Time Series and Forecasting Lecture 2 Nowcasting, Forecast Combination, Variance Forecasting

Bruce E. Hansen

Summer School in Economics and Econometrics University of Crete July 23-27, 2012

Today's Schedule

- **•** Review
- VARs
- **•** Nowcasting
- **Combination Forecasts**
- Variance Forecasting

4 日下

4 f →

画

 QQ

 $\,$ \rightarrow \equiv \rightarrow

э

Review

- Optimal point forecast of y_{n+1} given information I_n is the conditional mean $E(y_{n+1}|I_n)$
- Linear model $E(y_{n+1}|I_n) \simeq \beta' \mathbf{x}_n$ is an approximation
- **•** Estimate linear projections by least-squares
- Model selection should focus on performance, not "truth"
	- \triangleright Best forecast has smallest MSFF
	- \triangleright Unknown, but MSFE can be estimated
	- \triangleright CV is a good estimator of MSFE
- Good forecasts rely on selection of leading indicators

- 3

 Ω

Vector Autoregresive Models

- \mathbf{y}_t is an ρ vector
- \bullet x_t are other variables (including lags)
- Ideal point forecast $E(\mathbf{y}_{n+1}|I_n)$
- **•** Linear approximation

$$
E(\mathbf{y}_{n+1}|I_n) \simeq A_1 \mathbf{y}_t + A_2 \mathbf{y}_{t-1} + \cdots + A_k \mathbf{y}_{t-k+1} + B \mathbf{x}_t
$$

• Vector Autoregression (VAR)

$$
\mathbf{y}_{t+1} = A_1 \mathbf{y}_t + A_2 \mathbf{y}_{t-1} + \cdots + A_k \mathbf{y}_{t-k+1} + B \mathbf{x}_t + \mathbf{e}_{t+1}
$$

• Estimation: Least squares

$$
\mathbf{y}_{t+1} = \widehat{A}_1 \mathbf{y}_t + \widehat{A}_2 \mathbf{y}_{t-1} + \cdots + \widehat{A}_k \mathbf{y}_{t-k+1} + \widehat{B} \mathbf{x}_t + \mathbf{e}_{t+1}
$$

• One-Step-Ahead Point forecast

$$
\widehat{\mathbf{y}}_{n+1} = \widehat{A}_1 \mathbf{y}_n + \widehat{A}_2 \mathbf{y}_{n-1} + \cdots + \widehat{A}_k \mathbf{y}_{n-k+1} + \widehat{B} \mathbf{x}_n
$$

Vector Autoregresive versus Univariate Models

• Let
$$
\mathbf{x}_t = (\mathbf{y}_t, \mathbf{y}_{t-1}, ..., \mathbf{x}_t)
$$

 \bullet Then a VAR is a set of p regression models

$$
y_{1t+1} = \beta'_1 \mathbf{x}_t + e_{1t}
$$

:

$$
y_{pt+1} = \beta'_p \mathbf{x}_t + e_{pt}
$$

- All variables x_t enter symmetrically in each equation
- Sims (1980) argued that there is no a priori reason to include or exclude an individual variable from an individual equation.

Model Selection

- . Do not view selection as identification of "truth"
- \bullet Rather, inclusion/exclusion is to improve finite sample performance
	- \blacktriangleright minimize MSFF
- Use selection methods, equation-by-equation

4 日下

÷

Example: VAR with 2 variables

$$
y_{1t+1} = \hat{\beta}_{11}y_{1t} + \hat{\beta}_{12}y_{1t-1} + \hat{\beta}_{13}y_{2t} + \hat{e}_{1t}
$$

\n:
\n:
\n
$$
y_{2t+1} = \hat{\beta}_{21}y_{1t} + \hat{\beta}_{22}y_{2t} + \hat{\beta}_{23}y_{2t-1} + \hat{e}_{2t}
$$

- Selection picks y_{1t} , y_{1t-1} , y_{2t} for equation for y_{1t+1}
- Selection picks y_{1t} , y_{2t} , y_{2t-1} for equation for y_{2t+1}
- The two equations have different variables

4 0 8

 Ω

• Same as system

$$
\mathbf{y}_{t+1} = A_1 \mathbf{y}_t + A_2 \mathbf{y}_{t-1} + e_{t+1}
$$

with

$$
A_1 = \begin{bmatrix} \beta_{11} & \beta_{13} \\ \beta_{21} & \beta_{22} \end{bmatrix}
$$

$$
A_2 = \begin{bmatrix} \beta_{12} & 0 \\ 0 & \beta_{23} \end{bmatrix}
$$

The VAR system notation is still quite useful for many purposes (including multi-step forecasting)

4 日下

画

 QQ

 \sim

∢ 何 ≯ → ≔

Nowcasting

- Forecasting current, near recent, or near future economic activity
- For example, 2nd quarter GDP (April-June 2012)
	- \triangleright So far, we have used information up through first quarter
	- \triangleright We have a fair amount of information
	- \triangleright Quite a lot about the 2nd quarter itself

4 日下

 Ω

General Framework

- **•** Two time scales
	- \blacktriangleright y_t (GDP)
	- \blacktriangleright x_v (interest rates)
	- If $I_{t,v}$: information in y_j for $j \leq t$ and x_j for $j \leq v$
	- \triangleright e.g., GDP up to 2011:1, interest rates up to today
- Optimal forecast of y_{t+1} given $I_{t,v}$ is conditional mean

 $E(y_{t+1}|I_{t,v}) = \mu_{t,v}$

4 0 8

÷

Standard Linear Approximation

Approximate conditional mean as linear and Markov

$$
E(y_{t+1}|I_{t,v}) = \mu_{t,v} \n\approx \beta_0 + \beta_1 y_t + \dots + \beta_k y_{t-k+1} \n+ \gamma_0 x_v + \gamma_1 x_{v-1} + \dots + \gamma_p x_{v-p}
$$

- Traditional solution (aggregate x_v to frequency t)
	- \triangleright Sets $\gamma_i = 0$ for periods v before quarter t
	- \blacktriangleright Sets $\gamma_j = \gamma_k$ for periods j and k in common quarter t
	- \blacktriangleright Unreasonable restrictions
- Unrestricted approximation
	- \blacktriangleright Non-parsimonious
	- \blacktriangleright p may be very large

 Ω

イ母 トラミチ マミト

MIDAS

- Ghysels, Santa-Clara, and Valkanov
- **•** Use parametric distributed-lag structure for coefficients γ_i
- Difficult to justify parametric restrictions

4 0 8

∢ 何 ≯ →

÷

 QQ

Example: GDP Nowcasting

- Suppose we are interested in forecasting 2012 2nd quarter GDP growth
	- \blacktriangleright Economic activity for April, May and June
- For April, May and June, we have considerable information
	- \blacktriangleright Interest rates
	- \blacktriangleright unemployment rates
	- \blacktriangleright Industrial Production
	- \blacktriangleright Housing starts
	- \triangleright Building Permits
	- \blacktriangleright Inflation

4 日下

 QQ

Industrial Production Index

Bruce Hansen (University of Wisconsin) **[Forecasting](#page-0-0) Forecasting** July 23-27, 2012 14 / 106

Growth Rate

$$
x_t = \ln IP_t - \ln IP_{t-1}
$$

 \equiv 990

メロト メタト メミト メミト

4 日下

4 母 ト 4

E. . p

E

One Month Inflation Rate

$INF_t = \ln CPI_t - \ln CPI_{t-1}$

重

 299

イロト イ部 トイヨ トイヨト

Inflation Rate

 \leftarrow \Box

●▶

a.

. p

目

∍

Three Month Inflation Rate

$INF_t = \ln CPI_t - \ln CPI_{t-3}$

重

 299

イロト イ部 トイヨ トイヨト

3-Month Inflation Rate

Bruce Hansen (University of Wisconsin) [Forecasting](#page-0-0) Forecasting July 23-27, 2012 21 / 106

 \leftarrow \Box

4 同下

 \mathcal{A}

. p

目

∍

One Year Inflation Rate

$INF_t = \ln CPI_t - \ln CPI_{t-12}$

重

 2990

イロト イ部 トイヨ トイヨト

Annual Inflation Rate

Bruce Hansen (University of Wisconsin) [Forecasting](#page-0-0) Forecasting July 23-27, 2012 23 / 106

 \leftarrow \Box

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow B $\,$ \sim

 \Rightarrow

重

Nowcasting Regression

GDP growth as a linear function of

- \triangleright Previous 2 quarters GDP growth
- \triangleright Contemporaneous 3 months of
	- \star Term Spread (10 year over 3 month)
	- ★ Default Spread (BAA over AAA yield)
	- \star Industrial Production
	- \star Building Permits
	- \star Housing Starts
- \triangleright (Or whatever is available at time of forecast)

4 日下

Notation

 \bullet t = year

- $q =$ quarter, $q = 1, 2, 3, 4$
- $m =$ month in quarter, $m = 1, 2, 3$
- $GDP_{t,q}$ = GDP in year t, quarter q
	- \triangleright Convention: $GDP_{t,0} = GDP_{t-1,4}$
- IP_{t,q,m} = IP in year t, quarter q, month m

4 0 8

G.

 QQ

イタト イミト イミト

Example Models

Monthly Data through First Month of Forecast Quarter

$$
GDP_{t,q} = \beta_1 GDP_{t,q-1} + \beta_2 GDP_{t,q-2} + \beta_3 IP_{t,q,1} + \beta_4 IP_{t,q-1,3} + \cdots
$$

Monthly Data through Second Month of Forecast Quarter

$$
GDP_{t,q} = \beta_1 GDP_{t,q-1} + \beta_2 GDP_{t,q-2} + \beta_3 IP_{t,q,2} + \beta_4 IP_{t,q,1} + \cdots
$$

- **Regressor Construction from Monthly Variables**
	- \triangleright Divide into "first", "second" and "third" months of quarters
	- \triangleright Now you have 3 quarterly observations for each variable

4 D F

Nowcasting Estimates

- Based on data through April (first month of forecast quarter)
- **•** Selected variables:
	- \triangleright Δ log(GDP_t) (one lag)
	- \blacktriangleright IP₁, IP₃, IP₂ (first, previous third, and previous second months)
	- \triangleright HS₁, HS₃ (first and previous third months)

イ母 トラミチ マミト

4 日下

 Ω

÷

Nowcasting Point Forecast

- 2nd Quarter GDP Growth: 2.93
- Fitted model: $CV = 5.339$
	- \blacktriangleright Note that yesterday's best fitting model had $CV = 10.28$
	- \blacktriangleright Point forecast changes from 1.53 to 2.93
	- \triangleright Adding contemporaneous IP very useful

4 D F

÷

 QQ

Flexibility

- As each piece of information becomes available, that variable can be added to regression
- Sequence of nowcast estimates, updated with new information

4 日下

э

 Ω

Recommendation

- Make use of higher frequency information
- \bullet Be creative and flexible
- \bullet Handling high-dimensional p is similar to many other high-dimensional problems
	- \blacktriangleright Model selection, combination, shrinkgae
- Requires frequent re-estimation of distinct forecasting models as new information arises
	- \triangleright Requires significant empirical care and attention to detail

4 0 8

Combination Forecasts

画 -990

イロト イ部 トイヨ トイヨト

Diversity of Forecasts

- Model choice is critical
	- \blacktriangleright Classic approach: Selection
	- \blacktriangleright Modern approach: Combination
- **o** Issues:
	- \blacktriangleright How to select from a wide set of models/forecasts?
		- \star Model selection criteria
	- \blacktriangleright How to combine a wide set of models/forecasts?
		- \star Weight selection criteria

4.0.3

÷

 Ω

Foundation

- The ideal point forecast minimizes the MSFE
- The goal of a good combination forecast is to minimize the MSFE

4 0 8

 \leftarrow \leftarrow \leftarrow

÷

 QQ

Forecast Selection

- *M* forecasts: $f = \{f(1), f(2), ..., f(M)\}\$
- Selection picks \hat{m} to determine the forecast $f = f(\hat{m})$
- *M* weights: $w = \{w(1), w(2), ..., w(M)\}\$
- A combination forecast is the weighted average

$$
f(\mathbf{w}) = \sum_{m=1}^{M} w(m)f(m)
$$

= $\mathbf{w}'\mathbf{f}$

• Combination generalizes selection

4 0 8

÷

Possible restrictions on the weight vector

$$
\bullet\ \textstyle\sum_{m=1}^M w(m)=1
$$

- \blacktriangleright Unbiasedness
- \blacktriangleright Typically improves performance
- \bullet w(m) >0
	- \blacktriangleright nonnegativity
	- \blacktriangleright regularization
	- \triangleright Often critical for good performance
- $w(m) \in \{0, 1\}$
	- \blacktriangleright Equivalent to forecast selection
	- \blacktriangleright $f(\mathbf{w}) = f(m)$
	- \triangleright Selection is a special case of combination
	- \triangleright Strong restriction

4 0 8

÷

 Ω

OOS Forecast Combination

- Sequence of true out-of-sample forecasts f_t for y_{t+1}
- Combination forecast is $f(\boldsymbol{\mathsf{w}}) = \boldsymbol{\mathsf{w}}' \boldsymbol{\mathsf{f}}$
- OOS empirical MSFE

$$
\hat{\sigma}^2(\mathbf{w}) = \frac{1}{P} \sum_{t=n-P}^{n} (y_{t+1} - \mathbf{w}' \mathbf{f}_t)^2
$$

- **PLS** selected the model with the smallest OOS MSFF
- Granger-Ramanathan combination: select w to minimize the OOS MSFE
- \bullet Minimization over **w** is equivalent to the least-squares regression of y_t on the forecasts

$$
y_{t+1} = \mathbf{w}' \mathbf{f}_t + \varepsilon_{t+1}
$$
Granger-Ramanathan (1984)

Unrestricted least-squares

$$
\hat{\mathbf{w}} = \left(\sum_{t=n-P}^{n} \mathbf{f}_t \mathbf{f}_t'\right)^{-1} \sum_{t=n-P}^{n} \mathbf{f}_t y_{t+1}
$$

- \bullet This can produce weights far outside $[0, 1]$ and don't sum to one
- Granger-Ramanathan's intuition was that this flexibility is good
	- \triangleright But they provided no theory to support conjecture
- **Unrestricted weights are not regularized**
	- \blacktriangleright This results in poor sampling performance

Alternative Representation

• Take
$$
y_{t+1} = \mathbf{w}' \mathbf{f}_t + \varepsilon_{t+1}
$$
, subtract y_{t+1} from each side

$$
0 = \mathbf{w}'\mathbf{f}_t - y_{t+1} + \varepsilon_{t+1}
$$

• Impose restriction that weights to sum to one.

$$
0 = \mathbf{w}'\left(\mathbf{f}_t - y_{t+1}\right) + \varepsilon_{t+1}
$$

Define $\mathbf{e}_{t+1} = \mathbf{w}' \left(\mathbf{f}_t - y_{t+1} \right)$, the (negative) forecast errors. Then

$$
0=\mathbf{w}'\mathbf{e}_{t+1}+\varepsilon_{t+1}
$$

- This is the regression of 0 on the forecast errors
- But it is still better to also impose non-negativity $w(m) \geq 0$

つへへ

(□) (_□) (

Constrained Granger-Ramanathan

The constrained GR weights solve the problem

min **w' Aw** w subject to M $\sum_{m=1}$ $w(m)=1$ $0 \leq w(m) \leq 1$

where

$$
\textsf{A}=\sum_{t}\textsf{e}_{t+1}\textsf{e}_{t+1}'
$$

is the $M\times M$ matrix of forecast error empirical variances/covariances

4 D F

B

 Ω

Quadratic Programming (QP)

- The weights lie on the unit simplex
- The constrained GR weights minimize a quadratic over the unit simplex
- QP algorithms easily solve this problem
	- \triangleright Gauss (qprog)
	- \blacktriangleright Matlab (quadprog)
	- \triangleright R (quadprog)
- Solution solution typical
	- \triangleright Many forecasts will receive zero weight

4 0 8

Bates-Granger (1969)

- Assume $\mathbf{A} = \sum_t \mathbf{e}_{t+1} \mathbf{e}_{t+1}'$ is diagonal.
- Then the regression with the coefficients constrained to sum to one

$$
0=\mathbf{w}'\mathbf{e}_{t+1}+\varepsilon_{t+1}
$$

has solution

$$
w(m) = \frac{\hat{\sigma}^{-2}(m)}{\sum_{j=1}^{M} \hat{\sigma}^{-2}(j)}
$$

- **This are the Bates-Granger weights.**
- In many cases, they are close to equality, since OOS forecast variances can be quite similar

4 0 8

Bayesian Model Averaging (BMA)

- **•** Put priors on individual models, and priors on the probability that model *m* is the true model
- Compute posterior probabilites $w(m)$ that m is the true model
- Forecast combination using $w(m)$
- **•** Advantages
	- \triangleright Conceptually simple
	- \triangleright no theoretical analysis required
	- \blacktriangleright applies in broad contexts
- **•** Disadvantages
	- \triangleright Not designed to minimize forecast risk
	- \triangleright Similar to BIC: asymptotically picks "true" finite models
	- \triangleright does not distinguish between 1-step and multi-step forecast horizons

4 0 8

B

 Ω

- 4何 ト 4 ヨ ト 4 ヨ ト

BMA Approximation

• BIC weights

$$
w(m) \propto \exp\left(-\frac{BIC(m)}{2}\right)
$$

- **•** Simple approximation to full BMA method
- Smoothed version of BIC selection
- Works better than BIC selection in simulations

4 0 8

÷

AIC Weights

• Smooted AIC

$$
w(m) \propto \exp\left(-\frac{AIC(m)}{2}\right)
$$

- Proposed by Buckland, Burnhamm and Augustin (1997)
- Not theoretically motivated, but works better than AIC selection in simulations

4 0 8

∢ 何 ≯ →

÷

 Ω

Comments

- Combination methods typically work better (lower MSFE) than comparable selection methods
- BIC and BMA not optimal for MSFE
- Granger-Ramanathan has similar senstive as PLS to choice of P
- Bates-Granger and weighted AIC have no theoretical grounding

4 0 8

Forecast Combination

$$
\widehat{y}_{n+1}(\mathbf{w}) = \sum_{m=1}^{M} w(m)\widehat{y}_{n+1}(m)
$$

$$
= \sum_{m=1}^{M} w(m)\mathbf{x}_n(m)'\widehat{\boldsymbol{\beta}}(m)
$$

$$
= \mathbf{x}'_n \widehat{\boldsymbol{\beta}}(\mathbf{w})
$$

where

$$
\widehat{\boldsymbol{\beta}}(\mathbf{w}) = \sum_{m=1}^{M} w(m)\widehat{\boldsymbol{\beta}}(m)
$$

- In Iinear models, the combination forecast is the same as the forecast based on the weighted average of the parameter estimates across the different models
- \bullet Computationally, it is easiest to calculate the M individual forecast $\hat{y}_{n+1}(m)$ $\hat{y}_{n+1}(m)$, then take the weighted average t[o o](#page-44-0)[bt](#page-46-0)a[in](#page-45-0) $\hat{y}_{n+1}(\mathbf{w})$ $\hat{y}_{n+1}(\mathbf{w})$ $\hat{y}_{n+1}(\mathbf{w})$

 Ω

Combination Residuals

$$
\begin{array}{rcl}\n\widehat{\mathbf{e}}_{t+1}(\mathbf{w}) & = & y_{t+1} - \mathbf{x}_t' \widehat{\boldsymbol{\beta}}(\mathbf{w}) \\
& = & \sum_{m=1}^M w(m) \left(y_{t+1} - \mathbf{x}_t' \widehat{\boldsymbol{\beta}}(m) \right) \\
& = & \sum_{m=1}^M w(m) \widehat{\mathbf{e}}_{t+1}(m)\n\end{array}
$$

In linear models, the residual from the combination model is the same as the weighted average of the model residuals.

B

 QQ

イロト イ押ト イヨト イヨト

Residual variance

$$
\hat{\sigma}^2(\mathbf{w}) = \frac{1}{n} \sum_{t=1}^n \left(\sum_{m=1}^M w(m) \hat{e}_{t+1}(m) \right)^2
$$

$$
= \frac{1}{n} \sum_{t=1}^n (\mathbf{w}' \hat{\mathbf{e}}_{t+1})^2
$$

$$
= \mathbf{w}' \hat{\mathbf{S}} \mathbf{w}
$$

where

$$
\widehat{\textbf{S}} = \frac{1}{n}\sum_{t=1}^n \widehat{\textbf{e}}_{t+1}\widehat{\textbf{e}}'_{t+1}
$$

The residual variance is a quadratic function of the covariance matrix of the M model residuals.

B

 QQ

イロト イ押ト イヨト イヨト

Point Forecast and MSFE

• Given $\hat{y}_{n+1}(\mathbf{w})$ the forecast error is

$$
y_{n+1} - \widehat{y}_{n+1}(\mathbf{w}) = \mathbf{x}'_n \boldsymbol{\beta} + e_{t+1} - \mathbf{x}'_n \widehat{\boldsymbol{\beta}}(\mathbf{w})
$$

= $e_{n+1} - \mathbf{x}'_n \left(\widehat{\boldsymbol{\beta}}(\mathbf{w}) - \boldsymbol{\beta} \right)$

The mean-squared-forecast-error (MSFE) is

$$
MSFE(\mathbf{w}) = E\left(e_{n+1} - \mathbf{x}'_n \left(\widehat{\boldsymbol{\beta}}(\mathbf{w}) - \boldsymbol{\beta}\right)\right)^2
$$

\n
$$
\simeq \sigma^2 + E\left(\left(\widehat{\boldsymbol{\beta}}(\mathbf{w}) - \boldsymbol{\beta}\right)' Q\left(\widehat{\boldsymbol{\beta}}(\mathbf{w}) - \boldsymbol{\beta}\right)\right)
$$

Minimizing MSFE is the same as minimizing the MSE of the coefficient estimate

4 0 8

Fitted values from Combination Forecast

$$
\widehat{\mu}_t(\mathbf{w}) = \sum_{m=1}^M w(m) \mathbf{x}_t' \widehat{\boldsymbol{\beta}}(m)
$$

and

$$
\hat{\mu} = \sum_{m=1}^{M} w(m) \mathbf{X}(m) \hat{\beta}(m)
$$
\n
$$
= \sum_{m=1}^{M} w(m) \mathbf{X}(m) (\mathbf{X}(m)'\mathbf{X}(m))^{-1} \mathbf{X}(m)'\mathbf{y}
$$
\n
$$
= \sum_{m=1}^{M} w(m) \mathbf{P}(m) \mathbf{y}
$$
\n
$$
= \mathbf{P}(\mathbf{w}) \mathbf{y}
$$

where

$$
\mathsf{P}(\mathsf{w}) = \sum_{m=1}^{M} w(m) \mathsf{P}(m)
$$

活

 \rightarrow \rightarrow \rightarrow

э.

 QQ

Fitted values from Combination Forecast (con't)

$$
\widehat{\mu} = \mathbf{P}(\mathbf{w})\mathbf{y}
$$

$$
\mathbf{P}(\mathbf{w}) = \sum_{m=1}^{M} w(m)\mathbf{P}(m)
$$

• In-sample fitted values are a linear operator on the dependent variable

- The operator $P(w)$ is not a projection matrix
- It is a weighted average of projection matrices

4 日下

Residual Fit

$$
\widehat{\sigma}(\mathbf{w})^2 = \frac{1}{n} \sum_{t=0}^{n-1} \widehat{\mathbf{e}}_{t+1}(\mathbf{w})^2
$$

\n
$$
= \frac{1}{n} \sum_{t=0}^{n-1} \mathbf{e}_{t+1}^2 + \frac{1}{n} \sum_{t=0}^{n-1} (\mathbf{x}'_t \left(\widehat{\boldsymbol{\beta}}(\mathbf{w}) - \boldsymbol{\beta} \right))^2
$$

\n
$$
- \frac{2}{n} \sum_{t=0}^{n-1} \mathbf{e}_{t+1} \mathbf{x}'_t \left(\widehat{\boldsymbol{\beta}}(\mathbf{w}) - \boldsymbol{\beta} \right)
$$

• First two terms are estimates of

$$
MSFE(\mathbf{w}) = E\left(e_{n+1} - \mathbf{x}'_n\left(\widehat{\boldsymbol{\beta}}(\mathbf{w}) - \boldsymbol{\beta}\right)\right)^2
$$

画

 2990

イロト イ部 トイヨ トイヨト

Third term is

$$
\sum_{t=0}^{n-1} e_{t+1} \mathbf{x}'_t \left(\widehat{\boldsymbol{\beta}}(\mathbf{w}) - \boldsymbol{\beta} \right) = \sum_{m=1}^{M} w(m) \sum_{t=0}^{n-1} e_{t+1} \mathbf{x}'_t \left(\widehat{\boldsymbol{\beta}}(m) - \boldsymbol{\beta} \right)
$$

$$
= \sum_{m=1}^{M} w(m) \mathbf{e}' \mathbf{P}(m) \mathbf{e}
$$

$$
= \mathbf{e}' \mathbf{P}(\mathbf{w}) \mathbf{e}
$$

where

$$
\mathbf{P}(m) = \mathbf{X}(m) \left(\mathbf{X}(m)' \mathbf{X}(m) \right)^{-1} \mathbf{X}(m)'
$$

and

$$
\mathbf{P}(\mathbf{w}) = \sum_{m=1}^{M} w(m) \mathbf{P}(m)
$$

 \equiv 990

メロトメ 倒 トメ 君 トメ 君 トッ

Residual Variance as Biased estimate of MSFE

$$
E(\widehat{\sigma}(\mathbf{w})^2) \simeq \text{MSFE}_n(\mathbf{w}) - \frac{2}{n}B(\mathbf{w})
$$

where

$$
B(\mathbf{w}) = E(\mathbf{e}'\mathbf{P}(\mathbf{w})\mathbf{e})
$$

=
$$
\sum_{m=1}^{M} w(m)E(\mathbf{e}'\mathbf{P}(m)\mathbf{e})
$$

=
$$
\sum_{m=1}^{M} w(m)B(m)
$$

Unbiased estimate of MSFE

$$
C_n(\mathbf{w}) = \widehat{\sigma}(\mathbf{w})^2 + \frac{2}{n}B(\mathbf{w})
$$

 \sim

B

 QQ

4 ロ ▶ 4 母 ▶ 4

Bias Term

$$
B(\mathbf{w}) = \sum_{m=1}^{M} w(m)B(m)
$$

$$
B(m) = \text{tr}\left(Q(m)^{-1}\Omega(m)\right)
$$

In homoskedastic case

$$
B(m) = \sigma^2 k(m)
$$

$$
B(\mathbf{w}) = \sigma^2 \sum_{m=1}^{M} w(m)k(m)
$$

a weighted average of the number of coefficients in each estimator.

活

 QQ

4 ロ ▶ 4 母 ▶ 4

э \rightarrow -4

Mallows Averaging Criterion

$$
C_n(\mathbf{w}) = \widehat{\sigma}^2(\mathbf{w}) + \frac{2}{n}\widetilde{\sigma}^2 \sum_{m=1}^M w(m)k(m)
$$

with $\widetilde{\sigma}^2$ an estimate from a "large" model

$$
\widetilde{\sigma}^2 = \frac{1}{n-K} \sum_{t=0}^{n-1} \widehat{\mathbf{e}}_{t+1}(\mathbf{K})^2
$$

Hansen (2007, Econometrica) Mallows Model Averaging (MMA)

÷

 Ω

K ロ ト K 伺 ト K ミ ト

Mallows Weight Selection

Write

$$
\sum_{m=1}^{M} w(m)k(m) = \mathbf{w}'\mathbf{K}
$$

where $\mathsf{K} = (\mathcal{k}(1),...,\mathcal{k}(M))'.$ This is linear in w We showed earlier that $\widehat{\sigma}^2(\mathbf{w}) = \mathbf{w}'\widehat{\mathbf{S}}\mathbf{w}$ is quadratic. Linear/Quadratic criterion

$$
C_n(\mathbf{w}) = \mathbf{w}'\mathbf{\widehat{S}}\mathbf{w} + \frac{2}{n}\widetilde{\sigma}^2\mathbf{w}'\mathbf{K}
$$

4 0 8

÷

 Ω

Forecast Model Averaging (FMA)

• Hansen (Journal of Econometrics, 2008)

$$
C_n(\mathbf{w}) = \mathbf{w}'\widehat{\mathbf{S}}\mathbf{w} + \frac{2}{n}\widetilde{\sigma}^2\mathbf{w}'\mathbf{K}
$$

• Combination weights found by constrained minimization of $C_n(\mathbf{w})$

$$
\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \left[\mathbf{w}' \widehat{\mathbf{S}} \mathbf{w} + \frac{2}{n} \widetilde{\sigma}^2 \mathbf{w}' \mathbf{K} \right]
$$
\nsubject to\n
$$
\sum_{m=1}^{M} w(m) = 1
$$
\n
$$
0 \le w(m) \le 1
$$

• Solution by Quadratic Programming (QP)

4 0 8

Theory of Optimal Weights

- $MSFE_n(w)$ is the MSFE using weights w
- inf_w $MSFE_n(w)$ is the (infeasible) best MSFE, where the inf is over all feasible weights
- Let $\hat{\mathbf{w}}$ be the selected weights
- Let $MSFE_n(\hat{\mathbf{w}})$ denote the MSFE using the selected weighted average
- We say that weight selection is asymptotically optimal if

$$
\frac{MSFE_n(\widehat{\mathbf{w}})}{\inf_{\mathbf{w}} MSFE_n(\mathbf{w})} \xrightarrow{\rho} 1
$$

4 日下

つへへ

Theory of Optimal Weights

- Hansen (2007, Econometrica)
- Mallows weight selection is asymptotically optimal under homoskedasticity
- No optimality proof yet for dependent data

4 日下

÷

Comparison of Granger-Ramanathan and FMA

- Both are solved by Quadratic Programming (QP)
- \bullet Both typically yield corner solutions $-$ many forecasts will receive zero weight
- GR uses empirical (OOS) forecast errors, FMA uses sample residuals
- GR uses no penalty, FMA uses "average $\#$ of parameters" penalty
- FMA is an estimate of MSFE for homoskedastic one-step forecasts, GR has no optimality

Robust Mallows

$$
C_n(\mathbf{w}) = \widehat{\sigma}^2(\mathbf{w}) + \frac{2}{n} \sum_{m=1}^{M} w(m) \operatorname{tr} (Q(m)^{-1} \Omega(m))
$$

$$
Q(m) = E(\mathbf{x}_t(m)\mathbf{x}_t(m)')
$$

$$
\Omega(m) = E(\mathbf{x}_t(m)\mathbf{x}_t'(m)e_{t+1}^2)
$$

Sample estimate

$$
C_n^*(\mathbf{w}) = \hat{\sigma}^2(\mathbf{w}) + \frac{2}{n} \sum_{m=1}^M w(m) \operatorname{tr} (\hat{Q}(m)^{-1} \hat{\Omega}(m))
$$

= $\mathbf{w}' \hat{\mathbf{S}} \mathbf{w} + \frac{2}{n} \mathbf{w}' \mathbf{B}$

where

$$
\textbf{B}=\left(\begin{array}{ccc} \operatorname{tr}\left(\widehat{Q}(1)^{-1}\widehat{\Omega}(1)\right), & \operatorname{tr}\left(\widehat{Q}(2)^{-1}\widehat{\Omega}(2)\right), & \vdots & \operatorname{tr}\left(\widehat{Q}(K)^{-1}\widehat{\Omega}(K)\right) \end{array}\right)'
$$

is vector of correction terms from robust Mallo[ws](#page-60-0) s[el](#page-62-0)[e](#page-60-0)[cti](#page-61-0)[o](#page-62-0)[n.](#page-0-0) \rightarrow \equiv \rightarrow ÷, 299 Bruce Hansen (University of Wisconsin) [Forecasting](#page-0-0) Forecasting July 23-27, 2012 62 / 106

Cross-Validation

e Leave-one-out estimator

$$
\widehat{\boldsymbol{\beta}}_{-t}(\mathbf{w}) = \sum_{m=1}^{M} w(m) \widehat{\boldsymbol{\beta}}_{-t}(m)
$$
\n
$$
= \sum_{m=1}^{M} w(m) \left(\sum_{j \neq t} \mathbf{x}_j(m) \mathbf{x}_j(m)' \right)^{-1} \left(\sum_{j \neq t} \mathbf{x}_j(m) y_{j+1} \right)
$$

Leave-one-out prediction residual

$$
\widetilde{e}_{t+1}(m) = y_{t+1} - \sum_{m=1}^{M} w(m) \widehat{\beta}_{-t}(\mathbf{w})' \mathbf{x}_t(m)
$$

$$
= \sum_{m=1}^{M} w(m) \widetilde{e}_{t+1}(m)
$$

where the second equality holds since the weights sum to one.

D.

 QQ

K ロ ▶ | K 母 ▶ | K ヨ ▶ | K ヨ ▶ |

- $CV_n(\mathbf{w}) = \frac{1}{n} \sum_{t=0}^{n-1} \widetilde{e}_{t+1}(\mathbf{w})^2$ is an estimate of $MSFE_n(m)$
- Cross-validation (CV) criterion for regression combination/averaging

D.

 200

K ロ ▶ | K 伺 ▶ | K ヨ ▶

Cross-validation criterion for combination forecasts

$$
CV_n(\mathbf{w}) = \frac{1}{n} \sum_{t=1}^n \widetilde{e}_{t+1}(\mathbf{w})^2
$$

\n
$$
= \frac{1}{n} \sum_{t=1}^n \left(\sum_{m=1}^M w(m) \widetilde{e}_{t+1}(m) \right)^2
$$

\n
$$
= \sum_{m=1}^M \sum_{\ell=1}^M w(m) w(\ell) \frac{1}{n} \sum_{t=1}^n \widetilde{e}_{t+1}(m) \widetilde{e}_{t+1}(\ell)
$$

\n
$$
= \mathbf{w}' \widetilde{S} \mathbf{w}
$$

where

$$
\widetilde{\mathbf{S}} = \frac{1}{n} \widetilde{\mathbf{e}}' \widetilde{\mathbf{e}}
$$

is covariance matrix of leave-1-out residuals.

画

 QQ

4 ロト 4 何 ト

Cross-validation Weights

Combination weights found by constrained minimization of $CV_n(w)$

$$
\min_{\mathbf{w}} CV_n(\mathbf{w}) = \mathbf{w}' \widetilde{\mathbf{S}} \mathbf{w}
$$
\nsubject to

$$
\sum_{m=1}^{M} w(m) = 1
$$

0 \le w(m) \le 1

造

 QQ

イロメ イ部メ イヨメ イヨメー

Cross-validation for combination forecasts (theory)

- Theorem: $ECV_n(\mathbf{w}) \simeq C_n(\mathbf{w})$
- For heteroskedastic forecasts, CV is a valid estimate of the one-step MSFE from a combination forecast
- Hansen and Racine (Journal of Econometrica, 2012) show that the CV weights are asymptotically optimal for cross-section data under heteroskedasticity
- No optimality theory for dependent data

つへへ

Computation (R)

• Min
$$
(\frac{1}{2}\mathbf{w}'\widetilde{\mathbf{S}}\mathbf{w} + d'\mathbf{w})
$$
 subject to $A'\mathbf{w} \ge b$

- Need *quadprog* package
	- \blacktriangleright Install under packages
	- \blacktriangleright library(quadprog)
- \bullet QP \lt = solve.QP(D,d,A,b,b)
- \bullet W \lt QP\$solution
- \bullet W \lt as.matrix(w)
- help(solve.QP) for documentation
- $D = S = (e'e)/n$ where e is $n \times M$ matrix of leave-one-out residuals

4.0.3

÷

Summary: Forecast Combination Methods

- Granger-Ramanathan (GR), forecast model averaging (FMA) and cross-validation (CV) all pick weight vectors by quadratic minimization
- GR only needs actual forecasts, the method can be unknown or a black box
- CV can be computed for a wide variety of estimation methods
	- \triangleright optimality theory for linear estimation
- FMA limited to homoskedastic one-step-ahead models
- Smoothed AIC (SAIC) and BMA have no forecast optimality, and are designed for homoskedastic one-step-ahead forecasts.

Example: AR models for GDP Growth

- Fit $AR(1)$ and $AR(2)$ only
- Leave-one-out residuals \tilde{e}_{1t} and \tilde{e}_{2t}
- Covariance matrix

$$
\widetilde{\textbf{S}}=\left[\begin{array}{cc}10.72&10.44\\10.44&10.52\end{array}\right]
$$

- The best-fitting single model is $AR(2)$
- The best combination is $\bm{{\mathsf{w}}}=(.22,\,.78)^{\prime}$
- $C = 10.50$

4 日下

÷

Example: AR models for GDP Growth

- Fit $AR(0)$ through $AR(12)$
- AR(0) is constant only
- Models with positive weight are $AR(0)$, $AR(1)$, $AR(2)$
- $\textsf{w}=(.06, .16, .78)^{\prime}$

$$
\widetilde{\textbf{S}} = \left[\begin{array}{ccc} 12.0 & 10.6 & 10.4 \\ 10.6 & 10.7 & 10.4 \\ 10.4 & 10.5 & 10.5 \end{array} \right]
$$

 \bullet $CV = 10.50$ (essentially unchanged)

4 日下

∢ 何 ≯ →

÷

 Ω

Example: Leading Indicator Forecasts

• Fit $AR(1)$, $AR(2)$ with leading indicators

• Models with positive weight

AR(1), Spread, Housing 0.13 AR(1), Spread, High-Yield, Housing 0.16 AR(1), Spread, High-Yield, Housing, Building 0.52 $AR(2)$ 0.18 $AR(2)$, Spread 0.01

 $C = 9.81$

4 日下

画

 QQ

→ 何 ▶ → ヨ ▶ → ヨ ▶

w
Example: Nowcasting

- Models with positive weight are
	- \triangleright w = .17 on Δ log(GDP_t), IP₁, IP₃, IP₂, HS₁,
	- \triangleright w = .83 on Δ log(*GDP_t*), *IP*₁, *IP*₃, *IP*₂, *HS*₁, *HS*₃
- \bullet CV = 5.335
- Point Forecast= 2.91
- **•** Essentially same as selected model

4 D F

∢ 何 ≯ →

÷

 QQ

Summary: Forecast Combination by CV

- M forecasts $\widehat{f}_{n+1}(m)$ from *n* observations
- **•** For each estimate m
	- \triangleright Define the leave-one-out prediction error

$$
\widetilde{e}_{t+1}(m) = y_{t+1} - \widehat{\beta}'_{(-t)}(m)\mathbf{x}_t(m)
$$

$$
= \frac{\widehat{e}_{t+1}(m)}{1 - h_{tt}(m)}
$$

Store the $n \times 1$ vector $\widetilde{\mathbf{e}}(m)$

Construct the $M \times M$ matrix

$$
\widetilde{\mathbf{S}} = \frac{1}{n} \widetilde{\mathbf{e}}' \widetilde{\mathbf{e}}
$$

- Find the $M \times 1$ weight vector **w** which minimizes **w'Sw**
	- \triangleright Use quadratic programming (quadprog) to find solution
- The com[b](#page-72-0)ination forecast is $\widehat{f}_{n+1} = \sum_{m=1}^{M} w(m) \widehat{f}_{n+1}(m)$ $\widehat{f}_{n+1} = \sum_{m=1}^{M} w(m) \widehat{f}_{n+1}(m)$

 Ω

Forecast Combination Criticisms

- There has been considerable skepticism about formal forecast combination method in the forecast literature
- Many researchers have found that equal weighting: $(w_m = 1/M)$ works as well as formal methods
- **However, the formal methods which investigated are**
	- \triangleright Bates-Granger simple weights
		- \star Not expected by theory to work well
	- \blacktriangleright Unconstrained Granger-Ramanathan
		- \star Without imposing [0, 1] weights, work terribly!
- Furthermore, most investigations examine pseudo out-of-sample performance
	- \triangleright Identical to comparing models by PLS criterion
	- \triangleright This is NOT an investigation of performance
	- \blacktriangleright Just a ranking by PLS

G.

 Ω

イロト イ母 トイヨ トイヨ トー

Another Example - 10-Year Bond Rate

- Estimated $AR(1)$ through $AR(24)$ models
- CV Selection picked AR(2)
- CV weight Selection: Models with positive weight
	- AR(0): $w = 0.04$
	- AR(1): $w = 0.04$
	- \triangleright AR(2): $w = 0.47$
	- AR(6): $w = 0.23$
	- AR(22): $w = 0.22$
- MInimizing $CV = 0.0761$ (slightly lower than 0.0768 from AR(2))
- Point forecast 1.96 (same as from $AR(2)$)

4 日下

÷

 Ω

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

Variance Forecasting

重

 299

 $\mathbf{y} = \mathbf{y}$. If $\mathbf{y} = \mathbf{y}$

Þ

K ロ ⊁ K 倒 ⊁ K

Variance Forecasts

- **•** Forecast uncertainty
	- \blacktriangleright Point forecasts insufficient!
- $\sigma_{t+1}^2 = \text{var}(y_{t+1}|I_t)$
- In the model $y_{t+1} = \boldsymbol{\beta}' {\bf x}_t + e_{t+1}$

•
$$
\sigma_{t+1}^2 = \text{var}(e_{t+1}|I_n) = E(e_{t+1}^2|I_t)
$$

 \leftarrow \Box

∢ n →

画

 Ω

10-Year Bond Rate

- **•** Prediction Residuals
- **•** Squares

重

 299

 \mathbb{B} is a \mathbb{B} is

K ロ ⊁ K 倒 ⊁ K

Figure: Squared Prediction Residuals

Variance Forecast Methods

- Constant Variance $\sigma_t^2 = \sigma^2$
	- \blacktriangleright Uncertainty not state-dependent
- GARCH
	- \blacktriangleright Common in financial data
	- \blacktriangleright Estimated by MLE
- **•** Regression Approach

$$
\blacktriangleright \sigma_t^2 = E\left(e_{t+1}^2|I_n\right) \approx \alpha' \mathbf{x}_t
$$

4 0 8

画

2-Step Variance Estimation

- Start with residuals \hat{e}_{t+1}
	- Better choice: leave-one-out residuals \widetilde{e}_{t+1}
- Estimate variance model (constant, ARCH, or regression)
- Obtain $\widehat{\sigma}_n^2$ from fitted model

4.0.3

э

- Least-squares residual variance biased toward zero
	- \blacktriangleright Forecast variance biased towards zero
- Leave-one-out residual variance estimates out-of-sample MSFE
	- \blacktriangleright This is appropriate

4 D F

÷

 Ω

Joint Estimation: Mean and Variance

- Alternative to two-step estimation
	- \blacktriangleright I prefer 2-step as the regression coefficients preserve their projection interpretation
	- \triangleright When the model is an approximation, the coefficient change their meaning under joint estimation

4 日下

 QQ

Constant Variance Model

$$
\begin{aligned}\n\bullet \ \sigma_t^2 &= \sigma^2 \\
\bullet \ \widehat{\sigma}_n^2 &= \widehat{\sigma}^2 = \frac{1}{n-1} \sum_{t=1}^{n-1} \widetilde{e}_{t+1}^2\n\end{aligned}
$$

重

 299

メロト メ都 トメ ヨ トメ ヨト

Regression Variance Model

- $σ_t^2 \approx α'$ **x**_t $e_{t+1}^2 = \alpha' \mathbf{x}_t + \eta_t$ $\widehat{\boldsymbol{\alpha}} = \left(\sum_{t=1}^{n-1} \mathbf{x}_t \mathbf{x}_t' \right)^{-1} \left(\sum_{t=1}^{n-1} \mathbf{x}_t \widetilde{\boldsymbol{e}}_{t+1}^2 \right)$ $\widehat{\sigma}_n^2 = \widehat{\boldsymbol{\alpha}}' \mathbf{x}_n$
	- Easy, but not constrained to $(0, \infty)$

4 0 8

画

GARCH Models

- $\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha e_t^2$
- Conditional variance of e_{t+1}
- Specifies conditional variance as function of recent squared innovations
- Large innovations (in magnitude) raise conditional variance
- Lagged variance smooths σ_t^2
- Non-negativity constraints: $\omega > 0$, $\beta \ge 0$, $\alpha > 0$

4 日下

÷

つへへ

GARCH with Regressors

$$
\bullet \ \sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha e_t^2 + \gamma x_t
$$

 $\mathrm{x}_t > 0$ useful to constrain regressor to be positive

 \sim

B

K ロ ▶ K 何 ▶

 QQ

Gaussian Quasi-Likelihood

- Assume normality to construct quasi-likelihood
- Let $\theta = (\omega, \beta, \alpha)$. The density of e_{t+1} is

$$
f_t(\theta) = \frac{1}{(2\pi\sigma_t^2)^{1/2}} \exp\left(-\frac{e_{t+1}^2}{\sigma_t^2}\right)
$$

$$
\log f_t(\theta) = \frac{1}{2} \left(\log(2\pi) + \log\left(\sigma_t^2\right) - \frac{e_{t+1}^2}{\sigma_t^2} \right)
$$

• Negative log-likelihood

$$
\mathcal{L}(\theta) = \sum_{t=0}^{n-1} \log f_t(\theta)
$$

4 D F

- Simple to calculate $\mathcal{L}(\theta)$ numerically
	- **F**irst calculate σ_t^2 given θ

Gaussian QMLE

- \bullet QMLE $\widehat{\theta}$ minimizes $\mathcal{L}(\theta)$
	- \triangleright Easy using BFGS or other gradient method
	- \triangleright Constrained optimization can be used to impose non-negative parameters
- Can write $\mathcal{L}(\theta)$ as a procedure and numerically minimize
	- ^I For each *θ*
		- \star Calculate *σ*²_t by recursion *σ*²_t = *ω* + *βσ*²_{t-1} + *α*e²_t given *σ*²₀
		- **★** Useful to trim σ_t^2 >> 0
		- \star If $\sigma_t^2 \le \sigma_0^2/100$ then set $\sigma_t^2 = \sigma_0^2/100$
		- \star Calculate log $f_t(\theta)$ and $\mathcal{L}(\theta)$

4 日下

÷

Computation (R)

- **Use tseries package**
	- \blacktriangleright Install under packages
	- \blacktriangleright library(tseries)
- x.arch $\langle -$ garch(e,order=c(1,1))
- \bullet x.arch \lt -

garch(e,order=c(1,1),control=garch.control(start=st))

- \triangleright st=starting values
- archc=coef(x.arch)
- sd=predict(x.arch)
- like=logLik(x.arch)
- help(garch)

4 D F

 \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

G.

 Ω

 \rightarrow \equiv \rightarrow

Distribution Theory

\n- $$
\sqrt{n} \left(\widehat{\theta} - \theta \right) \rightarrow_d N((0, V)
$$
\n- $$
V = H^{-1} \Omega H^{-1}
$$
\n- $$
H = E \frac{\partial^2}{\partial \theta \partial \theta'}
$$
log $f_t(\theta)$
\n- $$
\Omega = E \frac{\partial}{\partial \theta} \log f_t(\theta) \frac{\partial}{\partial \theta} \log f_t(\theta)'
$$
\n

Bruce Hansen (University of Wisconsin) **[Forecasting](#page-0-0) State Constant Constant Constant Constant Constant Constant**

重

メロト メ都 トメ ヨ トメ ヨト

Standard Errors

•
$$
\hat{H} = \frac{1}{n} \sum_{t=0}^{n-1} \frac{\partial^2}{\partial \theta \partial \theta'}
$$
 log $f_t(\hat{\theta}) = \frac{1}{n} \frac{\partial^2}{\partial \theta \partial \theta'} \mathcal{L}(\hat{\theta})$
\n• $\hat{\Omega} = \frac{1}{n} \sum_{t=0}^{n-1} \frac{\partial}{\partial \theta} \log f_t(\hat{\theta}) \frac{\partial}{\partial \theta} \log f_t(\hat{\theta})'$

- **•** Both can be calculated numerically
- $\widehat{V} = \widehat{H}^{-1} \widehat{O} \widehat{H}^{-1}$
- Standard errors are square roots of diagonal elements of $n^{-1}\widehat{V}$

4 0 8

∢ 何 ≯ →

B

 QQ

Model Selection

• Model with 2 ARCH lags and 2 regressors

$$
\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha_1 e_t^2 + \alpha_2 e_{t-1}^2 + \gamma_1 x_{1t} + \gamma_2 x_{2t}
$$

- How many lags? How many regressors?
- Presence of lagged σ_{t-1}^2 complicates issues
	- \rightarrow *β* not identified when $α_1 = α_2 = γ_1 = γ_2 = 0$
	- \triangleright This means conventional tests and information criterion are not correct when the process is close to constant variance
	- \triangleright We typically ignore this complication
- Since estimation is nonlinear MLE much of model selection & combination literature is not relevant
	- \triangleright AIC and TIC are appropriate
	- \triangleright Unfortunately, not easy to compute with standard packages

 Ω

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow B$

AIC and TIC for GARCH models

If model m has parameter vector $\theta(m)$ with $k(m)$ elements

•
$$
AIC(m) = 2\mathcal{L}(\widehat{\theta}(m)) + 2k(m)
$$

•
$$
TIC(m) = 2\mathcal{L}(\widehat{\theta}(m)) + 2 \operatorname{tr}(\widehat{H}(m)^{-1}\widehat{\Omega}(m))
$$

Not standard output

4 日下

 Ω

Variance Forecast from GARCH model

$$
\bullet \ \sigma_{n+1}^2 = \omega + \beta \sigma_n^2 + \alpha_1 e_n^2
$$

$$
\bullet \ \widehat{\sigma}_{n+1}^2 = \widehat{\omega} + \widehat{\beta}\widehat{\sigma}_n^2 + \widehat{\alpha}_1 \widetilde{\mathsf{e}}_n^2
$$

 $\widehat{\sigma}^2_{n+1}$ is estimated conditional variance of y_{n+1}

Standard deviation $\sqrt{\widehat{\sigma}_{n+1}^2}$

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

造

 Ω

Example: 10-Year Bond Rate

GARCH(1,1)

$$
\sigma_t^2 = \omega + \alpha e_t^2 + \beta \sigma_{t-1}^2
$$

\n*Estimate* s.e.
\n
$$
\omega
$$
 0.0001 0.0001
\n
$$
\alpha
$$
 0.200 0.041
\n
$$
\beta
$$
 0.835 0.025

重

 299

 \mathbb{B} is a \mathbb{B} is

K ロ ト K 伊 ト K

Variance Forecast

- **Conditional variance**
	- $\hat{\sigma}_{n+1}^2 = 0.054$
 $\hat{\sigma}_{n+1}^2 = 0.034$
	- $\hat{\sigma}_{n+1} = 0.23$
- **•** Unconditional
	- $\frac{\partial}{\partial t}$ $\hat{\sigma}^2 = 0.076$
	- $\hat{\sigma} = 0.28$
- The conditional variance at present is similar, but somewhat smaller than the unconditional

4 0 8

÷

Figure: Estimated Variance

Bruce Hansen (University of Wisconsin) **[Forecasting](#page-0-0) Forecasting July 23-27, 2012** 100 / 106

Example: GDP Growth

 $E = \Omega Q$

イロト イ団ト イミト イモト

GARCH(1)

$$
\sigma_t^2 = \omega + \alpha \mathsf{e}_t^2 + \beta \sigma_{t-1}^2
$$

• Conditional variance

$$
\begin{array}{l}\n\star \widehat{\sigma}_{n+1}^2 = 4.1\\ \n\star \widehat{\sigma}_{n+1} = 2.0\n\end{array}
$$

· Unconditional

$$
\frac{\partial^2}{\partial x^2} = 9.8
$$

$$
\blacktriangleright \widehat{\sigma} = 3.1
$$

重

 299

メロメ メ都 メメ きょくきょ

Figure: GDP: Estimated Variance

- Take your regression models from yesterday
- Calculate forecast weights by cross-validation (CV).
- Use these weights to make a one-step point forecast for July 2012.
- \bullet Take the leave-one-out prediction residuals. Estimate a GARCH $(1,1)$ model for the residuals. Calculate a one-step forecast standard deviation from the GARCH model, and compare with the unconditional standard deviation.

4 日下

 Ω