Time Series and Forecasting Lecture 3 Forecast Intervals, Multi-Step Forecasting

Bruce E. Hansen

Summer School in Economics and Econometrics University of Crete July 23-27, 2012

Bruce Hansen (University of Wisconsin) [Forecasting](#page-101-0) Forecasting July 23-27, 2012 1 / 102

Today's Schedule

- **•** Review
- **•** Forecast Intervals
- **Forecast Distributions**
- **Multi-Step Direct Forecasts**
- **o** Fan Charts
- **o** Iterated Forecasts

 \leftarrow \Box

← → ÷ \sim 画

 QQ

一 一 三

Review

- Optimal point forecast of y_{n+1} given information I_n is the conditional mean $E(y_{n+1}|I_n)$
- Estimate linear approximations by least-squares
- Combine point forecasts to reduce MSFE
- Select estimators and combination weights by cross-validation
- **Estimate GARCH models for conditional variance**

4 日下

 \equiv Ω

Interval Forecasts

- \bullet Take the form [a, b]
- Should contain y_{n+1} with probability $1 2\alpha$

$$
1 - 2\alpha = P_n (y_{n+1} \in [a, b])
$$

= $P_n (y_{n+1} \le b) - P_n (y_{n+1} \le a)$
= $F_n(b) - F_n(a)$

where $F_n(y)$ is the forecast distribution

o It follows that

$$
\begin{array}{rcl}\na & = & q_n(\alpha) \\
b & = & q_n(1-\alpha)\n\end{array}
$$

• $a = \alpha'$ th and $b = (1 - \alpha)'$ th quantile of conditional distribution

- 로

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Interval Forecasts are Conditional Quantiles

- \bullet The ideal 80% forecast interval, is the 10% and 90% quantile of the conditional distribution of y_{n+1} given I_n
- \bullet Our feasible forecast intervals are estimates of the 10% and 90% quantile of the conditional distribution of y_{n+1} given I_n
- The goal is to estimate conditional quantiles.

Mean-Variance Model

Write

$$
y_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1}
$$

\n
$$
\mu_t = E(y_{t+1} | I_t)
$$

\n
$$
\sigma_t^2 = \text{var}(y_{t+1} | I_t)
$$

- Assume that ε_{t+1} is independent of I_t .
- Let $q_t(\alpha)$ and $q^\varepsilon(\alpha)$ be the α 'th quantiles of y_{t+1} and ε_{t+1} . Then

$$
q_t(\alpha) = \mu_t + \sigma_t q^{\varepsilon}(\alpha)
$$

• Thus a $(1 - 2\alpha)$ forecast interval for y_{n+1} is

$$
[\mu_n + \sigma_n q^{\varepsilon}(\alpha), \quad \mu_n + \sigma_n q^{\varepsilon} (1 - \alpha)]
$$

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

-B

Mean-Variance Model

Given the conditional mean μ_n and variance σ_n^2 , the conditional quantile of y_{n+1} is a linear function $\mu_n + \sigma_n q^{\varepsilon}(\alpha)$ of the conditional $\mathsf{quantile}\,\, \boldsymbol{q}^\varepsilon(\alpha)$ of the normalized error

$$
\varepsilon_{n+1}=\frac{e_{n+1}}{\sigma_n}
$$

Interval forecasts thus can be summarized by $\mu_n^{}$, σ_n^2 , and $\boldsymbol{q}^{\varepsilon}(\alpha)$

Normal Error Quantile Forecasts

- Make the approximation $\varepsilon_{t+1} \sim N(0, 1)$
	- \blacktriangleright Then $q^{\varepsilon}(\alpha)=Z(\mathsf{a})$ are normal quantiles
	- \triangleright Useful simplification, especially in small samples
- 0.10, 0.25, 0.75, 0.90 quantiles are
	- $-1.285, -0.675, 0.675, 1.285$
- **•** Forecast intervals

$$
[\widehat{\mu}_n + \widehat{\sigma}_n Z(\alpha), \quad \widehat{\mu}_n + \widehat{\sigma}_n Z(1-\alpha)]
$$

4 日下

画

 QQ

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

Nonparametric Error Quantile Forecasts

• Let $\varepsilon_{t+1} \sim F$ be unknown

 \blacktriangleright We can estimate $q^\varepsilon(\alpha)$ as the empirical quantiles of the residuals \blacktriangleright Set

$$
\widehat{\varepsilon}_{t+1} = \frac{\widetilde{\mathbf{e}}_{t+1}}{\widehat{\sigma}_t}
$$

\n- Sort
$$
\hat{\epsilon}_1, \ldots, \hat{\epsilon}_n
$$
.
\n- $\hat{q}^{\epsilon}(\alpha)$ and $\hat{q}^{\epsilon}(1-\alpha)$ are the α 'th and $(1-\alpha)$ 'th percentiles.
\n- $[\hat{\mu}_n + \hat{\sigma}_n \hat{q}^{\epsilon}(\alpha), \quad \hat{\mu}_n + \hat{\sigma}_n \hat{q}^{\epsilon}(1-\alpha)]$
\n

Computationally simple

- Reasonably accurate when $n \geq 100$
- Allows asymmetric and fat-tailed error distributions

KED KAP KED KED E VOOR

Constant Variance Case

- **If** $\hat{\sigma}_t = \hat{\sigma}$ is a constant, there is no advantage for estimation of $\hat{\sigma}$ for forecast interval
- Let $\widehat{q}^e(\alpha)$ and $\widehat{q}^e(1-\alpha)$ be the *α*'th and $(1-\alpha)$ 'th percentiles of original residuals \widetilde{e}_{t+1}
- **•** Forecast Interval:

$$
[\widehat{\mu}_n + \widehat{q}^{\epsilon}(\alpha), \quad \widehat{\mu}_n + \widehat{q}^{\epsilon}(1-\alpha)]
$$

When the estimated variance is a constant, this is numerically identical to the definition with rescaled errors $\widehat{\epsilon}_{t+1}$

Computation in R

- **o** quadreg package
	- \blacktriangleright may need to be installed
	- \blacktriangleright library(quadreg)
	- \blacktriangleright rq command
- If e is vector of (normalized) residuals and a is the quantile to be evalulated
	- rq(e~1,a)
	- \blacktriangleright q=coef(rq(e^{\sim}1,a))
	- \triangleright Quantile regression of e on an intercept

4 0 8

÷

Example: Interest Rate Forecast

- $n = 603$ observations $\widehat{\varepsilon}_{t+1} = \frac{\widetilde{\boldsymbol e}_{t+1}}{\widehat{\sigma}_t}$ *σ*bt from GARCH(1,1) model
- 0.10, 0.25, 0.75, 0.90 quantiles
- \bullet -1.16, -0.59, 0.62, 1.26
- \bullet Point Forecast $= 1.96$
- 50% Forecast interval $=[1.82, 2.10]$
- 80% Forecast interval $=[1.69, 2.25]$

4 0 8

÷

Example: GDP

- $n = 207$ observations $\widehat{\varepsilon}_{t+1} = \frac{\widetilde{\boldsymbol e}_{t+1}}{\widehat{\sigma}_t}$ *σ*bt from GARCH(1,1) model
- 0.10, 0.25, 0.75, 0.90 quantiles
- \bullet -1.18, -0.63, 0.57, 1.26
- \bullet Point Forecast $= 1.31$
- \bullet 50% Forecast interval = [0.04, 2.4]
- 80% Forecast interval $=[-1.07, 3.8]$

4 日下

э.

Mean-Variance Model Interval Forecasts - Summary

The key is to break the distribution into the mean μ_t , variance σ_t^2 and the normalized error ε_{t+1}

$$
y_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1}
$$

- Then the distribution of y_{n+1} is determined by $\mu_n^{}$, σ_n^2 and the distribution of $ε_{n+1}$
- Each of these three components can be separately approximated and estimated
- Typically, we put the most work into modeling (estimating) the mean μ_t
	- \triangleright The remainder is modeled more simply
	- \blacktriangleright For macro forecasts, this reflects a belief (assumption?) that most of the predictability is in the mean, not the higher features.

KOD KAR KED KED E VAN

Alternative Approach: Quantile Regression

- Recall, the ideal $1 2\alpha$ interval is $[q_n(\alpha), q_n(1-\alpha)]$
- $q_n(\alpha)$ is the α' th quantile of the one-step conditional distribution

$$
\bullet \ \ F_n(y) = P\left(y_{n+1} \leq y \mid I_n\right)
$$

• Equivalently, let's directly model the conditional quantile function

4 日下

Quantile Regression Function

• The conditional distribution is

$$
P(y_{n+1} \leq y \mid I_n) \simeq P(y_{n+1} \leq y \mid \mathbf{x}_n)
$$

The conditional quantile function q*α*(x) solves

$$
P(y_{n+1} \leq q_{\alpha}(\mathbf{x}) \mid \mathbf{x}_n = \mathbf{x}) = \alpha
$$

- \bullet $q_{.5}(\mathbf{x})$ is the conditional median
- \bullet $q_1(\mathbf{x})$ is the 10% quantile function
- \bullet $q_9(x)$ is the 90% quantile function

Quantile Regression Functions

- For each α , $q_\alpha(\mathbf{x})$ is an arbitrary function of **x**
- For each x, q*α*(x) is monotonically increasing in *α*
- **•** Quantiles are well defined even when moments are infinite
- \bullet When distributions are discrete then quantiles may be intervals $-$ we ignore this
- We approximate the functions as linear in $q_\alpha(\mathbf{x})$

$$
q_{\alpha}(\mathbf{x}) \simeq \mathbf{x}' \boldsymbol{\beta}_{\alpha}
$$

(after possible transformations in x)

The coefficient vector $\mathsf{x}'\boldsymbol{\beta}_\alpha$ depends on α

つへへ

Linear Quantile Regression Functions

$$
\bullet \, q_\alpha(\mathbf{x}) = \mathbf{x}' \boldsymbol{\beta}_\alpha
$$

 \bullet If only the intercept depends on α ,

$$
q_{\alpha}(\mathbf{x}) \simeq \mu_{\alpha} + \mathbf{x}'\boldsymbol{\beta}
$$

then the quantile regression lines are parallel

- In This is when the error e_{t+1} in a linear model is **independent** of the regressors
- \triangleright Strong conditional homoskedasticity
- \bullet In general, the coefficients are functions of α
	- \triangleright Similar to conditional heteroskedasticity

Interval Forecasts

• An ideal $1 - 2\alpha$ interval forecast interval is

 $\begin{bmatrix} \mathbf{x}'_n \boldsymbol{\beta}_\alpha, \quad \mathbf{x}'_n \boldsymbol{\beta}_{1-\alpha} \end{bmatrix}$

- Note that the ideal point forecast is $\mathsf{x}_n'\beta$ where β is the best linear predictor
- An alternative point forecast is the conditional median **x**'_nβ_{0.5}
	- In This has the property of being the best linear predictor in L_1 (mean absolute error)
- All are linear functions of x_n , just different functions
- A feasible forecast interval is

$$
\left[\mathbf{x}_n' \widehat{\boldsymbol{\beta}}_{\alpha}, \quad \mathbf{x}_n' \widehat{\boldsymbol{\beta}}_{1-\alpha} \right]
$$

where $\pmb{\beta}_{\alpha}$ and $\pmb{\beta}_{1-\alpha}$ are estimates of $\pmb{\beta}_{\alpha}$ and $\pmb{\beta}_{1-\alpha}$

 Ω

KO K K A A K K E K K

Check Function

- Recall that the mean $\mu = EY$ minimizes the L_2 risk $E(Y-m)^2$
- Similarly the median $q_{0.5}$ minimizes the L_1 risk $E|Y m|$
- **•** The *α*'th quantile q_α minimizes the "check function risk

$$
E\rho_{\alpha}\left(Y-m\right)
$$

where

$$
\rho_{\alpha}(u) = \begin{cases}\n-u(1-\alpha) & u < 0 \\
u\alpha & u \ge 0\n\end{cases}
$$
\n
$$
= u(\alpha - 1 (u < 0))
$$

- **•** This is a tilted absolute value function
- To see the equivalence, evaluate the first order condition for minimization

Extremum Representation

 $q_\alpha(\mathbf{x})$ solves

$$
q_{\alpha}(\mathbf{x}) = \operatorname*{argmin}_{m} E\left(\rho_{\alpha}\left(y_{t+1} - m\right) | \mathbf{x}_{t} = \mathbf{x}\right)
$$

• Sample criterion

$$
S_{\alpha}(\boldsymbol{\beta}) = \frac{1}{n} \sum_{t=0}^{n-1} \rho_{\alpha} (y_{t+1} - \mathbf{x}'_{t} \boldsymbol{\beta})
$$

Quantile regression estimator

$$
\widehat{\boldsymbol{\beta}}_{\alpha} = \operatornamewithlimits{argmin}_{\boldsymbol{\beta}} \mathcal{S}_{\alpha}(\boldsymbol{\beta})
$$

- Computation by linear programming
	- \triangleright Stata
	- \triangleright R
	- \blacktriangleright Matlab

4.0.3

画

 QQ

Computation in R

- **•** *quantreg* package
	- \blacktriangleright may need to be installed
	- \blacktriangleright library(quantreg)
	- \triangleright For quantile regression of y on x at a'th quantile

 \star do not include intercept in x, it will be automatically included

- \blacktriangleright rq(y^{-x},a)
- \blacktriangleright For coefficients.
	- \star b=coef(rq(y^{-x},a))

4 0 8

画

 QQ

Distribution Theory

- The asymptotic theory for the dependent data case is not well developed
- The theory for the cross-section (iid) case is Angrist, Chernozhukov and Fernandez-Val (Econometrica, 2006)
- Their theory allows for quantile regression viewed as a best linear approximation

$$
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{\alpha}-\boldsymbol{\beta}_{\alpha}\right)\stackrel{d}{\longrightarrow}N(0, V_{\alpha})
$$

$$
V_{\alpha} = J_{\alpha}^{-1} \Sigma_{\alpha} J_{\alpha}
$$

\n
$$
J_{\alpha} = E(f_{y} (\mathbf{x}_{t}' \boldsymbol{\beta}_{\alpha} | \mathbf{x}_{t}) \mathbf{x}_{t} \mathbf{x}_{t}')
$$

\n
$$
\Sigma_{\alpha} = E(\mathbf{x}_{t} \mathbf{x}_{t}' u_{t}^{2})
$$

\n
$$
u_{t} = 1 (y_{t+1} < \mathbf{x}_{t}' \boldsymbol{\beta}_{\alpha}) - \alpha
$$

- Under correct specification, $\Sigma_{\alpha} = \alpha(1-\alpha)E(\mathbf{x}_t \mathbf{x}_t)$
- I suspect that this theorem extends to dependent data if the score is uncorrelated (dynamics are well specified) **4 ロト 4 何 ト** QQ

Standard Errors

- The asymptotic variance depends on the conditional density function
	- \blacktriangleright Nonparametric estimation!
- To avoid this, most researchers use bootstrap methods
- For dependent data, this has not been explored
- Recommend: Use current software, but be cautious!

4 0 8

Crossing Problem and Solution

- The conditional quantile functions $q_\alpha(\mathbf{x})$ are monotonically increasing in *α*
- But the linear quantile regression approximations $q_\alpha(\mathbf{x}) \simeq \mathbf{x}' \boldsymbol{\beta}_\alpha$ cannot be globally monotonic in *α*, unless all lines are parallel
- The regression approximations may cross!
- The estimates $\widehat{q}_{\alpha}(\mathbf{x}) = \mathbf{x}' \boldsymbol{\beta}_{\alpha}$ may cross!
- **•** If this happens, forecast intervals may be inverted:
	- \triangleright A 90% interval may not nest an 80% interval
- Simple Solution: Reordering
	- \blacktriangleright If $\widehat{q}_{\alpha_1}(\mathbf{x}) > \widehat{q}_{\alpha_2}(\mathbf{x})$ when $\alpha_1 < \alpha_2 < \frac{1}{2}$ $\frac{1}{2}$, simply set $\widehat{q}_{\alpha_1}(\mathbf{x}) = \widehat{q}_{\alpha_2}(\mathbf{x})$, and conversely quantiles above $\frac{1}{2}$
	- \blacktriangleright Take the wider interval
	- \blacktriangleright Then the endpoint of the two intervals will be the same

 Ω

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

Model Selection and Combination

- To my knowledge, no theory of model selection for median regression or quantile regression, even in iid context
- A natural conjecture is to use cross-validation on the sample check function
	- \triangleright But no current theory justifies this choice
- My recommendation for model selection (or combination)
	- \triangleright Select the model for the conditional mean by cross-validation
	- \triangleright Use the same variables for all quantiles
	- \triangleright Select the weights by cross-validation on the conditional mean
	- \triangleright For each quantile, estimate the models with positive weights
	- \blacktriangleright Take the weighted combination using the same weights.

4 0 8

 Ω

- 4何 ト 4 ヨ ト 4 ヨ ト

Example: Interest Rates

• $AR(2)$ Specification (selected for regression by CV)

$$
y_{t+1} = \beta_0 + \beta_1 y_t + \beta_2 y_{t-1} + e_t
$$

• Forecast 10% quantile

$$
q_{0.1}(x_n) = -0.31 + 0.46y_n - 0.22y_{n-1}
$$

- 50% Forecast interval $=[1.84, 2.12]$
- 80% Forecast interval $=[1.65, 2.25]$
- Very close to those from mean-variance estimates

4 0 8

÷

Example: GDP

• Leading Indicator Model

 $y_{t+1} = \beta_0 + \beta_1 y_t + \beta_2$ Spread $_t + \beta_3$ HighYield $+ \beta_4$ Starts $+ \beta_5$ Permits $+ \epsilon$

• 50% Forecast interval $=[0.1, 3.2]$

• 80% Forecast interval $=[-1.8, 4.0]$

KED KARD KED KED E VOOR

Distribution Forecasts

• The conditional distribution is

$$
F_t(y) = P(y_{t+1} \leq y \mid I_t)
$$

• It is not common to directly report $F_t(y)$

- or the one-step forecast distribution $F_n(y)$
- However, $F_t(y)$ may be used as an input
- **•** For example, simulation
- \bullet We thus may want an estimate $\widehat{F}_t(y)$ of $F_t(y)$

Mean-Variance Model Distribution Forecasts

Model

$$
y_{t+1} = \mu_t + \sigma_t \varepsilon_{t+1}
$$

with ε_{t+1} is independent of I_t .

- Let ε_{t+1} have distribution $F^{\varepsilon}(u) = P(\varepsilon_t \leq u)$.
- The conditional distribution of y_{t+1} is

$$
F_t(y) = F^{\varepsilon} \left(\frac{y_{t+1} - \mu_t}{\sigma_t} \right)
$$

• Estimation

$$
\widehat{F}_t(y) = \widehat{F}^{\varepsilon} \left(\frac{y_{t+1} - \widehat{\mu}_t}{\widehat{\sigma}_t} \right)
$$

where $\overline{F}^{\varepsilon}(u)$ is an estimate of $F^{\varepsilon}(u) = P(\varepsilon_t \leq u)$.

Normal Error Model

Under the assumption $\varepsilon_{t+1} \sim N(0,1)$, $F^{\varepsilon}(u) = \Phi(u)$, the normal CDF

$$
\widehat{F}_t(y) = \Phi\left(\frac{y - \widehat{\mu}_t}{\widehat{\sigma}_t}\right)
$$

 \bullet To simulate from $\widehat{F}_t(y)$

- **F** Calculate $\widehat{\mu}_t$ and $\widehat{\sigma}_t$
- \blacktriangleright Draw ε^*_{t+1} iid from $\mathcal{N}(0,1)$
- \blacktriangleright $y_{t+1}^* = \widehat{\mu}_t + \widehat{\sigma}_t \varepsilon_{t+1}^*$
- \bullet The normal assumption can be used when sample size *n* is very small
- But then $F_t(y)$ contains no information beyond $\widehat{\mu}_t$ and $\widehat{\sigma}_t$

Nonparametric Error Model

- Let F_n^{ε} be the empirical distribution function (EDF) of the normalized residuals $\widehat{\varepsilon}_{t+1}$
- **•** The EDF puts probability mass $1/n$ at each point $\{\widehat{\epsilon}_1, ..., \widehat{\epsilon}_n\}$

$$
\widehat{F}_n^{\varepsilon}(u) = n^{-1} \sum_{t=0}^{n-1} 1 \left(\widehat{\varepsilon}_{t+1} \le u \right)
$$

$$
\widehat{F}_t(y) = \widehat{F}_n^{\varepsilon} \left(\frac{y - \widehat{\mu}_t}{\widehat{\sigma}_t} \right)
$$
\n
$$
= n^{-1} \sum_{j=0}^{n-1} 1 \left(\frac{y - \widehat{\mu}_t}{\widehat{\sigma}_t} \leq \widehat{\varepsilon}_{j+1} \right)
$$
\n
$$
= n^{-1} \sum_{j=0}^{n-1} 1 \left(y \leq \widehat{\mu}_t + \widehat{\sigma}_t \widehat{\varepsilon}_{j+1} \right)
$$

No[t](#page-30-0)ice the summation over j , hol[d](#page-30-0)ing $\widehat{\mu}_t, \widehat{\sigma}_t$ fi[xe](#page-32-0)d

Simulate Estimated Conditional Distribution

- **•** To simulate
	- **F** Calculate $\widehat{\mu}_t$ and $\widehat{\sigma}_t$
	- ► Draw ε_{t+1}^* iid from normalized residuals $\{\widehat{\varepsilon}_1, ..., \widehat{\varepsilon}_n\}$
	- $y_{t+1}^* = \hat{\mu}_t + \hat{\sigma}_t \varepsilon_{t+1}^*$
	- \blacktriangleright y_{t+1}^* is a draw from $F_t(y)$

4 0 8

造

 QQ

Plot Estimated Conditional Distribution

$$
\widehat{F}_n(y) = n^{-1} \sum_{t=0}^{n-1} 1 (y \leq \widehat{\mu}_n + \widehat{\sigma}_n \widehat{\epsilon}_{t+1})
$$

- A step function, with steps of height $1/n$ at $\widehat{\mu}_n + \widehat{\sigma}_n \widehat{\epsilon}_{t+1}$
- **•** Calculation
	- ► Calculate $\hat{\mu}_n$, $\hat{\sigma}_n$, and $y_{t+1}^* = \hat{\mu}_n + \hat{\sigma}_n \hat{\epsilon}_{t+1}$, $t = 0, ..., n-1$
	- \blacktriangleright Sort y_{t+1}^* into order statistics $y_{(j)}^*$
	- **► Equivalently, sort** $\widehat{\epsilon}_{t+1}$ **into order statistics** $\widehat{\epsilon}_{(1)}$ **and set** $y_{(j)}^* = \widehat{\mu}_n + \widehat{\sigma}_n \widehat{\epsilon}_{(j)}$
	- Plot on the y-axis $\{1/n, 2/n, 3/n, ..., 1\}$ against on the x-axis $y_{(1)}^*$, $y_{(2)}^*$, ..., $y_{(n)}^*$

つへへ

- **o** Interest Rate
- GDP

重

 2990

メロト メ都 トメ ヨ トメ ヨト

Figure: GDP Forecast Distribution

Quantile Regression Approach

- The distribution function may also be recovered from the estimated quantile functions.
- $F_n(q_\alpha(\mathbf{x}_n)) = \alpha$
- $\widehat{F}_n(\widehat{q}_\alpha(\mathbf{x}_n)) = \alpha$
- $\widehat{q}_\alpha(\mathbf{x}_n) = \mathbf{x}_n^{\prime} \boldsymbol{\beta}_\alpha$
- Compute $\widehat{q}_{\alpha}(\mathbf{x}_n) = \mathbf{x}'_n \boldsymbol{\beta}_{\alpha}$ for a set of quantiles $\{\alpha_1, ..., \alpha_J\}$
- Plot α_j on the y-axis against $\widehat{q}_{\alpha_j}(\mathbf{x}_n)$ on the x-axis

• The plot is
$$
\hat{F}_n(y)
$$
 at $y = \hat{q}_{\alpha_j}(\mathbf{x}_n)$

- **If the quantile lines cross, then the plot will be non-monotonic**
- The reordering method flattens the estimated distribution at these points

B

 200

イロト イ押ト イヨト イヨト

Multi-Step Forecasts

- **•** Forecast horizon: h
- We say the forecast is "multi-step" if $h > 1$
- Forecasting y_{n+h} given I_n
- e.g., forecasting GDP growth for 2012:3, 2012:4, 2013:1, 2013:2
- The forecast distribution is $y_{n+h} | I_n \sim F_h(y_{n+h}|I_n)$

4 0 8

÷

 200

• $f_{n+h|h}$ minimizes expected squared loss

$$
f_{n+h|h} = \underset{f}{\operatorname{argmin}} E\left((y_{n+h} - f)^2 | I_n\right)
$$

$$
= E\left(y_{n+h}|I_n\right)
$$

 \bullet Optimal point forecasts are *h*-step conditional means

 \leftarrow \Box

 \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

B

 Ω

Relationship Between Forecast Horizons

Take an AR(1) model

$$
y_{t+1} = \alpha y_t + u_{t+1}
$$

o Iterate

$$
y_{t+1} = \alpha (\alpha y_{t-1} + u_t) + u_{t+1} = \alpha^2 y_{t-1} + \alpha u_t + u_{t+1}
$$

or

$$
y_{t+2} = \alpha^2 y_t + e_{t+2}
$$

$$
u_{t+2} = \alpha u_{t+1} + u_{t+2}
$$

 \bullet Repeat h times

$$
y_{t+h} = \alpha^h y_t + e_{t+h}
$$

\n
$$
e_{t+h} = u_{t+h} + \alpha u_{t+h-1} + \alpha^2 u_{t+h-2} + \cdots + \alpha^{h-1} u_{t+1}
$$

AR(1)

h-step forecast

$$
y_{t+h} = \alpha^h y_t + e_{t+h}
$$

\n
$$
e_{t+h} = u_{t+h} + \alpha u_{t+h-1} + \alpha^2 u_{t+h-2} + \dots + \alpha^{h-1} u_{t+1}
$$

\n
$$
E(y_{n+h}|I_n) = \alpha^h y_n
$$

- \bullet h-step point forecast is linear in y_n
- *h*-step forecast error e_{n+h} is a $MA(h-1)$

造

 QQ

メロト メ都 トメ きょ メ きょう

AR(2) Model

• 1-step AR(2) model

$$
y_{t+1} = \alpha_0 + \alpha_1 y_t + \alpha_2 y_{t-1} + u_{t+1}
$$

• 2-steps ahead

$$
y_{t+2} = \alpha_0 + \alpha_1 y_{t+1} + \alpha_2 y_t + u_{t+2}
$$

• Taking conditional expectations

$$
E(y_{t+2}|I_t) = \alpha_0 + \alpha_1 E(y_{t+1}|I_t) + \alpha_2 E(y_t|I_t) + E(e_{t+2}|I_t)
$$

= $\alpha_0 + \alpha_1 (\alpha_0 + \alpha_1 y_t + \alpha_2 y_{t-1}) + \alpha_2 y_t$
= $\alpha_0 + \alpha_1 \alpha_0 + (\alpha_1^2 + \alpha_2) y_t + \alpha_1 \alpha_2 y_{t-1}$

which is linear in (y_t, y_{t-1})

 \bullet In general, a 1-step linear model implies an h-step approximate linear model in the same variables イロト イ母 トイヨ トイヨ トー B QQ

AR(k) h-step forecasts

If

$$
y_{t+1} = \alpha_0 + \alpha_1 y_t + \alpha_2 y_{t-1} + \cdots + \alpha_k y_{t-k+1} + u_{t+1}
$$

then

where

$$
y_{t+h} = \beta_0 + \beta_1 y_t + \beta_2 y_{t-1} + \cdots + \beta_k y_{t-k+1} + e_{t+h}
$$

$$
e_{t+h}
$$
 is a MA(h-1)

重

 299

イロト イ部 トイヨ トイヨト

Leading Indicator Models

If

$$
y_{t+1} = \mathbf{x}'_t \boldsymbol{\beta} + u_t
$$

then

$$
E(y_{t+h}|I_t) = E(\mathbf{x}_{t+h-1}|I_t)'\beta
$$

If $E\left(\mathbf{x}_{t+h-1}\vert\mathit{I}_t\right)$ is itself (approximately) a linear function of \mathbf{x}_t , then

$$
E(y_{t+h}|I_t) = \mathbf{x}'_t \gamma
$$

$$
y_{t+h} = \mathbf{x}'_t \gamma + e_{t+h}
$$

Common Structure: h-step conditional mean is similar to 1-step structure, but error is a MA.

G.

 QQ

イロト イ押ト イヨト イヨト

Forecast Variable

- We should think carefully about the variable we want to report in our forecast
- The choice will depend on the context
- What do we want to forecast?
	- Future level: y_{n+h}
		- \star interest rates, unemployment rates
	- ► Future differences: Δy_{t+h}
	- ► Cummulative Change: Δy_{t+h}
		- \star Cummulative GDP growth

4 日下

 200

Forecast Transformation

• $f_{n+h|n} = E(y_{n+h}|I_n)$ = expected future level

 \blacktriangleright Level specification

$$
y_{t+h} = \mathbf{x}'_t \boldsymbol{\beta} + \mathbf{e}_{t+h}
$$

$$
f_{n+h|n} = \mathbf{x}'_t \boldsymbol{\beta}
$$

 \blacktriangleright Difference specification

$$
\Delta y_{t+h} = \mathbf{x}_t' \boldsymbol{\beta}_h + \mathbf{e}_{t+h}
$$

$$
f_{n+h|n} = y_n + \mathbf{x}_t' \boldsymbol{\beta}_1 + \cdots + \mathbf{x}_t' \boldsymbol{\beta}_h
$$

 \blacktriangleright Multi-Step difference specification

$$
y_{t+h} - y_t = \mathbf{x}_t' \boldsymbol{\beta} + e_{t+h}
$$

$$
f_{n+h|n} = y_n + \mathbf{x}_t' \boldsymbol{\beta}
$$

 Ω

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

Direct and Iterated

- There are two methods of multistep $(h > 1)$ forecasts
- **•** Direct Forecast
	- \blacktriangleright Model and estimate $E(y_{n+h}|I_n)$ directly
- **a** Iterated Forecast
	- \blacktriangleright Model and estimate one-step $E(y_{n+1}|I_n)$
	- \blacktriangleright Iterate forward h steps
	- \triangleright Requires full model for all variables
- Both have advantages and disadvantages
	- \blacktriangleright For now, we will forcus on direct method.

4 日下

 200

Direct Multi-Step Forecasting

Markov approximation

$$
\triangleright E(y_{n+h}|I_n) = E(y_{n+h}|x_n, x_{n-1}, ...)\approx E(y_{n+h}|x_n, ..., x_{n-p})
$$

• Linear approximation

$$
\blacktriangleright E(y_{n+h}|x_n,...,x_{n-p}) \approx \beta' \mathbf{x}_n
$$

• Projection Definition

$$
\blacktriangleright \beta = (E(\mathbf{x}_t \mathbf{x}_t'))^{-1} (E(\mathbf{x}_t y_{t+h}))
$$

• Forecast error

$$
\blacktriangleright e_{t+h} = y_{t+h} - \beta' \mathbf{x}_t
$$

4 日下

B

 QQ

Multi-Step Forecast Model

$$
y_{t+h} = \beta' \mathbf{x}_t + e_{t+h}
$$

$$
\beta = (E(\mathbf{x}_t \mathbf{x}'_t))^{-1} (E(\mathbf{x}_t y_{t+h}))
$$

$$
E(\mathbf{x}_t e_{t+h}) = 0
$$

$$
\sigma^2 = E(e_{t+h}^2)
$$

Bruce Hansen (University of Wisconsin) **[Forecasting](#page-0-0) State Act 2018** July 23-27, 2012 50 / 102

重

 299

 \mathbb{B} is a \mathbb{B} is

K ロ ト K 伊 ト K

Properties of the Error

- $E(x_t e_{t+h}) = 0$
	- \blacktriangleright Projection
- $E(e_{t+h}) = 0$
	- \blacktriangleright Inclusion of an intercept
- The error e_{t+h} is NOT serially uncorrelated
- \bullet It is at least a MA(h-1)

 \leftarrow \Box

B

 QQ

 \rightarrow \equiv \rightarrow

Least Squares Estimation

$$
\widehat{\boldsymbol{\beta}} = \left(\sum_{t=0}^{n-1} \mathbf{x}_t \mathbf{x}_t' \right)^{-1} \left(\sum_{t=0}^{n-1} \mathbf{x}_t y_{t+h} \right)
$$

$$
\widehat{y}_{n+h|n} = \widehat{f}_{n+h|n} = \widehat{\boldsymbol{\beta}}' \mathbf{x}_n
$$

重

 299

 \mathbf{y} of \mathbf{B} is

÷.

K ロ ⊁ K 倒 ⊁ K

Distribution Theory - Consistent Estimation

By the WLLN,

$$
\widehat{\beta} = \left(\sum_{t=0}^{n-1} \mathbf{x}_t \mathbf{x}_t'\right)^{-1} \left(\sum_{t=0}^{n-1} \mathbf{x}_t y_{t+h}\right)
$$

$$
= \frac{P}{\beta} \left(E \mathbf{x}_t \mathbf{x}_t'\right)^{-1} \left(E \mathbf{x}_t y_{t+h}\right)
$$

活

 298

B.X 一个 三 下

4 ロ ▶ 4 母 ▶ 4

Distribution Theory - Asymptotic Normality By the dependent CLT,

$$
\frac{1}{n}\sum_{t=0}^{n-1} \mathbf{x}_t e_{t+h} \stackrel{d}{\longrightarrow} N(0,\Omega)
$$

$$
\Omega = E(\mathbf{x}_t \mathbf{x}_t' e_{t+h}^2) + \sum_{j=1}^{\infty} (\mathbf{x}_t \mathbf{x}_{t+j}' e_{t+h} e_{t+h+j} + \mathbf{x}_{t+j} \mathbf{x}_t' e_{t+h} e_{t+h+j})
$$

\n
$$
\simeq E(\mathbf{x}_t \mathbf{x}_t' e_{t+h}^2) + \sum_{j=1}^{h-1} (\mathbf{x}_t \mathbf{x}_{t+j}' e_{t+h} e_{t+h-j} + \mathbf{x}_{t+j} \mathbf{x}_t' e_{t+h} e_{t+h+j})
$$

• A long-run (HAC) covariance matrix

- \bullet If model is correctly specified, the errors are a MA(h-1) and the sum truncates at $h - 1$
- Otherwise, this is an approximation
- It does not simplify to the iid covariance m[atr](#page-52-0)i[x](#page-54-0)

4 D F

 QQ

Distribution Theory

$$
\bullet \ \sqrt{n}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}\right) \stackrel{d}{\longrightarrow} N(0,\,V)
$$

$$
\bullet \ \ V = Q^{-1} \Omega Q^{-1}
$$

$$
\bullet \ \Omega \approx E\left(\mathbf{x}_t \mathbf{x}_t' e_{t+h}^2\right) + \sum_{j=1}^{h-1} \left(\mathbf{x}_t \mathbf{x}_{t+j}' e_{t+h} e_{t+h-j} + \mathbf{x}_{t+j} \mathbf{x}_t' e_{t+h} e_{t+h+j}\right)
$$

• HAC variance matrix

ヨメ メラメ

K ロ ト K 伊 ト K

重

 299

Residuals

Least-squares residuals

$$
\blacktriangleright \widehat{e}_{t+h} = y_{t+h} - \widehat{\boldsymbol{\beta}}' \mathbf{x}_t
$$

- $\hat{\mathbf{e}}_{t+h} = y_{t+h} \boldsymbol{\beta} \mathbf{x}_t$
► Standard, but overfit
- **e** Leave-one-out residuals

$$
\blacktriangleright \widetilde{e}_{t+h} = y_{t+h} - \widehat{\beta}'_{-t} \mathbf{x}_t
$$

- $\sum_{t+h} \tilde{e}_{t+h} = y_{t+h} \beta_{-t} x_t$

► Does not correct for MA errors
- **a** Leave *h* out residuals

$$
\widetilde{e}_{t+h} = y_{t+h} - \widehat{\beta}'_{-t,h} \mathbf{x}_t
$$

$$
\widehat{\beta}_{-t,h} = \left(\sum_{|j+h-t| \ge h} \mathbf{x}_j \mathbf{x}'_j\right)^{-1} \left(\sum_{|j+h-t| \ge h} \mathbf{x}_j y_{j+h}\right)
$$

 \bullet The summation is over all observations outside $h-1$ periods of $t+h$.

4 0 8

 Ω

э

Algebraic Computation of Leave h out residuals

- Loop across each observation $t = (y_{t+h}, \mathbf{x}_t)$
- Leave out observations $t h + 1, ..., t, ..., t + h 1$
- R command
	- \blacktriangleright For positive integers i
	- \triangleright x[-i] returns elements of x excluding indices i
	- \triangleright Consider
		- \star ii=seq(i-h+1,i+h-1)
		- \star ii<-ii[ii>0]
		- \star yi=y[-ii]
		- \star xi=x[-ii.]
	- In This removes $t h + 1, ..., t, ..., t + h 1$ from y and x

G.

 Ω

イロト イ母 トイヨ トイヨ トー

Variance Estimator

Asymptotic variance (HAC) estimator with leave-h-out residuals

$$
\widehat{V} = \widehat{Q}^{-1} \widehat{\Omega} \widehat{Q}^{-1}
$$
\n
$$
\widehat{Q} = \frac{1}{n} \sum_{t=0}^{n-1} \mathbf{x}_t \mathbf{x}_t'
$$
\n
$$
\widehat{\Omega} = \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_t \mathbf{x}_t' \widehat{e}_{t+h}^2 + \frac{1}{n} \sum_{j=1}^{n-1} \sum_{t=1}^{n-j} (\mathbf{x}_t \mathbf{x}_{t+j}' \widetilde{e}_{t+h} \widetilde{e}_{t+h+j} + \mathbf{x}_{t+j} \mathbf{x}_t' \widetilde{e}_{t+h} \widetilde{e}_{t+h})
$$

- Can use least-squares residuals \hat{e}_{t+h} instead of leave-h-out residuals, but then multiply \hat{V} by $n/(n - \dim(\mathbf{x}_t)).$
- **•** Standard errors for $\widehat{\beta}$ are the square roots of the diagonal elements of $n^{-1}\widehat{V}$

つひひ

Example: GDP Forecast

 $y_t = 400 \log(\text{GDP}_t)$

Forecast Variable: GDP growth over next h quarters, at annual rate

$$
\frac{y_{t+h} - y_t}{h} = \beta_0 + \beta_1 \Delta y_t + \beta_1 \Delta y_{t-1} + \text{Spread}_t + \text{HighYield}_t + \beta_2 \text{HS}_t + e_{t+h}
$$

$$
\text{HS}_t = \text{Housing Starts}_t
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Example: GDP Forecast

Cummulative Annualized Growth

活

 299

イロト イ部 トイヨ トイヨト

Selection and Combination for h step forecasts

- AIC routinely used for model selection
- PLS (OOS MSFE) routinely used for model evaluation
- Neither well justified

4 日下

 Ω

Point Forecast and MSFE

• Given an estimate $\widehat{\boldsymbol{\beta}}(m)$ of $\boldsymbol{\beta}$, the point forecast for y_{n+h} is

$$
f_{n+h|n}=\widehat{\boldsymbol{\beta}}'\mathbf{x}_n
$$

The mean-squared-forecast-error (MSFE) is

$$
\begin{array}{rcl}\nMSEE & = & E\left(e_{n+h} - \mathbf{x}'_n\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)\right)^2 \\
& \simeq & \sigma^2 + E\left(\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)'Q\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)\right)\n\end{array}
$$

where $Q = E\left(\mathbf{x}_n\mathbf{x}'_n\right)$ and $\sigma^2 = E\left(e_{n+h}^2\right)$

• Same form as 1-step case

4 0 8

 200

Residual Fit

$$
\hat{\sigma}^2 = \frac{1}{n} \sum_{t=0}^{n-1} e_{t+h}^2 + \frac{1}{n} \sum_{t=0}^{n-1} \left(\mathbf{x}'_t \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) \right)^2
$$

$$
- \frac{2}{n} \sum_{t=0}^{n-1} e_{t+h} \mathbf{x}'_t \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right)
$$

$$
\simeq \text{MSFE} - \frac{2}{n} \mathbf{e}' \mathbf{P} \mathbf{e}
$$

$$
E \left(\hat{\sigma}^2 \right) \simeq \text{MSFE}_n - \frac{2}{n} \mathbf{B}
$$

where
$$
B = E\left(\mathbf{e}'\mathbf{Pe}\right)
$$

\nSave form as 1-step case

 $E = \Omega Q$

メロトメ 倒 トメ 君 トメ 君 トー

Asymptotic Penalty

$$
\mathbf{e}'\mathbf{P}\mathbf{e} = \left(\frac{1}{\sqrt{n}}\mathbf{e}'\mathbf{X}\right)\left(\frac{1}{n}\mathbf{X}'\mathbf{X}\right)^{-1}\left(\frac{1}{\sqrt{n}}\mathbf{X}'\mathbf{e}\right)
$$

$$
\rightarrow_d Z'Q^{-1}Z
$$

where $Z \sim N(0, \Omega)$, with $\Omega =$ HAC variance.

$$
B = E(e' \text{Pe})
$$

\n
$$
\longrightarrow tr(Q^{-1}E(ZZ'))
$$

\n
$$
= tr(Q^{-1}\Omega)
$$

造

 298

メロト メ都 トメ きょ メ きょう

Ideal MSFE Criterion

$$
C_n(m) = \hat{\sigma}^2(m) + \frac{2}{n} \operatorname{tr} (Q^{-1} \Omega)
$$

$$
Q = E(\mathbf{x}_t \mathbf{x}_t')
$$

$$
\Omega = E(\mathbf{x}_t \mathbf{x}_t' e_{t+h}^2) + \sum_{j=1}^{h-1} (\mathbf{x}_t \mathbf{x}_{t+j}' e_{t+h} e_{t+h-j} + \mathbf{x}_{t+j} \mathbf{x}_t' e_{t+h} e_{t+h+j})
$$

重

 2990

イロト イ部 トイヨ トイヨト

H-Step Robust Mallows Criterion

$$
C_n(m) = \widehat{\sigma}^2(m) + \frac{2}{n} \operatorname{tr} \left(\widehat{Q}^{-1} \widehat{\Omega} \right)
$$

where $\widehat{\Omega}$ is a HAC covariance matrix

 \sim

B

 QQ

K ロ ▶ K 何 ▶

H-Step Cross-Validation for Selection

$$
CV_n(m) = \frac{1}{n} \sum_{i=0}^{n-1} \widetilde{e}_{t+h}(m)^2
$$

$$
\widetilde{e}_{t+h} = y_{t+h} - \widetilde{\beta}'_{-t,h} \mathbf{x}_t
$$

$$
\widehat{\beta}_{-t,h} = \left(\sum_{|j+h-t| \ge h} \mathbf{x}_j \mathbf{x}'_j\right)^{-1} \left(\sum_{|j+h-t| \ge h} \mathbf{x}_j y_{j+h}\right)
$$

Theorem: $E(CV_n(m)) \simeq MSFE(m)$ Thus $\hat{m} = \argmin CV_n(m)$ is an estimate of $m = \argmin MSE_n(m)$, but there is no proof of optimality

÷

 QQ

イロト イ母 トイヨ トイヨ トー

H-Step Cross-Validation for Forecast Combination

$$
CV_n(\mathbf{w}) = \frac{1}{n} \sum_{t=1}^n \widetilde{e}_{t+1}(\mathbf{w})^2
$$

\n
$$
= \frac{1}{n} \sum_{t=1}^n \left(\sum_{m=1}^M w(m) \widetilde{e}_{t+1}(m) \right)^2
$$

\n
$$
= \sum_{m=1}^M \sum_{\ell=1}^M w(m) w(\ell) \frac{1}{n} \sum_{t=1}^n \widetilde{e}_{t+1}(m) \widetilde{e}_{t+1}(\ell)
$$

\n
$$
= \mathbf{w}' \widetilde{S} \mathbf{w}
$$

where

$$
\widetilde{\mathbf{S}} = \frac{1}{n} \widetilde{\mathbf{e}}' \widetilde{\mathbf{e}}
$$

is covariance matrix of leave-h-out residuals.

B

 QQ

K ロ ▶ K 何 ▶

Cross-validation Weights

Combination weights found by constrained minimization of $CV_n(w)$

$$
\min_{\mathbf{w}} CV_n(\mathbf{w}) = \mathbf{w}' \widetilde{\mathbf{S}} \mathbf{w}
$$
\nsubject to

$$
\sum_{m=1}^{M} w(m) = 1
$$

$$
0 \leq w(m) \leq 1
$$

造

 QQ

イロメ イ部メ イヨメ イヨメー

Illustration 1

- $k = 8$ regressors
	- \blacktriangleright intercept
	- **P** normal AR(1)'s with coefficient $\rho = 0.9$
- \bullet *h*-step error
	- normal $MA(h-1)$
	- \blacktriangleright equal coefficients
- Regression coefficients
	- \blacktriangleright $\beta = (\mu, 0, ..., 0)$
	- \blacksquare n = 50
	- \triangleright MSPE plotted as a function of μ

4 0 8

B

 QQQ

 $\rightarrow \equiv$ \rightarrow

Estimators

- Unconstrained Least-Squares
- Leave-1-out CV Selection
- **•** Leave-h-out CV Selection
- Leave-1-out CV Combination
- **o** Leave-h-out CV Combination

 \leftarrow \Box

B

 Ω

MSFE, $n=50$, $h=4$, $k=8$

活

 299

イロト 不優 ト 不差 ト 不差 ト
Illustration 2

Model

$$
y_t = \alpha y_{t-1} + u_t
$$

Unconstrained model: AR(3)

$$
y_t = \hat{\mu} + \hat{\beta}_1 y_{t-h} + \hat{\beta}_2 y_{t-h-1} + \hat{\beta}_3 y_{t-h-2} + \hat{e}_t
$$

重

 299

メロト メ都 トメ ヨ トメ ヨト

MSFE, $n = 50$, $h = 4$, $k = 4$

MSFE, $n = 50$, $h = 12$, $k = 4$

Example: GDP Forecast Weights by Horizon

活

 299

 \mathbb{B} is a \mathbb{B} is

4 ロ ▶ 4 母 ▶ 4

h-step Variance Forecasting

- Not well developed using direct methods
- Suggest using constant variance specification

4 日下

э

 Ω

h-step Interval Forecasts

- Similar to 1-step interval forecasts
	- \triangleright But calculated from h-step residuals
- Use constant variance specification
- Let $\widehat{q}^e(\alpha)$ and $\widehat{q}^e(1-\alpha)$ be the *α*'th and $(1-\alpha)$ 'th percentiles of residuals \widetilde{e}_{t+h}
- **•** Forecast Interval:

$$
[\widehat{\mu}_n + \widehat{q}^{\epsilon}(\alpha), \quad \widehat{\mu}_n + \widehat{q}^{\epsilon}(1-\alpha)]
$$

4.0.3

÷

Quantile Regression Approach

- $F_n(y) = P(y_{n+h} \leq y \mid I_n)$
- $q_\alpha(\mathbf{x}) \simeq \mathbf{x}' \boldsymbol{\beta}_\alpha$
- Estimate quantile regression of y_{t+h} on \mathbf{x}_t
- $1 2α$ forecast interval is $\left[\mathbf{x}'_n \boldsymbol{\beta}_{\alpha}, \, \mathbf{x}'_n \boldsymbol{\beta}_{1-\alpha} \right]$
- Asymptotic theory not developed for h -step case
	- \blacktriangleright Developed for 1-step case
	- \blacktriangleright Extension is expected to work

4 0 8

÷

Example: GDP Forecast Intervals (80%)

Using quantile regression approach

B

 QQ

4 ロ ▶ 4 母 ▶ 4

Fan Charts

Plots of a set of interval forecasts for multiple horizons

- \blacktriangleright Pick a set of horizons, $h = 1, ..., H$
- **►** Pick a set of quantiles, e.g. $\alpha = .10, .25, .75, .90$
- \triangleright Recall the quantiles of the conditional distribution are $q_n(\alpha, h) = \mu_n(h) + \sigma_n(h)q^{\varepsilon}(\alpha, h)$
- ► Plot $q_n(.1, h)$, $q_n(.25, h)$, $\mu_n(h)$, $q_n(.75, h)$, $q_n(.9, h)$ against h
- **•** Graphs easier to interpret than tables

4 日下

Illustration

- I've been making monthly forecasts of the Wisconsin unemployment rate
- Forecast horizon $h = 1, ..., 12$ (one year)
- Quantiles: *α* = .1, .25, .75, .90
- This corresponds to plotting 50% and 80% forecast intervals
- \bullet 50% intervals show "likely" region (equal odds)

4 日下

∢ 何 ≯ →

÷

 Ω

Unemployment Rate Forecasts

Comments

- Showing the recent history gives perspective
- Some published fan charts use colors to indicate regions, but do not label the colors
- Labels important to infer probabilities
- I like clean plots, not cluttered

4 日下

Illustration: GDP Growth

重

 2990

メロト メ都 トメ ヨ トメ ヨト

It doesn't "fan" because we are plotting average growth

 $E = \Omega Q$

イロメ イ部メ イヨメ イヨメー

Iterated Forecasts

- Estimate one-step forecast
- Iterate to obtain multi-step forecasts
- Only works in complete systems
	- \blacktriangleright Autoregressions
	- \blacktriangleright Vector autoregressions

4 0 8

÷

 QQ

Iterative Forecast Relationships in Linear VAR

 \bullet vector V_t

$$
y_{t+1} = A_0 + A_1 y_t + A_2 y_{t-1} + \cdots + A_k y_{t-k+1} + u_{t+1}
$$

o 1-step conditional mean

$$
E(y_{t+1}|I_t) = A_0 + A_1 E(y_t|I_t) + \cdots + A_k E(y_{t-k+1}|I_t)
$$

= $A_0 + A_1 y_t + A_2 y_{t-1} + \cdots + A_k y_{t-k+1}$

2-step conditional mean

$$
E(y_{t+1}|I_{t-1}) = E(E(y_{t+1}|I_t)|I_{t-1})
$$

= $A_0 + A_1 E(y_t|I_{t-1}) + \cdots + A_k E(y_{t-k+1}|I_{t-1})$
= $A_0 + A_1 E(y_t|I_{t-1}) + A_2 y_{t-1} + \cdots + A_k y_{t-k+1}$

 \bullet h-step conditional mean

$$
E(y_{t+1}|I_{t-h+1}) = E(E(y_{t+1}|I_t)|_{I_{t-h+1}})
$$

= $A_0 + A_1 E(y_t|I_{t-h+1}) + \cdots + A_k E(y_{t-k+1}|I_{t-h+1})$

• Li[n](#page-87-0)earin lower-order (up to $h-1$ step) co[ndi](#page-87-0)[tio](#page-89-0)n[al](#page-88-0) [me](#page-0-0)[an](#page-101-0)[s](#page-0-0)

Iterative Least Squares Forecasts

• Estimate 1-step VAR(k) by least-squares

$$
y_{t+1} = \widehat{A}_0 + \widehat{A}_1 y_t + \widehat{A}_2 y_{t-1} + \cdots + \widehat{A}_k y_{t-k+1} + \widehat{u}_{t+1}
$$

• Gives 1-step point forecast

$$
\widehat{y}_{n+1|n} = \widehat{A}_0 + \widehat{A}_1 y_n + \widehat{A}_2 y_{n-1} + \cdots + \widehat{A}_k y_{n-k+1}
$$

• 2-step iterative forecast

$$
\widehat{y}_{n+2|n} = \widehat{A}_0 + \widehat{A}_1 \widehat{y}_{n+1|n} + \widehat{A}_2 y_n + \cdots + \widehat{A}_k y_{n-k+2}
$$

 \bullet h-step iterative forecast

$$
\widehat{y}_{n+h|n} = \widehat{A}_0 + \widehat{A}_1 \widehat{y}_{n+h-1|n} + \widehat{A}_2 \widehat{y}_{n+h-2|n} + \cdots + \widehat{A}_k \widehat{y}_{n+h-k|n}
$$

4 日下

• This is (numerically) different than the direct LS forecast

Illustration 1: GDP Growth

AR(2) Model • $y_{t+1} = 1.6 + 0.30y_t + 0.16y_{t-1}$ $y_n = 1.8$, $y_{n-1} = 2.9$ $\hat{y}_{n+1} = 1.6 + 0.30 * 1.8 + .16 * 2.9 = 2.6$ $\hat{y}_{n+2} = 1.6 + 0.30 * 2.6 + .16 * 1.8 = 2.7$ $\widehat{\mathsf{v}}_{n+3} = 1.6 + 0.30 * 2.7 + 0.16 * 2.6 = 2.9$ $\hat{v}_{n+4} = 1.6 + 0.30 * 2.9 + .16 * 2.7 = 3.0$

KED KARD KED KED E VOOR

Point Forecasts

 $E = \Omega Q$

メロト メ都 トメ ヨ トメ ヨト

Illustration 2: GDP Growth+Housing Starts

● VAR(2) Model

- y_{1t} = GDP Growth, y_{2t} =Housing Starts
- $\mathsf{x}_t = (\mathsf{GDP}\;\mathsf{Growth}_t,\; \mathsf{Houseing}\;\mathsf{Starts}_t,\;\mathsf{GDP}\;\mathsf{Growth}_{t-1},\;\mathsf{Houseing})$ $StartS_{t-1}$
- $\hat{\mathbf{y}}_{t+1} = \hat{\mathbf{A}}_0 + \hat{\mathbf{A}}_1 \mathbf{y}_t + \hat{\mathbf{A}}_2 \mathbf{y}_{t-1} + \hat{\mathbf{y}}_{t+1}$
- $y_{1t+1} = 0.43 + 0.15y_{1t} + 11.2y_{2t} + 0.18y_{1t-1} 10.1y_{2t-1}$
- $y_{2t+1} = 0.07 0.001y_{1t} + 1.2y_{2t} 0.001y_{1t-1} 0.26y_{2t-1}$

 Ω

イロメ イ何 メイヨメ イヨメーヨー

Illustration 2: GDP Growth+Housing Starts

- $y_{1n} = 1.8$, $y_{2n} = 0.71$, $y_{1n-1} = 2.9$, $y_{2n-1} = 0.68$
- $y_{1n+1} = 0.43 + 0.15 * 1.8 + 11.2 * 0.71 + 0.18 * 2.9 10.1 * 0.68 = 2.3$
- $y_{2t+1} = 0.07 0.001 * 1.8 + 1.2 * 0.71 0.001 * 2.9 0.26 * 0.68 =$ 0.76
- $y_{1n+2} = 0.43 + 0.15 * 2.3 + 11.2 * 0.76 + 0.18 * 1.8 10.1 * 0.71 = 2.4$
- $y_{2t+1} = 0.07 0.001 * 2.3 + 1.2 * 0.76 0.001 * 1.8 0.26 * 0.71 =$ 0.80

KED KARD KED KED E VOOR

Point Forecasts

重

 2990

メロト メ都 トメ ヨ トメ ヨト

Model Selection

- \bullet It is typical to select the 1-step model and use this to make all h-step forecasts
- However, there theory to support this is incomplete
- (It is not obvious that the best 1-step estimate produces the best h-step estimate)
- For now, I recommend selecting based on the 1-step estimates

4 日下

Model Combination

- \bullet There is no theory about how to apply model combination to h-step iterated forecasts
- Can select model weights based on 1-step, and use these for all forecast horizons

4 0 8

÷

 QQ

Variance, Distribution, Interval Forecast

- While point forecasts can be simply iterated, the other features cannot
- Multi-step forecast distributions are convolutions of the 1-step forecast distribution.
	- \triangleright Explicit calculation computationally costly beyond 2 steps
- **•** Instead, simple simulation methods work well
- The method is to use the estimated condition distribution to simulate each step, and iterate forward. Then repeat the simulation many times.

 Ω

Multi-Step Forecast Simulation

- Let $\mu(\mathbf{x})$ and $\sigma(\mathbf{x})$ denote the models for the conditional one-step mean and standard deviation as a function of the conditional variables x
- Let $\hat{\mu}$ (x) and $\hat{\sigma}$ (x) denote the estimates of these functions, and let $\{\widehat{\epsilon}_1, ..., \widehat{\epsilon}_n\}$ be the normalized residuals
- $\mathbf{x}_n = (y_n, y_{n-1}, ..., y_{n-p})$ is known. Set $\mathbf{x}_n^* = \mathbf{x}_n$
- To create one *h*-step realization:
	- **►** Draw ϵ_{n+1}^* iid from normalized residuals $\{\widehat{\epsilon}_1, ..., \widehat{\epsilon}_n\}$
► Set $y_{n+1}^* = \widehat{\mu}(\mathbf{x}_n^*) + \widehat{\sigma}(\mathbf{x}_n^*) \epsilon_{t+1}^*$

• Set
$$
y_{n+1}^* = \mu(\mathbf{x}_n^*) + \sigma(\mathbf{x}_n^*) \varepsilon_{t+1}^*
$$

• Set
$$
\mathbf{x}_{n+1}^* = (y_{n+1}^*, y_n, ..., y_{n-p+1})
$$

Draw ε_{n+2}^* iid from normalized residuals $\{\widehat{\varepsilon}_1, ..., \widehat{\varepsilon}_n\}$

$$
\sum_{n=1}^{\infty} \det y_{n+2}^* = \widehat{\mu} \left(\mathbf{x}_{n+1}^* \right) + \widehat{\sigma} \left(\mathbf{x}_{n+1}^* \right) \varepsilon_{t+2}^*
$$

• Set
$$
\mathbf{x}_{n+2}^* = (y_{n+2}^*, y_{n+1}^*, \dots, y_{n-p+2})
$$

- Repeat until you obtain y_{n+h}^*
- \blacktriangleright y_{n+h}^* is a draw from the h step ahead distribution

Repeat this B times, and let $y_{n+h}^*(b)$, $b=1,...,B$ denote the B repetitions K ロ ▶ K 優 ▶ K 경 ▶ K 경 ▶ │ 경

Bruce Hansen (University of Wisconsin) [Forecasting](#page-0-0) Forecasting July 23-27, 2012 99 / 102

 Ω

Multi-Step Forecast Simulation

- The simulation has produced $y_{n+h}^*(b)$, $b=1,...,B$
- For forecast intervals, calculate the empirical quantiles of $y^*_{n+h}(b)$
	- \blacktriangleright For an 80% interval, calculate the 10% and 90%
- For a fan chart
	- \blacktriangleright Calculate a set of empirical quantiles (10%, 25%, 75%, 90%)
	- For each horizon $h = 1, ..., H$
- As the calculations are linear they are numerically quick
	- \triangleright Set B large
	- For a quick application, $B = 1000$
	- For a paper, $B = 10,000$ (minimum))

э.

 Ω

→ 何 ▶ → ヨ ▶ → ヨ ▶

4 0 8

VARs and Variance Simulation

- The simulation method requires a method to simulate the conditional variances
- In a VAR setting, you can:
	- \blacktriangleright Treat the errors as iid (homoskedastic)
		- \star Easiest
	- \triangleright Treat the errors as independent GARCH errors
		- \star Also easy
	- \triangleright Treat the errors as multivariate GARCH
		- \star Allows volatility to transmit across variables
		- \star Probably not necessary with aggregate data

4 0 8

 Ω

Assignment

- **•** Take your favorite model from yesterday's assignment
- Calculate forecast intervals
- Make 1 through 12 step forecasts
	- \blacktriangleright point
	- \blacktriangleright interval
- **•** Create a fan chart

4 0 8

 \rightarrow

B

 QQ