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Today’s Schedule

Review

VARs

Nowcasting

Combination Forecasts

Variance Forecasting
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Review

Optimal point forecast of yn+1 given information In is the conditional
mean E (yn+1|In)
Linear model E (yn+1|In) ' β′xn is an approximation
Estimate linear projections by least-squares

Model selection should focus on performance, not “truth”
I Best forecast has smallest MSFE
I Unknown, but MSFE can be estimated
I CV is a good estimator of MSFE

Good forecasts rely on selection of leading indicators
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Vector Autoregresive Models
yt is an p vector
xt are other variables (including lags)
Ideal point forecast E (yn+1|In)
Linear approximation

E (yn+1|In) ' A1yt + A2yt−1 + · · ·+ Akyt−k+1 + Bxt

Vector Autoregression (VAR)

yt+1 = A1yt + A2yt−1 + · · ·+ Akyt−k+1 + Bxt + et+1

Estimation: Least squares

yt+1 = Â1yt + Â2yt−1 + · · · +̂Akyt−k+1 + B̂xt + et+1

One-Step-Ahead Point forecast

ŷn+1 = Â1yn + Â2yn−1 + · · ·+ Âkyn−k+1 + B̂xn
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Vector Autoregresive versus Univariate Models

Let xt = (yt , yt−1, ..., xt )
Then a VAR is a set of p regression models

y1t+1 = β′1xt + e1t
...

ypt+1 = β′pxt + ept

All variables xt enter symmetrically in each equation
Sims (1980) argued that there is no a priori reason to include or
exclude an individual variable from an individual equation.
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Model Selection

Do not view selection as identification of “truth”

Rather, inclusion/exclusion is to improve finite sample performance
I minimize MSFE

Use selection methods, equation-by-equation
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Example: VAR with 2 variables

y1t+1 = β̂11y1t + β̂12y1t−1 + β̂13y2t + ê1t
...

y2t+1 = β̂21y1t + β̂22y2t + β̂23y2t−1 + ê2t

Selection picks y1t , y1t−1, y2t for equation for y1t+1
Selection picks y1t , y2t , y2t−1 for equation for y2t+1
The two equations have different variables
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Same as system

yt+1 = A1yt + A2yt−1 + et+1

with

A1 =

[
β11 β13
β21 β22

]
A2 =

[
β12 0
0 β23

]
The VAR system notation is still quite useful for many purposes
(including multi-step forecasting)
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Nowcasting

Forecasting current, near recent, or near future economic activity

For example, 2nd quarter GDP (April-June 2012)
I So far, we have used information up through first quarter
I We have a fair amount of information
I Quite a lot about the 2nd quarter itself
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General Framework

Two time scales
I yt (GDP)
I xv (interest rates)
I It ,v : information in yj for j ≤ t and xj for j ≤ v
I e.g., GDP up to 2011:1, interest rates up to today

Optimal forecast of yt+1 given It ,v is conditional mean

E (yt+1|It ,v ) = µt ,v
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Standard Linear Approximation

Approximate conditional mean as linear and Markov

E (yt+1|It ,v ) = µt ,v
≈ β0 + β1yt + · · ·+ βkyt−k+1

+γ0xv + γ1xv−1 + · · ·+ γpxv−p

Traditional solution (aggregate xv to frequency t)
I Sets γj = 0 for periods v before quarter t
I Sets γj = γk for periods j and k in common quarter t
I Unreasonable restrictions

Unrestricted approximation
I Non-parsimonious
I p may be very large
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MIDAS

Ghysels, Santa-Clara, and Valkanov

Use parametric distributed-lag structure for coeffi cients γj
Diffi cult to justify parametric restrictions
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Example: GDP Nowcasting

Suppose we are interested in forecasting 2012 2nd quarter GDP
growth

I Economic activity for April, May and June

For April, May and June, we have considerable information
I Interest rates
I unemployment rates
I Industrial Production
I Housing starts
I Building Permits
I Inflation
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Growth Rate

xt = ln IPt − ln IPt−1
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One Month Inflation Rate

INFt = lnCPIt − lnCPIt−1
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Three Month Inflation Rate

INFt = lnCPIt − lnCPIt−3
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One Year Inflation Rate

INFt = lnCPIt − lnCPIt−12
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Nowcasting Regression

GDP growth as a linear function of
I Previous 2 quarters GDP growth
I Contemporaneous 3 months of

F Term Spread (10 year over 3 month)
F Default Spread (BAA over AAA yield)
F Industrial Production
F Building Permits
F Housing Starts

I (Or whatever is available at time of forecast)
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Notation

t = year

q = quarter , q = 1, 2, 3, 4

m = month in quarter, m = 1, 2, 3

GDPt ,q= GDP in year t, quarter q
I Convention: GDPt ,0 = GDPt−1,4

IPt ,q,m = IP in year t, quarter q, month m
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Example Models

Monthly Data through First Month of Forecast Quarter

GDPt ,q = β1GDPt ,q−1 + β2GDPt ,q−2 + β3IPt ,q,1 + β4IPt ,q−1,3 + · · ·

Monthly Data through Second Month of Forecast Quarter

GDPt ,q = β1GDPt ,q−1 + β2GDPt ,q−2 + β3IPt ,q,2 + β4IPt ,q,1 + · · ·

Regressor Construction from Monthly Variables
I Divide into “first”, “second”and “third”months of quarters
I Now you have 3 quarterly observations for each variable
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Nowcasting Estimates

Based on data through April (first month of forecast quarter)

Selected variables:
I ∆ log(GDPt ) (one lag)
I IP1, IP3, IP2 (first, previous third, and previous second months)
I HS1, HS3 (first and previous third months)

β̂ s(β̂)
Intercept 0.32 (0.62)
∆ log(GDPt ) -0.07 (0.06)
Industrial Production1 0.17 (0.02)
Industrial Production3 0.07 (0.02)
Industrial Production2 0.12 (0.03)
Housing Starts1 4.00 (1.14)
Housing Starts3 −2.64 (1.14)
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Nowcasting Point Forecast

2nd Quarter GDP Growth: 2.93

Fitted model: CV = 5.339
I Note that yesterday’s best fitting model had CV = 10.28
I Point forecast changes from 1.53 to 2.93
I Adding contemporaneous IP very useful
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Flexibility

As each piece of information becomes available, that variable can be
added to regression

Sequence of nowcast estimates, updated with new information
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Recommendation

Make use of higher frequency information

Be creative and flexible

Handling high-dimensional p is similar to many other
high-dimensional problems

I Model selection, combination, shrinkgae

Requires frequent re-estimation of distinct forecasting models as new
information arises

I Requires significant empirical care and attention to detail
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Combination Forecasts
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Diversity of Forecasts

Model choice is critical
I Classic approach: Selection
I Modern approach: Combination

Issues:
I How to select from a wide set of models/forecasts?

F Model selection criteria

I How to combine a wide set of models/forecasts?

F Weight selection criteria
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Foundation

The ideal point forecast minimizes the MSFE

The goal of a good combination forecast is to minimize the MSFE
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Forecast Selection

M forecasts: f = {f (1), f (2), ..., f (M)}
Selection picks m̂ to determine the forecast f = f (m̂)

M weights: w = {w(1),w(2), ...,w(M)}
A combination forecast is the weighted average

f (w) =
M

∑
m=1

w(m)f (m)

= w′f

Combination generalizes selection
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Possible restrictions on the weight vector

∑M
m=1 w(m) = 1
I Unbiasedness
I Typically improves performance

w(m) ≥ 0
I nonnegativity
I regularization
I Often critical for good performance

w(m) ∈ {0, 1}
I Equivalent to forecast selection
I f (w) = f (m)
I Selection is a special case of combination
I Strong restriction
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OOS Forecast Combination

Sequence of true out-of-sample forecasts ft for yt+1
Combination forecast is f (w) = w′f
OOS empirical MSFE

σ̂2(w) =
1
P

n

∑
t=n−P

(
yt+1 −w′ft

)2
PLS selected the model with the smallest OOS MSFE

Granger-Ramanathan combination: select w to minimize the OOS
MSFE

Minimization over w is equivalent to the least-squares regression of yt
on the forecasts

yt+1 = w′ft + εt+1
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Granger-Ramanathan (1984)

Unrestricted least-squares

ŵ =

(
n

∑
t=n−P

ft f ′t

)−1 n

∑
t=n−P

ftyt+1

This can produce weights far outside [0, 1] and don’t sum to one

Granger-Ramanathan’s intuition was that this flexibility is good
I But they provided no theory to support conjecture

Unrestricted weights are not regularized
I This results in poor sampling performance
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Alternative Representation

Take yt+1 = w′ft + εt+1, subtract yt+1 from each side

0 = w′ft − yt+1 + εt+1

Impose restriction that weights to sum to one.

0 = w′ (ft − yt+1) + εt+1

Define et+1 = w′ (ft − yt+1) , the (negative) forecast errors. Then

0 = w′et+1 + εt+1

This is the regression of 0 on the forecast errors

But it is still better to also impose non-negativity w(m) ≥ 0

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 38 / 106



Constrained Granger-Ramanathan

The constrained GR weights solve the problem

min
w
w′Aw

subject to

M

∑
m=1

w(m) = 1

0 ≤ w(m) ≤ 1
where

A = ∑
t
et+1e′t+1

is the M ×M matrix of forecast error empirical variances/covariances
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Quadratic Programming (QP)

The weights lie on the unit simplex

The constrained GR weights minimize a quadratic over the unit
simplex

QP algorithms easily solve this problem
I Gauss (qprog)
I Matlab (quadprog)
I R (quadprog)

Solution solution typical
I Many forecasts will receive zero weight
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Bates-Granger (1969)

Assume A = ∑t et+1e′t+1 is diagonal.
Then the regression with the coeffi cients constrained to sum to one

0 = w′et+1 + εt+1

has solution

w(m) =
σ̂−2(m)

∑M
j=1 σ̂−2(j)

This are the Bates-Granger weights.

In many cases, they are close to equality, since OOS forecast
variances can be quite similar
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Bayesian Model Averaging (BMA)

Put priors on individual models, and priors on the probability that
model m is the true model

Compute posterior probabilites w(m) that m is the true model

Forecast combination using w(m)

Advantages
I Conceptually simple
I no theoretical analysis required
I applies in broad contexts

Disadvantages
I Not designed to minimize forecast risk
I Similar to BIC: asymptotically picks “true”finite models
I does not distinguish between 1-step and multi-step forecast horizons
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BMA Approximation

BIC weights

w(m) ∝ exp
(
−BIC (m)

2

)
Simple approximation to full BMA method

Smoothed version of BIC selection

Works better than BIC selection in simulations
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AIC Weights

Smooted AIC

w(m) ∝ exp
(
−AIC (m)

2

)
Proposed by Buckland, Burnhamm and Augustin (1997)

Not theoretically motivated, but works better than AIC selection in
simulations
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Comments

Combination methods typically work better (lower MSFE) than
comparable selection methods

BIC and BMA not optimal for MSFE

Granger-Ramanathan has similar senstive as PLS to choice of P

Bates-Granger and weighted AIC have no theoretical grounding
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Forecast Combination

ŷn+1(w) =
M

∑
m=1

w(m)ŷn+1(m)

=
M

∑
m=1

w(m)xn(m)′ β̂(m)

= x′n β̂(w)

where

β̂(w) =
M

∑
m=1

w(m)β̂(m)

In Iinear models, the combination forecast is the same as the forecast
based on the weighted average of the parameter estimates across the
different models
Computationally, it is easiest to calculate the M individual forecast
ŷn+1(m), then take the weighted average to obtain ŷn+1(w)
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Combination Residuals

êt+1(w) = yt+1 − x′t β̂(w)

=
M

∑
m=1

w(m)
(
yt+1 − x′t β̂(m)

)
=

M

∑
m=1

w(m)êt+1(m)

In linear models, the residual from the combination model is the same
as the weighted average of the model residuals.
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Residual variance

σ̂2(w) =
1
n

n

∑
t=1

(
M

∑
m=1

w(m)êt+1(m)

)2
=

1
n

n

∑
t=1

(
w′êt+1

)2
= w′Ŝw

where

Ŝ =
1
n

n

∑
t=1
êt+1ê′t+1

The residual variance is a quadratic function of the covariance matrix
of the M model residuals.
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Point Forecast and MSFE

Given ŷn+1(w) the forecast error is

yn+1 − ŷn+1(w) = x′nβ+ et+1 − x′n β̂(w)

= en+1 − x′n
(

β̂(w)− β
)

The mean-squared-forecast-error (MSFE) is

MSFE (w) = E
(
en+1 − x′n

(
β̂(w)− β

))2
' σ2 + E

((
β̂(w)− β

)′
Q
(

β̂(w)− β
))

Minimizing MSFE is the same as minimizing the MSE of the
coeffi cient estimate
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Fitted values from Combination Forecast

µ̂t (w) =
M

∑
m=1

w(m)x′t β̂(m)

and

µ̂ =
M

∑
m=1

w(m)X(m)β̂(m)

=
M

∑
m=1

w(m)X(m)
(
X(m)′X(m)

)−1 X(m)′y
=

M

∑
m=1

w(m)P(m)y

= P(w)y

where

P(w) =
M

∑
m=1

w(m)P(m)
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Fitted values from Combination Forecast (con’t)

µ̂ = P(w)y

P(w) =
M

∑
m=1

w(m)P(m)

In-sample fitted values are a linear operator on the dependent variable

The operator P(w) is not a projection matrix
It is a weighted average of projection matrices
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Residual Fit

σ̂(w)2 =
1
n

n−1
∑
t=0

êt+1(w)2

=
1
n

n−1
∑
t=0

e2t+1 +
1
n

n−1
∑
t=0

(
x′t
(

β̂(w)− β
))2

−2
n

n−1
∑
t=0

et+1x′t
(

β̂(w)− β
)

First two terms are estimates of

MSFE (w) = E
(
en+1 − x′n

(
β̂(w)− β

))2
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Third term is

n−1
∑
t=0

et+1x′t
(

β̂(w)− β
)
=

M

∑
m=1

w(m)
n−1
∑
t=0

et+1x′t
(

β̂(m)− β
)

=
M

∑
m=1

w(m)e′P(m)e

= e′P(w)e

where
P(m) = X(m)

(
X(m)′X(m)

)−1 X(m)′
and

P(w) =
M

∑
m=1

w(m)P(m)
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Residual Variance as Biased estimate of MSFE

E
(
σ̂(w)2

)
' MSFEn(w)−

2
n
B(w)

where

B(w) = E
(
e′P(w)e

)
=

M

∑
m=1

w(m)E
(
e′P(m)e

)
=

M

∑
m=1

w(m)B(m)

Unbiased estimate of MSFE

Cn(w) = σ̂(w)2 +
2
n
B(w)
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Bias Term

B(w) =
M

∑
m=1

w(m)B(m)

B(m) = tr
(
Q(m)−1Ω(m)

)
In homoskedastic case

B(m) = σ2k(m)

B(w) = σ2
M

∑
m=1

w(m)k(m)

a weighted average of the number of coeffi cients in each estimator.

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 55 / 106



Mallows Averaging Criterion

Cn(w) = σ̂2(w) +
2
n

σ̃2
M

∑
m=1

w(m)k(m)

with σ̃2 an estimate from a “large”model

σ̃2 =
1

n−K
n−1
∑
t=0

êt+1(K )2

Hansen (2007, Econometrica) Mallows Model Averaging (MMA)
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Mallows Weight Selection

Write
M

∑
m=1

w(m)k(m) = w′K

where K = (k(1), ..., k(M))′. This is linear in w
We showed earlier that σ̂2(w) = w′Ŝw is quadratic.
Linear/Quadratic criterion

Cn(w) = w′Ŝw+
2
n

σ̃2w′K

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 57 / 106



Forecast Model Averaging (FMA)

Hansen (Journal of Econometrics, 2008)

Cn(w) = w′Ŝw+
2
n

σ̃2w′K

Combination weights found by constrained minimization of Cn(w)

ŵ = argmin
w

[
w′Ŝw+

2
n

σ̃2w′K
]

subject to

M

∑
m=1

w(m) = 1

0 ≤ w(m) ≤ 1
Solution by Quadratic Programming (QP)
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Theory of Optimal Weights

MSFEn(w) is the MSFE using weights w
infwMSFEn(w) is the (infeasible) best MSFE, where the inf is over
all feasible weights

Let ŵ be the selected weights
Let MSFEn(ŵ) denote the MSFE using the selected weighted average
We say that weight selection is asymptotically optimal if

MSFEn(ŵ)
infwMSFEn(w)

p−→ 1
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Theory of Optimal Weights

Hansen (2007, Econometrica)

Mallows weight selection is asymptotically optimal under
homoskedasticity

No optimality proof yet for dependent data
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Comparison of Granger-Ramanathan and FMA

Both are solved by Quadratic Programming (QP)

Both typically yield corner solutions —many forecasts will receive zero
weight

GR uses empirical (OOS) forecast errors, FMA uses sample residuals

GR uses no penalty, FMA uses “average # of parameters”penalty

FMA is an estimate of MSFE for homoskedastic one-step forecasts,
GR has no optimality
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Robust Mallows

Cn(w) = σ̂2(w) +
2
n

M

∑
m=1

w(m) tr
(
Q(m)−1Ω(m)

)
Q(m) = E

(
xt (m)xt (m)′

)
Ω(m) = E

(
xt (m)x′t (m)e

2
t+1

)
Sample estimate

C ∗n (w) = σ̂2(w) +
2
n

M

∑
m=1

w(m) tr
(
Q̂(m)−1Ω̂(m)

)
= w′Ŝw+

2
n
w′B

where

B =
(

tr
(
Q̂(1)−1Ω̂(1)

)
, tr

(
Q̂(2)−1Ω̂(2)

)
,
... tr

(
Q̂(K )−1Ω̂(K )

) )′
is vector of correction terms from robust Mallows selection.
Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 62 / 106



Cross-Validation

Leave-one-out estimator

β̂−t (w) =
M

∑
m=1

w(m)β̂−t (m)

=
M

∑
m=1

w(m)

(
∑
j 6=t
xj (m)xj (m)′

)−1 (
∑
j 6=t
xj (m)yj+1

)

Leave-one-out prediction residual

ẽt+1(m) = yt+1 −
M

∑
m=1

w(m)β̂−t (w)
′xt (m)

=
M

∑
m=1

w(m)ẽt+1(m)

where the second equality holds since the weights sum to one.
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CVn(w) =
1
n

∑n−1
t=0 ẽt+1(w)

2 is an estimate of MSFEn(m)

Cross-validation (CV) criterion for regression combination/averaging
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Cross-validation criterion for combination forecasts

CVn(w) =
1
n

n

∑
t=1
ẽt+1(w)2

=
1
n

n

∑
t=1

(
M

∑
m=1

w(m)ẽt+1(m)

)2

=
M

∑
m=1

M

∑
`=1

w(m)w(`)
1
n

n

∑
t=1
ẽt+1(m)ẽt+1(`)

= w′S̃w

where
S̃ =

1
n
ẽ ′ẽ

is covariance matrix of leave-1-out residuals.
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Cross-validation Weights

Combination weights found by constrained minimization of CVn(w)

min
w
CVn(w) = w′S̃w

subject to

M

∑
m=1

w(m) = 1

0 ≤ w(m) ≤ 1
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Cross-validation for combination forecasts (theory)

Theorem: ECVn(w) ' Cn(w)
For heteroskedastic forecasts, CV is a valid estimate of the one-step
MSFE from a combination forecast

Hansen and Racine (Journal of Econometrica, 2012) show that the
CV weights are asymptotically optimal for cross-section data under
heteroskedasticity

No optimality theory for dependent data
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Computation (R)

Min (
1
2
w′S̃w+ d ′w) subject to A′w ≥ b

Need quadprog package
I Install under packages
I library(quadprog)

QP <- solve.QP(D,d,A,b,b)

w <- QP$solution

w <- as.matrix(w)

help(solve.QP) for documentation

D = S̃ = (e ′e)/n where e is n×M matrix of leave-one-out residuals
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Summary: Forecast Combination Methods

Granger-Ramanathan (GR), forecast model averaging (FMA) and
cross-validation (CV) all pick weight vectors by quadratic
minimization

GR only needs actual forecasts, the method can be unknown or a
black box

CV can be computed for a wide variety of estimation methods
I optimality theory for linear estimation

FMA limited to homoskedastic one-step-ahead models

Smoothed AIC (SAIC) and BMA have no forecast optimality, and are
designed for homoskedastic one-step-ahead forecasts.
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Example: AR models for GDP Growth

Fit AR(1) and AR(2) only

Leave-one-out residuals ẽ1t and ẽ2t
Covariance matrix

S̃ =
[
10.72 10.44
10.44 10.52

]
The best-fitting single model is AR(2)

The best combination is w = (.22, .78)′

CV = 10.50
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Example: AR models for GDP Growth

Fit AR(0) through AR(12)

AR(0) is constant only

Models with positive weight are AR(0), AR(1), AR(2)

w = (.06, .16, .78)′

S̃ =

 12.0 10.6 10.4
10.6 10.7 10.4
10.4 10.5 10.5


CV = 10.50 (essentially unchanged)
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Example: Leading Indicator Forecasts

Fit AR(1), AR(2) with leading indicators

Models with positive weight

w
AR(1), Spread, Housing 0.13
AR(1), Spread, High-Yield, Housing 0.16
AR(1), Spread, High-Yield, Housing, Building 0.52
AR(2) 0.18
AR(2), Spread 0.01

CV = 9.81
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Example: Nowcasting

Models with positive weight are
I w = .17 on ∆ log(GDPt ), IP1, IP3, IP2, HS1,
I w = .83 on ∆ log(GDPt ), IP1, IP3, IP2, HS1, HS3

CV = 5.335

Point Forecast= 2.91

Essentially same as selected model
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Summary: Forecast Combination by CV
M forecasts f̂n+1(m) from n observations

For each estimate m
I Define the leave-one-out prediction error

ẽt+1(m) = yt+1 − β̂
′
(−t)(m)xt (m)

=
êt+1(m)
1− htt (m)

I Store the n× 1 vector ẽ(m)
Construct the M ×M matrix

S̃ =
1
n
ẽ ′ẽ

Find the M × 1 weight vector w which minimizes w′S̃w
I Use quadratic programming (quadprog) to find solution

The combination forecast is f̂n+1 = ∑M
m=1 w(m)f̂n+1(m)
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Forecast Combination Criticisms

There has been considerable skepticism about formal forecast
combination method in the forecast literature

Many researchers have found that equal weighting: (wm = 1/M)
works as well as formal methods

However, the formal methods which investigated are
I Bates-Granger simple weights

F Not expected by theory to work well

I Unconstrained Granger-Ramanathan

F Without imposing [0, 1] weights, work terribly!

Furthermore, most investigations examine pseudo out-of-sample
performance

I Identical to comparing models by PLS criterion
I This is NOT an investigation of performance
I Just a ranking by PLS
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Another Example - 10-Year Bond Rate

Estimated AR(1) through AR(24) models

CV Selection picked AR(2)

CV weight Selection: Models with positive weight
I AR(0): w = 0.04
I AR(1): w = 0.04
I AR(2): w = 0.47
I AR(6): w = 0.23
I AR(22): w = 0.22

MInimizing CV = 0.0761 (slightly lower than 0.0768 from AR(2))

Point forecast 1.96 (same as from AR(2))
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Variance Forecasting
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Variance Forecasts

Forecast uncertainty
I Point forecasts insuffi cient!

σ2t+1 = var (yt+1|It )
In the model yt+1 = β′xt + et+1

I σ2t+1 = var (et+1 |In) = E
(
e2t+1 |It

)
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10-Year Bond Rate

Prediction Residuals

Squares
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Figure: Leave-One-Out Prediction Residuals
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Figure: Squared Prediction Residuals
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Variance Forecast Methods

Constant Variance σ2t = σ2

I Uncertainty not state-dependent

GARCH
I Common in financial data
I Estimated by MLE

Regression Approach
I σ2t = E

(
e2t+1 |In

)
≈ α′xt
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2-Step Variance Estimation

Start with residuals êt+1
I Better choice: leave-one-out residuals ẽt+1

Estimate variance model (constant, ARCH, or regression)

Obtain σ̂2n from fitted model
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Which Residuals?

Least-squares residual variance biased toward zero
I Forecast variance biased towards zero

Leave-one-out residual variance estimates out-of-sample MSFE
I This is appropriate
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Joint Estimation: Mean and Variance

Alternative to two-step estimation
I I prefer 2-step as the regression coeffi cients preserve their projection
interpretation

I When the model is an approximation, the coeffi cient change their
meaning under joint estimation
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Constant Variance Model

σ2t = σ2

σ̂2n = σ̂2 =
1

n− 1 ∑n−1
t=1 ẽ

2
t+1
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Regression Variance Model

σ2t ≈ α′xt
e2t+1 = α′xt + ηt

α̂ =
(
∑n−1
t=1 xtx

′
t

)−1 (
∑n−1
t=1 xt ẽ

2
t+1

)
σ̂2n = α̂′xn

I Easy, but not constrained to (0,∞)
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GARCH Models

σ2t = ω+ βσ2t−1 + αe2t
Conditional variance of et+1
Specifies conditional variance as function of recent squared
innovations

Large innovations (in magnitude) raise conditional variance

Lagged variance smooths σ2t

Non-negativity constraints: ω > 0, β ≥ 0, α > 0
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GARCH with Regressors

σ2t = ω+ βσ2t−1 + αe2t + γxt
xt > 0 useful to constrain regressor to be positive
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Gaussian Quasi-Likelihood

Assume normality to construct quasi-likelihood

Let θ = (ω, β, α). The density of et+1 is

ft (θ) =
1

(2πσ2t )
1/2 exp

(
−e

2
t+1

σ2t

)

log ft (θ) =
1
2

(
log(2π) + log

(
σ2t
)
− e

2
t+1

σ2t

)
Negative log-likelihood

L(θ) =
n−1
∑
t=0

log ft (θ)

Simple to calculate L(θ) numerically
I First calculate σ2t given θ
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Gaussian QMLE

QMLE θ̂ minimizes L(θ)
I Easy using BFGS or other gradient method
I Constrained optimization can be used to impose non-negative
parameters

Can write L(θ) as a procedure and numerically minimize
I For each θ

F Calculate σ2t by recursion σ2t = ω+ βσ2t−1 + αe2t given σ20
F Useful to trim σ2t >> 0
F If σ2t ≤ σ20/100 then set σ2t = σ20/100
F Calculate log ft (θ) and L(θ)
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Computation (R)

Use tseries package
I Install under packages
I library(tseries)

x.arch <- garch(e,order=c(1,1))

x.arch <-
garch(e,order=c(1,1),control=garch.control(start=st))

I st=starting values

archc=coef(x.arch)

sd=predict(x.arch)

like=logLik(x.arch)

help(garch)

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 92 / 106



Distribution Theory

√
n
(

θ̂ − θ
)
→d N((0,V )

V = H−1ΩH−1

H = E
∂2

∂θ∂θ′
log ft (θ)

Ω = E
∂

∂θ
log ft (θ)

∂

∂θ
log ft (θ)′
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Standard Errors

Ĥ =
1
n

∑n−1
t=0

∂2

∂θ∂θ′
log ft (θ̂) =

1
n

∂2

∂θ∂θ′
L(θ̂)

Ω̂ =
1
n

∑n−1
t=0

∂

∂θ
log ft (θ̂)

∂

∂θ
log ft (θ̂)′

Both can be calculated numerically

V̂ = Ĥ−1Ω̂Ĥ−1

Standard errors are square roots of diagonal elements of n−1V̂
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Model Selection

Model with 2 ARCH lags and 2 regressors

σ2t = ω+ βσ2t−1 + α1e2t + α2e2t−1 + γ1x1t + γ2x2t

How many lags? How many regressors?

Presence of lagged σ2t−1 complicates issues
I β not identified when α1 = α2 = γ1 = γ2 = 0
I This means conventional tests and information criterion are not correct
when the process is close to constant variance

I We typically ignore this complication

Since estimation is nonlinear MLE much of model selection &
combination literature is not relevant

I AIC and TIC are appropriate
I Unfortunately, not easy to compute with standard packages

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 95 / 106



AIC and TIC for GARCH models

If model m has parameter vector θ(m) with k(m) elements

AIC (m) = 2L(θ̂(m)) + 2k(m)
TIC (m) = 2L(θ̂(m)) + 2 tr

(
Ĥ(m)−1Ω̂(m)

)
Not standard output

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 96 / 106



Variance Forecast from GARCH model

σ2n+1 = ω+ βσ2n + α1e2n
σ̂2n+1 = ω̂+ β̂σ̂2n + α̂1 ẽ2n
σ̂2n+1 is estimated conditional variance of yn+1

Standard deviation
√

σ̂2n+1
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Example: 10-Year Bond Rate

GARCH(1,1)

σ2t = ω+ αe2t + βσ2t−1

Estimate s.e.
ω 0.0001 0.0001
α 0.200 0.041
β 0.835 0.025
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Variance Forecast

Conditional variance
I σ̂2n+1 = 0.054
I σ̂n+1 = 0.23

Unconditional
I σ̂2 = 0.076
I σ̂ = 0.28

The conditional variance at present is similar, but somewhat smaller
than the unconditional
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Figure: Estimated Variance
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Example: GDP Growth
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Figure: GDP: Leave-One-Out Prediction Residuals
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Figure: GDP: Squared Prediction Residuals
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GARCH(1)
σ2t = ω+ αe2t + βσ2t−1

Estimate s.e.
ω 0.81 0.46
α 0.21 0.06
β 0.72 0.06

Conditional variance
I σ̂2n+1 = 4.1
I σ̂n+1 = 2.0

Unconditional
I σ̂2 = 9.8
I σ̂ = 3.1
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Figure: GDP: Estimated Variance
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Assignment 2

Take your regression models from yesterday

Calculate forecast weights by cross-validation (CV).

Use these weights to make a one-step point forecast for July 2012.

Take the leave-one-out prediction residuals. Estimate a GARCH(1,1)
model for the residuals. Calculate a one-step forecast standard
deviation from the GARCH model, and compare with the
unconditional standard deviation.
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