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Review
VARs
Nowcasting

Combination Forecasts
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Review

Optimal point forecast of y,11 given information /, is the conditional
mean E (ypt1|ln)
Linear model E (y,+1|/h) = B'x, is an approximation

Estimate linear projections by least-squares

Model selection should focus on performance, not “truth”

» Best forecast has smallest MSFE
» Unknown, but MSFE can be estimated
» CV is a good estimator of MSFE

Good forecasts rely on selection of leading indicators
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Vector Autoregresive Models

@ y, is an p vector

@ x; are other variables (including lags)
o Ideal point forecast E (y,1|/n)

@ Linear approximation

E(Yni1lh) 2= Aty + Aoy g+ -+ AkYeiq1 + Bxe
o Vector Autoregression (VAR)

Yer1 = Atye Ay 1 o Ay k1 T Bxe Fer
@ Estimation: Least squares

yt+l = ’/AIYt + //AZYt—l -+ .- ﬂkyt_k+1 + §Xt —+ €t11

One-Step-Ahead Point forecast
/y\nJrl = ’/Z\lyn + 2\2yn71 + -+ 2kynfk+1 + §Xn
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Vector Autoregresive versus Univariate Models

o Let x¢ = (Yy, Yooty -0 Xt)

@ Then a VAR is a set of p regression models
Yit+41 = ﬁllxt + et
Ypt41 = ﬁ;xt + ept

All variables x; enter symmetrically in each equation

Sims (1980) argued that there is no a priori reason to include or
exclude an individual variable from an individual equation.
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Model Selection

@ Do not view selection as identification of “truth”
@ Rather, inclusion/exclusion is to improve finite sample performance

» minimize MSFE

@ Use selection methods, equation-by-equation
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Example: VAR with 2 variables

Yit+1 = Bll)/It + Blz)ﬁt—l + 313)/21‘ + ey
Yor+1 = ,/B\Qly1t + B22y2t + 323}/%—1 + &

@ Selection picks y1¢, yit—1, y2r for equation for yy¢41
@ Selection picks yi¢, yor, yor—1 for equation for yo;y1
@ The two equations have different variables
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@ Same as system

Yer1 = Ary: + Aoy, 1 + et

with

Ao g ]

wo= e ]

@ The VAR system notation is still quite useful for many purposes
(including multi-step forecasting)
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Nowcasting

e Forecasting current, near recent, or near future economic activity
e For example, 2nd quarter GDP (April-June 2012)

» So far, we have used information up through first quarter
» We have a fair amount of information
» Quite a lot about the 2nd quarter itself
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General Framework

@ Two time scales

Yt (GDP)

xy (interest rates)

It,v : information in y; for j < t and x; for j < v
e.g., GDP up to 2011:1, interest rates up to today

v v vy

e Optimal forecast of y;11 given I; , is conditional mean

E(yes1llew) = e,
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Standard Linear Approximation

@ Approximate conditional mean as linear and Markov

E(yes1llev) = pe,
Bo+ Byt + -+ Buye—k+1
+70XV + f)/lxv—l +---+ f)/va—p

%

e Traditional solution (aggregate x, to frequency t)

> Sets 7 =0 for periods v before quarter t
> Sets Y= Yk for periods j and k in common quarter ¢t
» Unreasonable restrictions

@ Unrestricted approximation

» Non-parsimonious
> p may be very large
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MIDAS

@ Ghysels, Santa-Clara, and Valkanov
o Use parametric distributed-lag structure for coefficients 7;

o Difficult to justify parametric restrictions
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Example: GDP Nowcasting

@ Suppose we are interested in forecasting 2012 2nd quarter GDP
growth

» Economic activity for April, May and June

@ For April, May and June, we have considerable information

Interest rates
unemployment rates
Industrial Production
Housing starts
Building Permits
Inflation

Y VY vV VvV VY
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Growth Rate
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Industrial Production Index Growth Rate
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Consumer Price Index
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One Month Inflation Rate

INF; = In CPly — In CPl;_4
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Three Month Inflation Rate

INF; = In CPly — In CPl;_3
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3—Month Inflation Rate
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One Year Inflation Rate

INF; = In CPly — In CPl;_12
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Annual Inflation Rate
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Nowcasting Regression

@ GDP growth as a linear function of

> Previous 2 quarters GDP growth
» Contemporaneous 3 months of

* Term Spread (10 year over 3 month)
Default Spread (BAA over AAA yield)
Industrial Production

Building Permits

Housing Starts

* % %

> (Or whatever is available at time of forecast)
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Notation

t = year

q = quarter, g =1,2,3,4

m = month in quarter, m=1,2,3

GDP; o= GDP in year t, quarter q
» Convention: GDP; o = GDP;_1 4

IPt g m = IP in year t, quarter g, month m
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Example Models

@ Monthly Data through First Month of Forecast Quarter
GDP: g = B1GDP; g1+ B,GDPt g2 + B3Pt g1 + ByIPtg-13+ -+
@ Monthly Data through Second Month of Forecast Quarter
GDP: g = B,GDP; g1+ B,GDPy g 2 + B3Pt g2 + ByIPr g1+ - -

@ Regressor Construction from Monthly Variables

» Divide into “first”, “second” and “third” months of quarters
» Now you have 3 quarterly observations for each variable
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Nowcasting Estimates

@ Based on data through April (first month of forecast quarter)
@ Selected variables:

> Alog(GDP;:) (one lag)
> IP1, IP3, IP, (first, previous third, and previous second months)
» HSi, HS;3 (first and previous third months)

p (B)

Intercept 0.32 (0.62
Alog(GDP;) -0.07 (0.06
Industrial Production; 0.17 (0.02
0.02

Industrial Productions 0.12
Housing Starts; 4.00

s
(
(
(
Industrial Productions 0.07 (
(
(
Housing Startss —2.64 (
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Nowcasting Point Forecast

@ 2nd Quarter GDP Growth: 2.93
o Fitted model: CV = 5.339

> Note that yesterday’s best fitting model had CV = 10.28
> Point forecast changes from 1.53 to 2.93
» Adding contemporaneous IP very useful
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Flexibility

@ As each piece of information becomes available, that variable can be
added to regression

@ Sequence of nowcast estimates, updated with new information
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Recommendation

@ Make use of higher frequency information
@ Be creative and flexible
@ Handling high-dimensional p is similar to many other

high-dimensional problems
» Model selection, combination, shrinkgae

@ Requires frequent re-estimation of distinct forecasting models as new
information arises

» Requires significant empirical care and attention to detail
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Combination Forecasts
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Diversity of Forecasts

@ Model choice is critical

» Classic approach: Selection
» Modern approach: Combination

@ Issues:
> How to select from a wide set of models/forecasts?
* Model selection criteria
» How to combine a wide set of models/forecasts?

* Weight selection criteria
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Foundation

@ The ideal point forecast minimizes the MSFE

@ The goal of a good combination forecast is to minimize the MSFE
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Forecast Selection

M forecasts: f = {f(1),f(2),...,f(M)}
Selection picks /i to determine the forecast f = f (/)
M weights: w = {w(1), w(2),..., w(M)}

A combination forecast is the weighted average

f(w) = Z::lw(m)f(m)

m
= wf

Combination generalizes selection
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Possible restrictions on the weight vector

M
oY _sw(m)=1

» Unbiasedness

» Typically improves performance
e w(m) >0

> nonnegativity
> regularization
» Often critical for good performance

e w(m) € {0,1}

Equivalent to forecast selection

f(w) = f(m)

Selection is a special case of combination
Strong restriction

v vy VY
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OOS Forecast Combination

@ Sequence of true out-of-sample forecasts f; for y;i1
e Combination forecast is f(w) = w'f
@ OOS empirical MSFE

1 n
Cw) =5 Y (e —wh)’
t=n—P

@ PLS selected the model with the smallest OOS MSFE

o Granger-Ramanathan combination: select w to minimize the OOS
MSFE

@ Minimization over w is equivalent to the least-squares regression of y;
on the forecasts

!
Yer1 =W+ &g
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Granger-Ramanathan (1984)

Unrestricted least-squares

-1
n n
W=< ) ftf/t) Y fiyen
t=n— t=n—P

This can produce weights far outside [0, 1] and don't sum to one

P

Granger-Ramanathan’s intuition was that this flexibility is good

» But they provided no theory to support conjecture

Unrestricted weights are not regularized

» This results in poor sampling performance
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Alternative Representation

o Take y;11 = W'f; +€:11, subtract y; 11 from each side
0=wTf:—yri1+ €1
@ Impose restriction that weights to sum to one.

0=w(fr — yr1) + €41

o Define e;11 = w’' (f; — y++1), the (negative) forecast errors. Then
0=wer1 +erp

@ This is the regression of 0 on the forecast errors

@ But it is still better to also impose non-negativity w(m) > 0
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Constrained Granger-Ramanathan

The constrained GR weights solve the problem
minw’Aw
w
subject to
) i

0<w(m) <1

where
/
A=) e e,
t

is the M x M matrix of forecast error empirical variances/covariances
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Quadratic Programming (QP)

The weights lie on the unit simplex

The constrained GR weights minimize a quadratic over the unit
simplex

QP algorithms easily solve this problem

> Gauss (qprog)
> Matlab (quadprog)
» R (quadprog)

Solution solution typical

» Many forecasts will receive zero weight
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Bates-Granger (1969)

o Assume A =Y, e; 1€, is diagonal.

@ Then the regression with the coefficients constrained to sum to one
0=weri1+ et

has solution
_ o%(m)
072 (3)

@ This are the Bates-Granger weights.

w(m)

@ In many cases, they are close to equality, since OOS forecast
variances can be quite similar
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Bayesian Model Averaging (BMA)

@ Put priors on individual models, and priors on the probability that
model m is the true model

e Compute posterior probabilites w(m) that m is the true model
e Forecast combination using w(m)
o Advantages

» Conceptually simple
> no theoretical analysis required
> applies in broad contexts

o Disadvantages

> Not designed to minimize forecast risk
» Similar to BIC: asymptotically picks “true” finite models
» does not distinguish between 1-step and multi-step forecast horizons
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BMA Approximation

o BIC weights

() (2502

@ Simple approximation to full BMA method
@ Smoothed version of BIC selection

@ Works better than BIC selection in simulations
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AIC Weights

@ Smooted AIC

NEPELY

@ Proposed by Buckland, Burnhamm and Augustin (1997)

@ Not theoretically motivated, but works better than AIC selection in
simulations
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Comments

e Combination methods typically work better (lower MSFE) than
comparable selection methods

@ BIC and BMA not optimal for MSFE
o Granger-Ramanathan has similar senstive as PLS to choice of P

o Bates-Granger and weighted AIC have no theoretical grounding
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Forecast Combination

S
=
3
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+
3

j/\n-ﬁ-l (W) =
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Il
™=
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3
3
3
=
2

3
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(w)

I

X
koS
=)

where

w(m)B(m)

=
E

I
™M=

3
ﬂl

@ In linear models, the combination forecast is the same as the forecast
based on the weighted average of the parameter estimates across the
different models

o Computationally, it is easiest to calculate the M individual forecast
$n+1(m), then take the weighted average to obtain §,1(w)
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Combination Residuals

E1(W) = yer1 — X, B(w)
M .
= P, w(m) <Yt+1 - Xtﬁ(’”))

Il
M=

w(m)&41(m)

m=1

@ In linear models, the residual from the combination model is the same
as the weighted average of the model residuals.
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Residual variance

2
) 10 M
(w) = — E m)eéy1(m)
nMi31 \m=1
1 n
= - Wet+1
n=
= wSw
where .
1 N
;Z t+lelt+1

@ The residual variance is a quadratic function of the covariance matrix
of the M model residuals.
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Point Forecast and MSFE

e Given y,11(w) the forecast error is

Yor1 — Vor1(W) = x,B+ e — x,B(w)

= éept1 — X/n <B(W) - .3)

@ The mean-squared-forecast-error (MSFE) is

MSFE (w)

e Minimizing MSFE

o~

= & (en1—x, (Bw) - B))
= £ ((Bow) - 5) @ (Bw) )

is the same as minimizing the MSE of the

coefficient estimate
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Fitted values from Combination Forecast

M ~
fle(w) =) w(m)x;B(m)

m=1
and
M ~
o= Z_‘,lW(m)X(m)ﬁ(m)
M
_ Zl w(m)X(m) (X(m)'X(m)) " X(m)'y
v
= Z_:lw(m)P(m)y
= P(w)y
where

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 50 / 106



Fitted values from Combination Forecast (con't)

= P(w)y

=)

M
P(w) =) w(m)P(m)
m=1
@ In-sample fitted values are a linear operator on the dependent variable

@ The operator P(w) is not a projection matrix

@ It is a weighted average of projection matrices
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Residual Fit

S|
>
|
-
N

3 ~
Il
= o

e L 8 (B )
1%, (B(w) - B)

S|
SN T
To
—

t=0

@ First two terms are estimates of

MSFE (w) = E (e = x; (B(w) - ﬁ)>2
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Third term is

§eint (Bow - ) -

=
2
3
~+ S
gl
D
+
-+><\
N
=)
3
|
=)
N—

3
I
—

I
™=
=
3
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o_ 3
byl
g
N—
o

where

and
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Residual Variance as Biased estimate of MSFE

E (6/(w)?) ~ MSFE, (w) — %B(w)

where
B(w) = E(e'P(w)e)
M
- 21 w(m)E (e'P(m)e)
M
= Z_:l w(m)B(m)

Unbiased estimate of MSFE

Cy(w) = F(w)? + %B(w)
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Bias Term

In homoskedastic case

a weighted average of the number of coefficients in each estimator.
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Mallows Averaging Criterion

M
Co(w) = 3°(w) + %’&2 . w(m)k(m)

with &2 an estimate from a “large” model

1 n—1
2 ~ 2
- K

7= ok L an

Hansen (2007, Econometrica) Mallows Model Averaging (MMA)
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Mallows Weight Selection

Write
M
Z =wK
m=1

where K = (k(1), .. ( )) This is linear in w

We showed earlier that 7°(w) = w'Sw is quadratic.
Linear/Quadratic criterion

=~ 2.
Co(w) = w'Sw + ;(Tzw’K
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Forecast Model Averaging (FMA)

@ Hansen (Journal of Econometrics, 2008)
e 2,
Ch(w) :wa—i-;cT w'K
e Combination weights found by constrained minimization of C,(w)

a 2.
W= argmin {W’SW + —Uzw/K]
w n

subject to

Y w(m)=1

m=1
0<w(m)<1
)

@ Solution by Quadratic Programming (QP
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Theory of Optimal Weights

MSFE,(w) is the MSFE using weights w

infw MSFE,(w) is the (infeasible) best MSFE, where the inf is over
all feasible weights

Let w be the selected weights
Let MSFE,(w) denote the MSFE using the selected weighted average

We say that weight selection is asymptotically optimal if

MSFE,(W) .
infw MSFE,(w)
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Theory of Optimal Weights

@ Hansen (2007, Econometrica)

o Mallows weight selection is asymptotically optimal under
homoskedasticity

@ No optimality proof yet for dependent data
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Comparison of Granger-Ramanathan and FMA

Both are solved by Quadratic Programming (QP)

Both typically yield corner solutions — many forecasts will receive zero
weight

GR uses empirical (OOS) forecast errors, FMA uses sample residuals

GR uses no penalty, FMA uses “average # of parameters” penalty

FMA is an estimate of MSFE for homoskedastic one-step forecasts,
GR has no optimality
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Robust Mallows

M
Co(w) =7 (w) + = 21 w(m) tr (Q(m)~'Q(m))
Q(m) = E(xt(m)xt(m)’)
Q(m) = E (xe(m)x;(m)ef,y)
Sample estimate
2 Y A ~
Colw) = (w)+ > Elw<m>tr(a<m>—la<m>)

where

B:(tr(a(l)lﬁ(l)), tr<©(2)*1ﬁ(2)), : tr(a(K)flﬁ(K)) )I

is vector of correction terms from robust Mallows selection.
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Cross-Validation

@ Leave-one-out estimator

B—t(w) = le o

M

= 3 wtm) (St >) (ij y)

@ Leave-one-out prediction residual
Et+1(m> = Yt+1 — ZW t Xt(m)
M
= Z m)ée+1(m)

where the second equality holds since the weights sum to one.
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1 - . .
o CV,(w) = =Y1"7%&1(w)? is an estimate of MSFE,(m)
n
e Cross-validation (CV) criterion for regression combination/averaging
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Cross-validation criterion for combination forecasts

1
CValw) = =3 &r(w)
m=
1 ?
= —2( w(m)atmm))
nt:l m=1
M M 10
= Y Y wlmw(t) - Y Eea (m)zea ()
m=1 (=1 N3
= w'Sw
where 1
S=-¢¢e
n

is covariance matrix of leave-1-out residuals.
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Cross-validation Weights

Combination weights found by constrained minimization of CV,,(w)
min CV,(w) = w/'Sw

subject to

M
Z_:l w(m) =1

0<w(m)<1
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Cross-validation for combination forecasts (theory)

e Theorem: ECV,(w) ~ C,(w)

@ For heteroskedastic forecasts, CV is a valid estimate of the one-step
MSFE from a combination forecast

e Hansen and Racine (Journal of Econometrica, 2012) show that the
CV weights are asymptotically optimal for cross-section data under
heteroskedasticity

@ No optimality theory for dependent data
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Computation (R)

1 -
e Min (EW/SW + d'w) subject to A'w > b

Need quadprog package

> Install under packages
» library(quadprog)

QP <- solve.QP(D,d,A,b,b)
w <- QP$solution
w <- as.matrix(w)

help(solve.QP) for documentation

D =S = (e’e)/n where e is n x M matrix of leave-one-out residuals
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Summary: Forecast Combination Methods

o Granger-Ramanathan (GR), forecast model averaging (FMA) and
cross-validation (CV) all pick weight vectors by quadratic
minimization

@ GR only needs actual forecasts, the method can be unknown or a
black box

@ CV can be computed for a wide variety of estimation methods

» optimality theory for linear estimation

o FMA limited to homoskedastic one-step-ahead models

@ Smoothed AIC (SAIC) and BMA have no forecast optimality, and are
designed for homoskedastic one-step-ahead forecasts.
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Example: AR models for GDP Growth

Fit AR(1) and AR(2) only

Leave-one-out residuals &;; and &

Covariance matrix

5_ [1072 1044
~ 11044 1052

The best-fitting single model is AR(2)
The best combination is w = (.22, .78)’
CV =10.50
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Example: AR models for GDP Growth

Fit AR(0) through AR(12)

AR(0) is constant only

Models with positive weight are AR(0), AR(1), AR(2)
w = (.06, .16, .78)’

N 12.0 10.6 10.4
S=| 106 10.7 10.4
10.4 10,5 10.5

CV = 10.50 (essentially unchanged)
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Example: Leading Indicator Forecasts

e Fit AR(1), AR(2) with leading indicators
@ Models with positive weight

w
(1), Spread, Housing 0.13
(1), Spread, High-Yield, Housing 0.16
AR(1), Spread, High-Yield, Housing, Building 0.52
(2) 0.18
R(2), Spread 0.01
e CV =09381
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Example: Nowcasting

Models with positive weight are

» w = .17 on Alog(GDP;), IPy, IP3, IP,, HSy,
» w = .83 on A|Og(GDPt), /P]_, /P3, /P2, HS]_, H53

CV =5.335
Point Forecast= 2.91

Essentially same as selected model
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Summary: Forecast Combination by CV

@ M forecasts ?,,H(m) from n observations
@ For each estimate m

> Define the leave-one-out prediction error

_ ~/

err1(m) = yey1— ﬁ(_t)(m)xt(m)
et1(m)

1-— htt(m)

> Store the n x 1 vector €(m)

@ Construct the M x M matrix

-1
S=-¢¢
n

o Find the M x 1 weight vector w which minimizes w'Sw
» Use quadratic programming (quadprog) to find solution

o The combination forecast is f,11 = YV, w(m)#1(m)
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Forecast Combination Criticisms

@ There has been considerable skepticism about formal forecast
combination method in the forecast literature

@ Many researchers have found that equal weighting: (w,, =1/M)
works as well as formal methods

@ However, the formal methods which investigated are
» Bates-Granger simple weights
* Not expected by theory to work well
» Unconstrained Granger-Ramanathan

* Without imposing [0, 1] weights, work terribly!

@ Furthermore, most investigations examine pseudo out-of-sample
performance

> ldentical to comparing models by PLS criterion
» This is NOT an investigation of performance
» Just a ranking by PLS
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Another Example - 10-Year Bond Rate

Estimated AR(1) through AR(24) models
CV Selection picked AR(2)

o CV weight Selection: Models with positive weight
> AR(0): w =0.04
> AR(1): w =0.04
» AR(2): w = 0.47
» AR(6): w = 0.23
» AR(22): w =0.22

MInimizing CV = 0.0761 (slightly lower than 0.0768 from AR(2))
Point forecast 1.96 (same as from AR(2))
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Variance Forecasting
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Variance Forecasts

o Forecast uncertainty

» Point forecasts insufficient!

° 03,y = var (yes1|l)
@ In the model y;11 = ,B/xt + er41

> 07y = var (ees1lln) = E (ef4]k)
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10-Year Bond Rate

@ Prediction Residuals

@ Squares
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Figure: Leave-One-Out Prediction Residuals
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Figure: Squared Prediction Residuals
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Variance Forecast Methods

2

— 52
: =0

e Constant Variance o
» Uncertainty not state-dependent
o GARCH

» Common in financial data
» Estimated by MLE

@ Regression Approach

» 02 =E (et2+1|l,,) ~ a'xs
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2-Step Variance Estimation

@ Start with residuals €11

> Better choice: leave-one-out residuals €;41
@ Estimate variance model (constant, ARCH, or regression)
e Obtain G2 from fitted model
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Which Residuals?

@ Least-squares residual variance biased toward zero

» Forecast variance biased towards zero

@ Leave-one-out residual variance estimates out-of-sample MSFE

» This is appropriate
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Joint Estimation: Mean and Variance

@ Alternative to two-step estimation

> | prefer 2-step as the regression coefficients preserve their projection

interpretation
» When the model is an approximation, the coefficient change their
meaning under joint estimation
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Constant Variance Model

° 02 =¢?
o~ 1 0
®Un =0 = T L=l G
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Regression Variance Model

° 02 ~a'x;

2 !
@ e = aXt1,

ou= (1" 11XtXt) (Xi= 1xtet+1)
) 3,27 =a Xp

» Easy, but not constrained to (0, o)
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GARCH Models

07 =w+ Bo?_; +aef

Conditional variance of e;11

Specifies conditional variance as function of recent squared
innovations

Large innovations (in magnitude) raise conditional variance

Lagged variance smooths o2

Non-negativity constraints: w >0, >0, « >0
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GARCH with Regressors

0 02 =w+Bo? | +ae?+ yx
@ x; > 0 useful to constrain regressor to be positive
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Gaussian Quasi-Likelihood

@ Assume normality to construct quasi-likelihood
o Let 8 = (w, B, a). The density of e;41 is

(0) = 1 exp (— et2+1)
' (271(7%)1/2 o3

1 e2
log £;(0) = > (Iog(27r) + log ((r%) — (’;—zl)

t

o Negative log-likelihood

£(6) = ":Zslogme)

e Simple to calculate £(6) numerically

> First calculate 02 given 6
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Gaussian QMLE

o QMLE 8 minimizes £(6)

» Easy using BFGS or other gradient method
» Constrained optimization can be used to impose non-negative
parameters

e Can write £(6) as a procedure and numerically minimize

» For each 0

* Calculate 07 by recursion 07 = w + Bo?_; + ae} given 03
* Useful to trim 07 >> 0

* If 07 < 02/100 then set 07 = 0 /100

* Calculate log f:(6) and L£(6)
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Computation (R)

o Use tseries package

> Install under packages
» library(tseries)

x.arch <- garch(e,order=c(1,1))

@ x.arch <-
garch(e,order=c(1,1),control=garch.control(start=st))

» st=starting values
archc=coef (x.arch)
sd=predict(x.arch)
like=logLik(x.arch)

help(garch)
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Distribution Theory

Vi (8-8) =4 N((0,V)
o V=H1IOH

92
H=E——logf
° aoae '8 (0)
d d ,
o O =E—logfi(0)=:logf(0)

00 00
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Standard Errors

~ 1 K 1 9?7
~ 1 0 ~

° 0=y gag Iogft(G) 5 log £ (0)’

@ Both can be calculated numerically

V=H1OHR

Standard errors are square roots of diagonal elements of n™1V
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Model Selection

@ Model with 2 ARCH lags and 2 regressors

2 2 2 2
0 =w—+ Poi_ +aref +acef_; + yixie + Yoxor

@ How many lags? How many regressors?
o Presence of lagged 02 ; complicates issues

> B not identified when a3 = ay =y =7, =0

» This means conventional tests and information criterion are not correct
when the process is close to constant variance

> We typically ignore this complication

@ Since estimation is nonlinear MLE much of model selection &
combination literature is not relevant

» AIC and TIC are appropriate
» Unfortunately, not easy to compute with standard packages
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AlIC and TIC for GARCH models

If model m has parameter vector 6(m) with k(m) elements
o AIC(m) =2L(6(m)) 4 2k(m)
o TIC(m) =2L(B(m)) +2tr (Fl(m)_lﬁ(m)>
@ Not standard output
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Variance Forecast from GARCH model

2 _ 2 2

® Uphy1 _w+‘50-n+“1en
~2 o~ B2 ~ ~D
® Onp1 =W+ po, +aie;

° c?,21+1 is estimated conditional variance of y,1

@ Standard deviation \/ﬁiﬂ
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Example: 10-Year Bond Rate

GARCH(1,1)

0} =w+ae? +po?_,

Estimate  s.e.
w 0.0001 0.0001
o 0.200 0.041
B 0.835 0.025
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Variance Forecast

@ Conditional variance
> 62,4 =0.054
> &,H_]_ =0.23

@ Unconditional

> 72 =0.076
» G =028

@ The conditional variance at present is similar, but somewhat smaller
than the unconditional
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Figure: Estimated Variance
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Example: GDP Growth
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Figure: GDP: Leave-One-Out Prediction Residuals
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Figure: GDP: Squared Prediction Residuals
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GARCH(1)
0} = w+aef + pot_

Estimate s.e.
w 0.81 0.46
o 0.21 0.06
B 0.72 0.06

@ Conditional variance

4 a%_i_l =41
> Op+l =20

@ Unconditional
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Figure: GDP: Estimated Variance
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Assignment 2

Take your regression models from yesterday
Calculate forecast weights by cross-validation (CV).
Use these weights to make a one-step point forecast for July 2012.

Take the leave-one-out prediction residuals. Estimate a GARCH(1,1)
model for the residuals. Calculate a one-step forecast standard
deviation from the GARCH model, and compare with the
unconditional standard deviation.
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