons
 - Pick a set of horizons, h = 1, ..., H
 - Pick a set of quantiles, e.g. $\alpha = .10$, .25, .75, .90
 - Recall the quantiles of the conditional distribution are $q_n(\alpha, h) = \mu_n(h) + \sigma_n(h)q^{\varepsilon}(\alpha, h)$
 - ▶ Plot $q_n(.1, h)$, $q_n(.25, h)$, $\mu_n(h)$, $q_n(.75, h)$, $q_n(.9, h)$ against h
- Graphs easier to interpret than tables

Illustration

- I've been making monthly forecasts of the Wisconsin unemployment rate
- Forecast horizon h = 1, ..., 12 (one year)
- Quantiles: $\alpha = .1$, .25, .75, .90
- This corresponds to plotting 50% and 80% forecast intervals
- 50% intervals show "likely" region (equal odds)

3

くほと くほと くほと

Unemployment Rate Forecasts

Comments

- Showing the recent history gives perspective
- Some published fan charts use colors to indicate regions, but do not label the colors
- Labels important to infer probabilities
- I like clean plots, not cluttered

Illustration: GDP Growth

Bruce Hansen (University of Wisconsin)

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

It doesn't "fan" because we are plotting average growth

æ

<ロ> (日) (日) (日) (日) (日)

Iterated Forecasts

- Estimate one-step forecast
- Iterate to obtain multi-step forecasts
- Only works in complete systems
 - Autoregressions
 - Vector autoregressions

э

Iterative Forecast Relationships in Linear VAR

• vector y_t

$$y_{t+1} = A_0 + A_1 y_t + A_2 y_{t-1} + \dots + A_k y_{t-k+1} + u_{t+1}$$

• 1-step conditional mean

$$E(y_{t+1}|I_t) = A_0 + A_1 E(y_t|I_t) + \dots + A_k E(y_{t-k+1}|I_t)$$

= $A_0 + A_1 y_t + A_2 y_{t-1} + \dots + A_k y_{t-k+1}$

2-step conditional mean

$$E(y_{t+1}|I_{t-1}) = E(E(y_{t+1}|I_t)|I_{t-1})$$

= $A_0 + A_1E(y_t|I_{t-1}) + \dots + A_kE(y_{t-k+1}|I_{t-1})$
= $A_0 + A_1E(y_t|I_{t-1}) + A_2y_{t-1} + \dots + A_ky_{t-k+1}$

• *h*-step conditional mean

$$E(y_{t+1}|I_{t-h+1}) = E(E(y_{t+1}|I_t)|_{I_{t-h+1}})$$

= $A_0 + A_1E(y_t|I_{t-h+1}) + \dots + A_kE(y_{t-k+1}|I_{t-h+1})$

• Linear in lower-order (up to h-1 step) conditional means

Iterative Least Squares Forecasts

• Estimate 1-step VAR(k) by least-squares

$$y_{t+1} = \widehat{A}_0 + \widehat{A}_1 y_t + \widehat{A}_2 y_{t-1} + \dots + \widehat{A}_k y_{t-k+1} + \widehat{u}_{t+1}$$

Gives 1-step point forecast

$$\widehat{y}_{n+1|n} = \widehat{A}_0 + \widehat{A}_1 y_n + \widehat{A}_2 y_{n-1} + \dots + \widehat{A}_k y_{n-k+1}$$

2-step iterative forecast

$$\widehat{y}_{n+2|n} = \widehat{A}_0 + \widehat{A}_1 \widehat{y}_{n+1|n} + \widehat{A}_2 y_n + \dots + \widehat{A}_k y_{n-k+2}$$

h-step iterative forecast

$$\widehat{y}_{n+h|n} = \widehat{A}_0 + \widehat{A}_1 \widehat{y}_{n+h-1|n} + \widehat{A}_2 \widehat{y}_{n+h-2|n} + \dots + \widehat{A}_k \widehat{y}_{n+h-k|n}$$

This is (numerically) different than the direct LS forecast

Illustration 1: GDP Growth

• AR(2) Model • $y_{t+1} = 1.6 + 0.30y_t + .16y_{t-1}$ • $y_n = 1.8, y_{n-1} = 2.9$ • $\hat{y}_{n+1} = 1.6 + 0.30 * 1.8 + .16 * 2.9 = 2.6$ • $\hat{y}_{n+2} = 1.6 + 0.30 * 2.6 + .16 * 1.8 = 2.7$ • $\hat{y}_{n+3} = 1.6 + 0.30 * 2.7 + .16 * 2.6 = 2.9$ • $\hat{y}_{n+4} = 1.6 + 0.30 * 2.9 + .16 * 2.7 = 3.0$

Point Forecasts

2012:2	2.65
2012:3	2.72
2012:4	2.87
2013:1	2.93
2013:2	2.97
2013:3	2.99
2013:4	3.00
2014:1	3.01

∃ 990

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Illustration 2: GDP Growth+Housing Starts

- VAR(2) Model
- $y_{1t} = \text{GDP Growth}, y_{2t} = \text{Housing Starts}$
- x_t = (GDP Growth_t, Housing Starts_t, GDP Growth_{t-1}, Housing Starts_{t-1}
- $y_{t+1} = \widehat{A}_0 + \widehat{A}_1 y_t + \widehat{A}_2 y_{t-1} + \widehat{u}_{t+1}$
- $y_{1t+1} = 0.43 + 0.15y_{1t} + 11.2y_{2t} + 0.18y_{1t-1} 10.1y_{2t-1}$
- $y_{2t+1} = 0.07 0.001y_{1t} + 1.2y_{2t} 0.001y_{1t-1} 0.26y_{2t-1}$

Illustration 2: GDP Growth+Housing Starts

- $y_{1n} = 1.8$, $y_{2n} = 0.71$, $y_{1n-1} = 2.9$, $y_{2n-1} = 0.68$
- $y_{1n+1} = 0.43 + 0.15 * 1.8 + 11.2 * 0.71 + 0.18 * 2.9 10.1 * 0.68 = 2.3$
- $y_{2t+1} = 0.07 0.001 * 1.8 + 1.2 * 0.71 0.001 * 2.9 0.26 * 0.68 = 0.76$
- $y_{1n+2} = 0.43 + 0.15 * 2.3 + 11.2 * 0.76 + 0.18 * 1.8 10.1 * 0.71 = 2.4$
- $y_{2t+1} = 0.07 0.001 * 2.3 + 1.2 * 0.76 0.001 * 1.8 0.26 * 0.71 = 0.80$

Point Forecasts

	GDP	Housing
2012:2	2.36	0.76
2012:3	2.38	0.80
2012:4	2.53	0.84
2013:1	2.58	0.88
2013:2	2.64	0.92
2013:3	2.66	0.95
2013:4	2.69	0.98
2014:1	2.71	1.01

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Model Selection

- It is typical to select the 1-step model and use this to make all *h*-step forecasts
- However, there theory to support this is incomplete
- (It is not obvious that the best 1-step estimate produces the best *h*-step estimate)
- For now, I recommend selecting based on the 1-step estimates

Model Combination

- There is no theory about how to apply model combination to *h*-step iterated forecasts
- Can select model weights based on 1-step, and use these for all forecast horizons

э

A 1

Variance, Distribution, Interval Forecast

- While point forecasts can be simply iterated, the other features cannot
- Multi-step forecast distributions are convolutions of the 1-step forecast distribution.
 - Explicit calculation computationally costly beyond 2 steps
- Instead, simple simulation methods work well
- The method is to use the estimated condition distribution to simulate each step, and iterate forward. Then repeat the simulation many times.

Multi-Step Forecast Simulation

- Let $\mu\left(\mathbf{x}\right)$ and $\sigma\left(\mathbf{x}\right)$ denote the models for the conditional one-step mean and standard deviation as a function of the conditional variables \mathbf{x}
- Let $\hat{\mu}(\mathbf{x})$ and $\hat{\sigma}(\mathbf{x})$ denote the estimates of these functions, and let $\{\hat{\varepsilon}_1,...,\hat{\varepsilon}_n\}$ be the normalized residuals
- $\mathbf{x}_n = (y_n, y_{n-1}, ..., y_{n-p})$ is known. Set $\mathbf{x}_n^* = \mathbf{x}_n$
- To create one *h*-step realization:
 - Draw ε_{n+1}^* iid from normalized residuals $\{\widehat{\varepsilon}_1, ..., \widehat{\varepsilon}_n\}$
 - Set $y_{n+1}^* = \widehat{\mu}(\mathbf{x}_n^*) + \widehat{\sigma}(\mathbf{x}_n^*) \varepsilon_{t+1}^*$
 - Set $\mathbf{x}_{n+1}^* = (y_{n+1}^*, y_n, ..., y_{n-p+1})$
 - Draw ε_{n+2}^* iid from normalized residuals $\{\widehat{\varepsilon}_1, ..., \widehat{\varepsilon}_n\}$
 - $\sum_{\mathbf{x}_{n+2}} \operatorname{Set} y_{n+2}^* = \widehat{\mu} \left(\mathbf{x}_{n+1}^* \right) + \widehat{\sigma} \left(\mathbf{x}_{n+1}^* \right) \varepsilon_{t+2}^*$
 - Set $\mathbf{x}_{n+2}^* = (y_{n+2}^*, y_{n+1}^*, ..., y_{n-p+2})$
 - Repeat until you obtain y^{*}_{n+h}
 - y_{n+h}^* is a draw from the h step ahead distribution
- Repeat this B times, and let $y_{n+h}^{*}(b)$, b = 1, ..., B denote the B repetitions

Multi-Step Forecast Simulation

- The simulation has produced $y^*_{n+h}(b)$, b = 1, ..., B
- For forecast intervals, calculate the empirical quantiles of $y_{n+h}^*(b)$
 - ▶ For an 80% interval, calculate the 10% and 90%
- For a fan chart
 - Calculate a set of empirical quantiles (10%, 25%, 75%, 90%)
 - For each horizon h = 1, ..., H
- As the calculations are linear they are numerically quick
 - Set B large
 - For a quick application, B = 1000
 - For a paper, B = 10,000 (minimum))

э.

VARs and Variance Simulation

- The simulation method requires a method to simulate the conditional variances
- In a VAR setting, you can:
 - Treat the errors as iid (homoskedastic)
 - ★ Easiest
 - Treat the errors as independent GARCH errors
 - ★ Also easy
 - Treat the errors as multivariate GARCH
 - ★ Allows volatility to transmit across variables
 - ★ Probably not necessary with aggregate data

Assignment

- Take your favorite model from yesterday's assignment
- Calculate forecast intervals
- Make 1 through 12 step forecasts
 - point
 - interval
- Create a fan chart

< 67 ▶