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Today’s Schedule

Review

Forecast Intervals

Forecast Distributions

Multi-Step Direct Forecasts

Fan Charts

Iterated Forecasts

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 2 / 102



Review

Optimal point forecast of yn+1 given information In is the conditional
mean E (yn+1|In)
Estimate linear approximations by least-squares

Combine point forecasts to reduce MSFE

Select estimators and combination weights by cross-validation

Estimate GARCH models for conditional variance
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Interval Forecasts

Take the form [a, b]

Should contain yn+1 with probability 1− 2α

1− 2α = Pn (yn+1 ∈ [a, b])
= Pn (yn+1 ≤ b)− Pn (yn+1 ≤ a)
= Fn(b)− Fn(a)

where Fn(y) is the forecast distribution

It follows that

a = qn(α)

b = qn(1− α)

a = α’th and b = (1− α)’th quantile of conditional distribution
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Interval Forecasts are Conditional Quantiles

The ideal 80% forecast interval, is the 10% and 90% quantile of the
conditional distribution of yn+1 given In
Our feasible forecast intervals are estimates of the 10% and 90%
quantile of the conditional distribution of yn+1 given In
The goal is to estimate conditional quantiles.
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Mean-Variance Model

Write

yt+1 = µt + σt εt+1

µt = E (yt+1|It )
σ2t = var (yt+1|It )

Assume that εt+1 is independent of It .

Let qt (α) and qε(α) be the α’th quantiles of yt+1 and εt+1. Then

qt (α) = µt + σtqε(α)

Thus a (1− 2α) forecast interval for yn+1 is

[µn + σnqε(α), µn + σnqε(1− α)]
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Mean-Variance Model

Given the conditional mean µn and variance σ2n, the conditional
quantile of yn+1 is a linear function µn + σnqε(α) of the conditional
quantile qε(α) of the normalized error

εn+1 =
en+1
σn

Interval forecasts thus can be summarized by µn, σ2n, and q
ε(α)
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Normal Error Quantile Forecasts

Make the approximation εt+1 ∼ N(0, 1)
I Then qε(α) = Z (a) are normal quantiles
I Useful simplification, especially in small samples

0.10, 0.25, 0.75, 0.90 quantiles are
I −1.285, −0.675, 0.675, 1.285

Forecast intervals

[µ̂n + σ̂nZ (α), µ̂n + σ̂nZ (1− α)]
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Nonparametric Error Quantile Forecasts

Let εt+1 ∼ F be unknown
I We can estimate qε(α) as the empirical quantiles of the residuals
I Set

ε̂t+1 =
ẽt+1
σ̂t

I Sort ε̂1, ..., ε̂n .
I q̂ε(α) and q̂ε(1− α) are the α’th and (1− α)’th percentiles

[µ̂n + σ̂n q̂ε(α), µ̂n + σ̂n q̂ε(1− α)]

Computationally simple

Reasonably accurate when n ≥ 100
Allows asymmetric and fat-tailed error distributions
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Constant Variance Case

If σ̂t = σ̂ is a constant, there is no advantage for estimation of σ̂ for
forecast interval

Let q̂e (α) and q̂e (1− α) be the α’th and (1− α)’th percentiles of
original residuals ẽt+1
Forecast Interval:

[µ̂n + q̂
ε(α), µ̂n + q̂

e (1− α)]

When the estimated variance is a constant, this is numerically
identical to the definition with rescaled errors ε̂t+1
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Computation in R

quadreg package
I may need to be installed
I library(quadreg)
I rq command

If e is vector of (normalized) residuals and a is the quantile to be
evalulated

I rq(e~1,a)
I q=coef(rq(e~1,a))
I Quantile regression of e on an intercept
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Example: Interest Rate Forecast

n = 603 observations

ε̂t+1 =
ẽt+1
σ̂t

from GARCH(1,1) model

0.10, 0.25, 0.75, 0.90 quantiles

−1.16, −0.59, 0.62, 1.26
Point Forecast = 1.96

50% Forecast interval = [1.82, 2.10]

80% Forecast interval = [1.69, 2.25]
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Example: GDP

n = 207 observations

ε̂t+1 =
ẽt+1
σ̂t

from GARCH(1,1) model

0.10, 0.25, 0.75, 0.90 quantiles

−1.18, −0.63, 0.57, 1.26
Point Forecast = 1.31

50% Forecast interval = [0.04, 2.4]

80% Forecast interval = [−1.07, 3.8]
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Mean-Variance Model Interval Forecasts - Summary

The key is to break the distribution into the mean µt , variance σ2t and
the normalized error εt+1

yt+1 = µt + σt εt+1

Then the distribution of yn+1 is determined by µn, σ2n and the
distribution of εn+1

Each of these three components can be separately approximated and
estimated

Typically, we put the most work into modeling (estimating) the mean
µt

I The remainder is modeled more simply
I For macro forecasts, this reflects a belief (assumption?) that most of
the predictability is in the mean, not the higher features.
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Alternative Approach: Quantile Regression

Recall, the ideal 1− 2α interval is [qn(α), qn(1− α)]

qn(α) is the α’th quantile of the one-step conditional distribution

Fn(y) = P (yn+1 ≤ y | In)
Equivalently, let’s directly model the conditional quantile function
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Quantile Regression Function

The conditional distribution is

P (yn+1 ≤ y | In) ' P (yn+1 ≤ y | xn)

The conditional quantile function qα(x) solves

P (yn+1 ≤ qα(x) | xn = x) = α

q.5(x) is the conditional median
q.1(x) is the 10% quantile function

q.9(x) is the 90% quantile function
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Quantile Regression Functions

For each α, qα(x) is an arbitrary function of x
For each x, qα(x) is monotonically increasing in α

Quantiles are well defined even when moments are infinite

When distributions are discrete then quantiles may be intervals —we
ignore this

We approximate the functions as linear in qα(x)

qα(x) ' x′βα

(after possible transformations in x)
The coeffi cient vector x′βα depends on α
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Linear Quantile Regression Functions

qα(x) = x′βα

If only the intercept depends on α,

qα(x) ' µα + x
′β

then the quantile regression lines are parallel
I This is when the error et+1 in a linear model is independent of the
regressors

I Strong conditional homoskedasticity

In general, the coeffi cients are functions of α

I Similar to conditional heteroskedasticity
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Interval Forecasts

An ideal 1− 2α interval forecast interval is[
x′nβα, x′nβ1−α

]
Note that the ideal point forecast is x′nβ where β is the best linear
predictor

An alternative point forecast is the conditional median x′nβ0.5
I This has the property of being the best linear predictor in L1 (mean
absolute error)

All are linear functions of xn, just different functions
A feasible forecast interval is[

x′n β̂α, x′n β̂1−α

]
where β̂α and β̂1−α are estimates of βα and β1−α
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Check Function

Recall that the mean µ = EY minimizes the L2 risk E (Y −m)2

Similarly the median q0.5 minimizes the L1 risk E |Y −m|
The α’th quantile qα minimizes the “check function risk

Eρα (Y −m)

where

ρα (u) =


−u(1− α) u < 0

uα u ≥ 0
= u (α− 1 (u < 0))

This is a tilted absolute value function

To see the equivalence, evaluate the first order condition for
minimization
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Extremum Representation

qα(x) solves

qα(x) = argmin
m

E (ρα (yt+1 −m) |xt = x)

Sample criterion

Sα(β) =
1
n

n−1
∑
t=0

ρα

(
yt+1 − x′tβ

)
Quantile regression estimator

β̂α = argmin
β

Sα(β)

Computation by linear programming
I Stata
I R
I Matlab
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Computation in R

quantreg package
I may need to be installed
I library(quantreg)
I For quantile regression of y on x at a’th quantile

F do not include intercept in x , it will be automatically included

I rq(y~x,a)
I For coeffi cients,

F b=coef(rq(y~x,a))
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Distribution Theory
The asymptotic theory for the dependent data case is not well
developed
The theory for the cross-section (iid) case is Angrist, Chernozhukov
and Fernandez-Val (Econometrica, 2006)
Their theory allows for quantile regression viewed as a best linear
approximation √

n
(

β̂α − βα

)
d−→ N(0,Vα)

Vα = J−1α ΣαJα

Jα = E
(
fy
(
x′tβα|xt

)
xtx′t

)
Σα = E

(
xtx′tu

2
t

)
ut = 1

(
yt+1 < x′tβα

)
− α

Under correct specification, Σα = α(1− α)E (xtx′t )
I suspect that this theorem extends to dependent data if the score is
uncorrelated (dynamics are well specified)

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 23 / 102



Standard Errors

The asymptotic variance depends on the conditional density function
I Nonparametric estimation!

To avoid this, most researchers use bootstrap methods

For dependent data, this has not been explored

Recommend: Use current software, but be cautious!
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Crossing Problem and Solution

The conditional quantile functions qα(x) are monotonically increasing
in α

But the linear quantile regression approximations qα(x) ' x′βα

cannot be globally monotonic in α, unless all lines are parallel

The regression approximations may cross!

The estimates q̂α(x) = x′ β̂αmay cross!

If this happens, forecast intervals may be inverted:
I A 90% interval may not nest an 80% interval

Simple Solution: Reordering

I If q̂α1 (x) > q̂α2 (x) when α1 < α2 <
1
2
, simply set q̂α1 (x) = q̂α2 (x),

and conversely quantiles above
1
2

I Take the wider interval
I Then the endpoint of the two intervals will be the same
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Model Selection and Combination

To my knowledge, no theory of model selection for median regression
or quantile regression, even in iid context

A natural conjecture is to use cross-validation on the sample check
function

I But no current theory justifies this choice

My recommendation for model selection (or combination)
I Select the model for the conditional mean by cross-validation
I Use the same variables for all quantiles
I Select the weights by cross-validation on the conditional mean
I For each quantile, estimate the models with positive weights
I Take the weighted combination using the same weights.
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Example: Interest Rates

AR(2) Specification (selected for regression by CV)

yt+1 = β0 + β1yt + β2yt−1 + et

α = 0.10 α = 0.25 α = 0.75 α = 0.90
β0 −0.31 −0.14 0.15 0.29
β1 0.46 0.31 0.35 0.34
β2 −0.22 −0.17 −0.21 −0.25

Forecast 10% quantile

q0.1(xn) = −0.31+ 0.46yn − 0.22yn−1

50% Forecast interval = [1.84, 2.12]

80% Forecast interval = [1.65, 2.25]

Very close to those from mean-variance estimates
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Example: GDP

Leading Indicator Model

yt+1 = β0+ β1yt + β2Spreadt + β3HighYield + β4Starts+ β5Permits+ et

α = 0.10 α = 0.25 α = 0.75 α = 0.90
β0 −2.72 −0.14 0.10 2.0
β1 0.28 0.14 0.33 0.28
β2 1.17 0.75 0.31 −0.14
β3 −2.12 −1.83 0.62 0.37
β4 −2.20 −0.44 6.68 11.4
β5 3.45 1.61 −4.87 −9.53

50% Forecast interval = [0.1, 3.2]

80% Forecast interval = [−1.8, 4.0]
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Distribution Forecasts

The conditional distribution is

Ft (y) = P (yt+1 ≤ y | It )

It is not common to directly report Ft (y)
I or the one-step forecast distribution Fn(y)

However, Ft (y) may be used as an input

For example, simulation

We thus may want an estimate F̂t (y) of Ft (y)
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Mean-Variance Model Distribution Forecasts

Model
yt+1 = µt + σt εt+1

with εt+1 is independent of It .

Let εt+1 have distribution F ε(u) = P (εt ≤ u) .
The conditional distribution of yt+1 is

Ft (y) = F ε

(
yt+1 − µt

σt

)
Estimation

F̂t (y) = F̂ ε

(
yt+1 − µ̂t

σ̂t

)
where F̂ ε (u) is an estimate of F ε(u) = P (εt ≤ u) .
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Normal Error Model

Under the assumption εt+1 ∼ N(0, 1), F ε(u) = Φ(u), the normal
CDF

F̂t (y) = Φ
(
y − µ̂t

σ̂t

)
To simulate from F̂t (y)

I Calculate µ̂t and σ̂t
I Draw ε∗t+1 iid from N(0, 1)
I y∗t+1 = µ̂t + σ̂t ε

∗
t+1

The normal assumption can be used when sample size n is very small

But then F̂t (y) contains no information beyond µ̂t and σ̂t
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Nonparametric Error Model
Let F̂ ε

n be the empirical distribution function (EDF) of the normalized
residuals ε̂t+1

The EDF puts probability mass 1/n at each point {ε̂1, ..., ε̂n}

F̂ ε
n(u) = n

−1
n−1
∑
t=0

1 (̂εt+1 ≤ u)

F̂t (y) = F̂ ε
n

(
y − µ̂t

σ̂t

)
= n−1

n−1
∑
j=0

1
(
y − µ̂t

σ̂t
≤ ε̂j+1

)

= n−1
n−1
∑
j=0

1 (y ≤ µ̂t + σ̂t ε̂j+1)

Notice the summation over j , holding µ̂t , σ̂t fixed
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Simulate Estimated Conditional Distribution

To simulate
I Calculate µ̂t and σ̂t
I Draw ε∗t+1 iid from normalized residuals {ε̂1, ..., ε̂n}
I y∗t+1 = µ̂t + σ̂t ε

∗
t+1

I y∗t+1 is a draw from F̂t (y)
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Plot Estimated Conditional Distribution

F̂n(y) = n−1 ∑n−1
t=0 1 (y ≤ µ̂n + σ̂n ε̂t+1)

A step function, with steps of height 1/n at µ̂n + σ̂n ε̂t+1

Calculation
I Calculate µ̂n , σ̂n , and y∗t+1 = µ̂n + σ̂n ε̂t+1, t = 0, ..., n− 1
I Sort y∗t+1 into order statistics y

∗
(j )

I Equivalently, sort ε̂t+1 into order statistics ε̂(1) and set
y∗(j ) = µ̂n + σ̂n ε̂(j )

I Plot on the y-axis {1/n, 2/n, 3/n, ..., 1} against on the x-axis
y∗(1), y

∗
(2), ..., y

∗
(n)
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Examples:

Interest Rate

GDP
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Figure: 10-Year Bond Rate Forecast Distribution

1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 36 / 102



Figure: GDP Forecast Distribution

4 2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 37 / 102



Quantile Regression Approach

The distribution function may also be recovered from the estimated
quantile functions.

Fn(qα(xn)) = α

F̂n(q̂α(xn)) = α

q̂α(xn) = x′n β̂α

Compute q̂α(xn) = x′n β̂α for a set of quantiles {α1, ..., αJ}
Plot αj on the y -axis against q̂αj (xn) on the x-axis

I The plot is F̂n(y) at y = q̂αj (xn)

If the quantile lines cross, then the plot will be non-monotonic

The reordering method flattens the estimated distribution at these
points
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Multi-Step Forecasts

Forecast horizon: h

We say the forecast is “multi-step” if h > 1

Forecasting yn+h given In
e.g., forecasting GDP growth for 2012:3, 2012:4, 2013:1, 2013:2

The forecast distribution is yn+h | In ∼ Fh(yn+h |In)

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 39 / 102



Point Forecast

fn+h|h minimizes expected squared loss

fn+h|h = argmin
f

E
(
(yn+h − f )2 |In

)
= E (yn+h |In)

Optimal point forecasts are h-step conditional means
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Relationship Between Forecast Horizons
Take an AR(1) model

yt+1 = αyt + ut+1

Iterate

yt+1 = α (αyt−1 + ut ) + ut+1
= α2yt−1 + αut + ut+1

or

yt+2 = α2yt + et+2
ut+2 = αut+1 + ut+2

Repeat h times

yt+h = αhyt + et+h
et+h = ut+h + αut+h−1 + α2ut+h−2 + · · ·+ αh−1ut+1

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 41 / 102



AR(1)

h-step forecast

yt+h = αhyt + et+h
et+h = ut+h + αut+h−1 + α2ut+h−2 + · · ·+ αh−1ut+1

E (yn+h |In) = αhyn

h−step point forecast is linear in yn
h-step forecast error en+h is a MA(h− 1)
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AR(2) Model

1-step AR(2) model

yt+1 = α0 + α1yt + α2yt−1 + ut+1

2-steps ahead

yt+2 = α0 + α1yt+1 + α2yt + ut+2

Taking conditional expectations

E (yt+2|It ) = α0 + α1E (yt+1|It ) + α2E (yt |It ) + E (et+2|It )
= α0 + α1 (α0 + α1yt + α2yt−1) + α2yt
= α0 + α1α0 +

(
α21 + α2

)
yt + α1α2yt−1

which is linear in (yt , yt−1)

In general, a 1-step linear model implies an h-step approximate linear
model in the same variables
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AR(k) h-step forecasts

If
yt+1 = α0 + α1yt + α2yt−1 + · · ·+ αkyt−k+1 + ut+1

then
yt+h = β0 + β1yt + β2yt−1 + · · ·+ βkyt−k+1 + et+h

where et+h is a MA(h-1)
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Leading Indicator Models

If

yt+1 = x′tβ+ ut

then
E (yt+h |It ) = E (xt+h−1|It )′ β

If E (xt+h−1|It ) is itself (approximately) a linear function of xt , then

E (yt+h |It ) = x′tγ

yt+h = x′tγ+ et+h

Common Structure: h-step conditional mean is similar to 1-step structure,
but error is a MA.
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Forecast Variable

We should think carefully about the variable we want to report in our
forecast

The choice will depend on the context

What do we want to forecast?
I Future level: yn+h

F interest rates, unemployment rates

I Future differences: ∆yt+h
I Cummulative Change: ∆yt+h

F Cummulative GDP growth
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Forecast Transformation

fn+h|n = E (yn+h |In) = expected future level
I Level specification

yt+h = x′tβ+ et+h
fn+h|n = x′tβ

I Difference specification

∆yt+h = x′tβh + et+h
fn+h|n = yn + x′tβ1 + · · ·+ x′tβh

I Multi-Step difference specification

yt+h − yt = x′tβ+ et+h
fn+h|n = yn + x′tβ
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Direct and Iterated

There are two methods of multistep (h > 1) forecasts

Direct Forecast
I Model and estimate E (yn+h |In) directly

Iterated Forecast
I Model and estimate one-step E (yn+1 |In)
I Iterate forward h steps
I Requires full model for all variables

Both have advantages and disadvantages
I For now, we will forcus on direct method.
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Direct Multi-Step Forecasting

Markov approximation
I E (yn+h |In) = E (yn+h |xn , xn−1, ...) ≈ E (yn+h |xn , ..., xn−p)

Linear approximation
I E (yn+h |xn , ..., xn−p) ≈ β′xn

Projection Definition

I β = (E (xtx′t ))
−1 (E (xtyt+h))

Forecast error
I et+h = yt+h − β′xt
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Multi-Step Forecast Model

yt+h = β′xt + et+h

β =
(
E
(
xtx′t

))−1
(E (xtyt+h))

E (xtet+h) = 0

σ2 = E
(
e2t+h

)
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Properties of the Error

E (xtet+h) = 0
I Projection

E (et+h) = 0
I Inclusion of an intercept

The error et+h is NOT serially uncorrelated

It is at least a MA(h-1)

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 51 / 102



Least Squares Estimation

β̂ =

(
n−1
∑
t=0

xtx′t

)−1 (n−1
∑
t=0

xtyt+h

)
ŷn+h|n = f̂n+h|n = β̂

′
xn
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Distribution Theory - Consistent Estimation

By the WLLN,

β̂ =

(
n−1
∑
t=0

xtx′t

)−1 (n−1
∑
t=0

xtyt+h

)

p−→
(
Extx′t

)−1
(Extyt+h)

= β
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Distribution Theory - Asymptotic Normality
By the dependent CLT,

1
n

n−1
∑
t=0

xtet+h
d−→ N(0,Ω)

Ω = E
(
xtx′te

2
t+h

)
+

∞

∑
j=1

(
xtx′t+jet+het+h+j + xt+jx

′
tet+het+h+j

)
' E

(
xtx′te

2
t+h

)
+
h−1
∑
j=1

(
xtx′t+jet+het+h−j + xt+jx

′
tet+het+h+j

)
A long-run (HAC) covariance matrix

If model is correctly specified, the errors are a MA(h-1) and the sum
truncates at h− 1
Otherwise, this is an approximation

It does not simplify to the iid covariance matrix
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Distribution Theory

√
n
(

β̂− β
)

d−→ N(0,V )

V = Q−1ΩQ−1

Ω ≈ E
(
xtx′te2t+h

)
+∑h−1

j=1

(
xtx′t+jet+het+h−j + xt+jx

′
tet+het+h+j

)
HAC variance matrix
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Residuals

Least-squares residuals

I êt+h = yt+h − β̂
′
xt

I Standard, but overfit

Leave-one-out residuals
I ẽt+h = yt+h − β̂

′
−txt

I Does not correct for MA errors

Leave h out residuals

ẽt+h = yt+h − β̂
′
−t ,hxt

β̂−t ,h =

(
∑

|j+h−t |≥h
xjx′j

)−1 (
∑

|j+h−t |≥h
xjyj+h

)
The summation is over all observations outside h− 1 periods of t + h.
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Algebraic Computation of Leave h out residuals

Loop across each observation t = (yt+h, xt )
Leave out observations t − h+ 1, ..., t, ..., t + h− 1
R command

I For positive integers i
I x[-i] returns elements of x excluding indices i
I Consider

F ii=seq(i-h+1,i+h-1)
F ii<-ii[ii>0]
F yi=y[-ii]
F xi=x[-ii,]

I This removes t − h+ 1, ..., t, ..., t + h− 1 from y and x
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Variance Estimator

Asymptotic variance (HAC) estimator with leave-h-out residuals

V̂ = Q̂−1Ω̂Q̂−1

Q̂ =
1
n

n−1
∑
t=0

xtx′t

Ω̂ =
1
n

n

∑
t=1
xtx′t ẽ

2
t+h +

1
n

h−1
∑
j=1

n−j
∑
t=1

(
xtx′t+j ẽt+h ẽt+h+j + xt+jx

′
t ẽt+h ẽt+h+j

)
Can use least-squares residuals êt+h instead of leave-h-out residuals,
but then multiply V̂ by n/(n− dim(xt )).
Standard errors for β̂ are the square roots of the diagonal elements of
n−1V̂
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Example: GDP Forecast

yt = 400 log(GDPt )

Forecast Variable: GDP growth over next h quarters, at annual rate

yt+h − yt
h

= β0+ β1∆yt + β1∆yt−1+Spreadt +HighYieldt + β2HSt + et+h

HSt =Housing Startst

h = 1 h = 2 h = 3 h = 4
β0 −0.33 (1.0) −0.38 (1.3) −0.01 (1.6) 0.47 (1.8)
∆yt 0.16 (.10) 0.18 (.09) 0.13 (.08) 0.13 (.09)
∆yt−1 0.09 (.10) 0.04 (.05) 0.05 (.07) 0.02 (.06)
Spreadt 0.61 (.23) 0.65(.19) 0.65 (.22) 0.65 (.25)
HighYieldt −1.10 (.75) −0.68 (.70) −0.48 (.90) −0.41 (1.01)
HSt 1.86 (.65) 1.64 (.70) 1.31 (.80) 1.01 (.94)
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Example: GDP Forecast

Cummulative Annualized Growth
2012:2 1.3
2012:3 1.6
2012:4 2.9
2013:1 2.2
2013:2 2.4
2013:3 2.7
2013:4 2.9
2014:1 3.2
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Selection and Combination for h step forecasts

AIC routinely used for model selection

PLS (OOS MSFE) routinely used for model evaluation

Neither well justified
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Point Forecast and MSFE

Given an estimate β̂(m) of β , the point forecast for yn+h is

fn+h|n = β̂
′
xn

The mean-squared-forecast-error (MSFE) is

MSFE = E
(
en+h − x′n

(
β̂− β

))2
' σ2 + E

((
β̂− β

)′
Q
(

β̂− β
))

where Q = E (xnx′n) and σ2 = E
(
e2n+h

)
Same form as 1-step case
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Residual Fit

σ̂2 =
1
n

n−1
∑
t=0

e2t+h +
1
n

n−1
∑
t=0

(
x′t
(

β̂− β
))2

−2
n

n−1
∑
t=0

et+hx′t
(

β̂− β
)

' MSFE − 2
n
e′Pe

E
(

σ̂2
)
' MSFEn −

2
n
B

where B = E (e′Pe)
Save form as 1-step case
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Asymptotic Penalty

e′Pe =
(
1√
n
e′X
)(

1
n
X′X

)−1 ( 1√
n
X′e
)

→d Z
′Q−1Z

where Z ∼ N(0,Ω), with Ω =HAC variance.

B = E
(
e′Pe

)
−→ tr

(
Q−1E

(
ZZ ′

))
= tr

(
Q−1Ω

)
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Ideal MSFE Criterion

Cn(m) = σ̂2(m) +
2
n

tr
(
Q−1Ω

)
Q = E

(
xtx′t

)
Ω = E

(
xtx′te

2
t+h

)
+
h−1
∑
j=1

(
xtx′t+jet+het+h−j + xt+jx

′
tet+het+h+j

)
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H-Step Robust Mallows Criterion

Cn(m) = σ̂2(m) +
2
n

tr
(
Q̂−1Ω̂

)
where Ω̂ is a HAC covariance matrix
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H-Step Cross-Validation for Selection

CVn(m) =
1
n

n−1
∑
i=0
ẽt+h(m)

2

ẽt+h = yt+h − β̂
′
−t ,hxt

β̂−t ,h =

(
∑

|j+h−t |≥h
xjx′j

)−1 (
∑

|j+h−t |≥h
xjyj+h

)
Theorem: E (CVn(m)) ' MSFE (m)
Thus m̂ = argminCVn(m) is an estimate of m = argminMSFEn(m), but
there is no proof of optimality
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H-Step Cross-Validation for Forecast Combination

CVn(w) =
1
n

n

∑
t=1
ẽt+1(w)2

=
1
n

n

∑
t=1

(
M

∑
m=1

w(m)ẽt+1(m)

)2

=
M

∑
m=1

M

∑
`=1

w(m)w(`)
1
n

n

∑
t=1
ẽt+1(m)ẽt+1(`)

= w′S̃w

where
S̃ =

1
n
ẽ ′ẽ

is covariance matrix of leave-h-out residuals.
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Cross-validation Weights

Combination weights found by constrained minimization of CVn(w)

min
w
CVn(w) = w′S̃w

subject to

M

∑
m=1

w(m) = 1

0 ≤ w(m) ≤ 1
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Illustration 1

k = 8 regressors
I intercept
I normal AR(1)’s with coeffi cient ρ = 0.9

h-step error
I normal MA(h-1)
I equal coeffi cients

Regression coeffi cients
I β = (µ, 0, ..., 0)
I n = 50
I MSPE plotted as a function of µ
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Estimators

Unconstrained Least-Squares

Leave-1-out CV Selection

Leave-h-out CV Selection

Leave-1-out CV Combination

Leave-h-out CV Combination
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Illustration 2

Model

yt = αyt−1 + ut

Unconstrained model: AR(3)

yt = µ̂+ β̂1yt−h + β̂2yt−h−1 + β̂3yt−h−2 + êt
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Example: GDP Forecast Weights by Horizon

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
AR(1) .15 .19 .28 .18 .16 .11
AR(2) .30
AR(1)+HS .66 .70 .22
AR(1)+HS+BP .14 .58 .72 .82 .84 .89
AR(2)+HS .04

ŷn+h|n 1.7 2.0 1.9 2.0 2.1 2.3 2.6
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h-step Variance Forecasting

Not well developed using direct methods

Suggest using constant variance specification
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h-step Interval Forecasts

Similar to 1-step interval forecasts
I But calculated from h−step residuals

Use constant variance specification

Let q̂e (α) and q̂e (1− α) be the α’th and (1− α)’th percentiles of
residuals ẽt+h
Forecast Interval:

[µ̂n + q̂
ε(α), µ̂n + q̂

e (1− α)]
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Quantile Regression Approach

Fn(y) = P (yn+h ≤ y | In)
qα(x) ' x′βα

Estimate quantile regression of yt+h on xt
1− 2α forecast interval is [x′n β̂α, x

′
n β̂1−α]

Asymptotic theory not developed for h−step case
I Developed for 1-step case
I Extension is expected to work
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Example: GDP Forecast Intervals (80%)

Using quantile regression approach

ŷn+h|n Interval
2012 : 2 1.3 [−1.8, 4.1]
2012 : 3 1.6 [−0.4, 3.6]
2012 : 4 2.0 [−0.6, 4.6]
2013 : 1 2.2 [−0.3, 4.1]
2013 : 2 2.4 [0.2, 4.2]
2013 : 3 2.7 [0.6, 3.8]
2013 : 4 2.9 [0.7, 4.8]
2014 : 1 3.2 [1.5, 4.8]
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Fan Charts

Plots of a set of interval forecasts for multiple horizons
I Pick a set of horizons, h = 1, ...,H
I Pick a set of quantiles, e.g. α = .10, .25, .75, .90
I Recall the quantiles of the conditional distribution are
qn(α, h) = µn(h) + σn(h)qε(α, h)

I Plot qn(.1, h), qn(.25, h), µn(h), qn(.75, h), qn(.9, h) against h

Graphs easier to interpret than tables
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Illustration

I’ve been making monthly forecasts of the Wisconsin unemployment
rate

Forecast horizon h = 1, ..., 12 (one year)

Quantiles: α = .1, .25, .75, .90

This corresponds to plotting 50% and 80% forecast intervals

50% intervals show “likely” region (equal odds)
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Comments

Showing the recent history gives perspective

Some published fan charts use colors to indicate regions, but do not
label the colors

Labels important to infer probabilities

I like clean plots, not cluttered
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Illustration: GDP Growth
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Figure: GDP Average Growth Fan Chart
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It doesn’t “fan”because we are plotting average growth
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Iterated Forecasts

Estimate one-step forecast

Iterate to obtain multi-step forecasts

Only works in complete systems
I Autoregressions
I Vector autoregressions
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Iterative Forecast Relationships in Linear VAR
vector yt

yt+1 = A0 + A1yt + A2yt−1 + · · ·+ Akyt−k+1 + ut+1
1-step conditional mean

E (yt+1|It ) = A0 + A1E (yt |It ) + · · ·+ AkE (yt−k+1|It )
= A0 + A1yt + A2yt−1 + · · ·+ Akyt−k+1

2-step conditional mean

E (yt+1|It−1) = E (E (yt+1|It ) |It−1)
= A0 + A1E (yt |It−1) + · · ·+ AkE (yt−k+1|It−1)
= A0 + A1E (yt |It−1) + A2yt−1 + · · ·+ Akyt−k+1

h−step conditional mean
E (yt+1|It−h+1) = E

(
E (yt+1|It ) |It−h+1

)
= A0 + A1E (yt |It−h+1) + · · ·+ AkE (yt−k+1|It−h+1)

Linear in lower-order (up to h− 1 step) conditional means
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Iterative Least Squares Forecasts

Estimate 1-step VAR(k) by least-squares

yt+1 = Â0 + Â1yt + Â2yt−1 + · · ·+ Âkyt−k+1 + ût+1

Gives 1-step point forecast

ŷn+1|n = Â0 + Â1yn + Â2yn−1 + · · ·+ Âkyn−k+1

2-step iterative forecast

ŷn+2|n = Â0 + Â1ŷn+1|n + Â2yn + · · ·+ Âkyn−k+2

h−step iterative forecast

ŷn+h|n = Â0 + Â1ŷn+h−1|n + Â2ŷn+h−2|n + · · ·+ Âk ŷn+h−k |n

This is (numerically) different than the direct LS forecast
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Illustration 1: GDP Growth

AR(2) Model

yt+1 = 1.6+ 0.30yt + .16yt−1
yn = 1.8, yn−1 = 2.9

ŷn+1 = 1.6+ 0.30 ∗ 1.8+ .16 ∗ 2.9 = 2.6
ŷn+2 = 1.6+ 0.30 ∗ 2.6+ .16 ∗ 1.8 = 2.7
ŷn+3 = 1.6+ 0.30 ∗ 2.7+ .16 ∗ 2.6 = 2.9
ŷn+4 = 1.6+ 0.30 ∗ 2.9+ .16 ∗ 2.7 = 3.0

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 91 / 102



Point Forecasts

2012:2 2.65
2012:3 2.72
2012:4 2.87
2013:1 2.93
2013:2 2.97
2013:3 2.99
2013:4 3.00
2014:1 3.01
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Illustration 2: GDP Growth+Housing Starts

VAR(2) Model

y1t = GDP Growth, y2t =Housing Starts

xt = (GDP Growtht , Housing Startst , GDP Growtht−1, Housing
Startst−1
yt+1 = Â0 + Â1yt + Â2yt−1 + ût+1
y1t+1 = 0.43+ 0.15y1t + 11.2y2t + 0.18y1t−1 − 10.1y2t−1
y2t+1 = 0.07− 0.001y1t + 1.2y2t − 0.001y1t−1 − 0.26y2t−1
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Illustration 2: GDP Growth+Housing Starts

y1n = 1.8, y2n = 0.71, y1n−1 = 2.9, y2n−1 = 0.68

y1n+1 = 0.43+ 0.15 ∗ 1.8+ 11.2 ∗ 0.71+ 0.18 ∗ 2.9− 10.1 ∗ 0.68 = 2.3
y2t+1 = 0.07− 0.001 ∗ 1.8+ 1.2 ∗ 0.71− 0.001 ∗ 2.9− 0.26 ∗ 0.68 =
0.76

y1n+2 = 0.43+ 0.15 ∗ 2.3+ 11.2 ∗ 0.76+ 0.18 ∗ 1.8− 10.1 ∗ 0.71 = 2.4
y2t+1 = 0.07− 0.001 ∗ 2.3+ 1.2 ∗ 0.76− 0.001 ∗ 1.8− 0.26 ∗ 0.71 =
0.80
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Point Forecasts

GDP Housing
2012:2 2.36 0.76
2012:3 2.38 0.80
2012:4 2.53 0.84
2013:1 2.58 0.88
2013:2 2.64 0.92
2013:3 2.66 0.95
2013:4 2.69 0.98
2014:1 2.71 1.01
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Model Selection

It is typical to select the 1-step model and use this to make all h-step
forecasts

However, there theory to support this is incomplete

(It is not obvious that the best 1-step estimate produces the best
h-step estimate)

For now, I recommend selecting based on the 1-step estimates
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Model Combination

There is no theory about how to apply model combination to h-step
iterated forecasts

Can select model weights based on 1-step, and use these for all
forecast horizons
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Variance, Distribution, Interval Forecast

While point forecasts can be simply iterated, the other features cannot

Multi-step forecast distributions are convolutions of the 1-step
forecast distribution.

I Explicit calculation computationally costly beyond 2 steps

Instead, simple simulation methods work well

The method is to use the estimated condition distribution to simulate
each step, and iterate forward. Then repeat the simulation many
times.
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Multi-Step Forecast Simulation
Let µ (x) and σ (x) denote the models for the conditional one-step
mean and standard deviation as a function of the conditional variables
x
Let µ̂ (x) and σ̂ (x) denote the estimates of these functions, and let
{ε̂1, ..., ε̂n} be the normalized residuals
xn = (yn, yn−1, ..., yn−p) is known. Set x∗n = xn
To create one h-step realization:

I Draw ε∗n+1 iid from normalized residuals {ε̂1, ..., ε̂n}
I Set y∗n+1 = µ̂ (x∗n) + σ̂ (x∗n) ε∗t+1
I Set x∗n+1 = (y

∗
n+1, yn , ..., yn−p+1)

I Draw ε∗n+2 iid from normalized residuals {ε̂1, ..., ε̂n}
I Set y∗n+2 = µ̂

(
x∗n+1

)
+ σ̂

(
x∗n+1

)
ε∗t+2

I Set x∗n+2 = (y
∗
n+2, y

∗
n+1, ..., yn−p+2)

I Repeat until you obtain y∗n+h
I y∗n+h is a draw from the h step ahead distribution

Repeat this B times, and let y ∗n+h(b), b = 1, ...,B denote the B
repetitions
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Multi-Step Forecast Simulation

The simulation has produced y ∗n+h(b), b = 1, ...,B

For forecast intervals, calculate the empirical quantiles of y ∗n+h(b)
I For an 80% interval, calculate the 10% and 90%

For a fan chart
I Calculate a set of empirical quantiles (10%, 25%, 75%, 90%)
I For each horizon h = 1, ...,H

As the calculations are linear they are numerically quick
I Set B large
I For a quick application, B = 1000
I For a paper, B = 10, 000 (minimum))
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VARs and Variance Simulation

The simulation method requires a method to simulate the conditional
variances

In a VAR setting, you can:
I Treat the errors as iid (homoskedastic)

F Easiest

I Treat the errors as independent GARCH errors

F Also easy

I Treat the errors as multivariate GARCH

F Allows volatility to transmit across variables
F Probably not necessary with aggregate data
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Assignment

Take your favorite model from yesterday’s assignment

Calculate forecast intervals

Make 1 through 12 step forecasts
I point
I interval

Create a fan chart
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