
Advanced Time Series and Forecasting
Lecture 1
Forecasting

Bruce E. Hansen

Summer School in Economics and Econometrics
University of Crete
July 23-27, 2012

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 1 / 105



5-Day Course

Monday: Univariate 1-step Point Forecasting, Forecast Selection

Tuesday: Nowcasting, Combination Forecasts, Variance Forecasts

Wednesday: Interval Forecasting, Multi-Step Forecasting, Fan Charts

Thursday: Density Forecasts, Threshold Models, Nonparametric
Forecasting

Friday: Structural Breaks
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Each Day

Lectures: Methods with Illustrations

Practical Sessions:
I An empirical assignment
I You will be given a standard dataset
I Asked to estimate models, select and combine estimates
I Make forecasts, forecast intervals, fan charts
I Write your own programs
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Course Website

www.ssc.wisc.edu/~bhansen/crete

Slides for all lectures

Data for the lectures and practical sessions

Assignments

R code for the many of the lectures
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Today’s Schedule

What is Forecasting?

Point Forecasting

Linear Forecasting Models

Estimation and Distribution Theory

Forecast Selection: BIC, AIC, AICc , Mallows, Robust Mallows, FPE,
Cross-Validation, PLS, LASSO

Leading Indicators
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Example 1

U.S. Quarterly Real GDP
I 1960:1-2012:1
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Figure: U.S. Real Quarterly GDP
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Transformations

It is mathematically equivalent to forecast yn+h or any monotonic
transformation of yn+h and lagged values.

I It is equivalent to forecast the level of GDP, its logarithm, or
percentage growth rate

I Given a forecast of one, we can construct the forecast of the other.

Statistically, it is best to forecast a transformation which is close to iid
I For output and prices, this typically means forecasting growth rates
I For rates, typically means forecasting changes
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Annualized Growth Rate

yt = 400(log(Yt )− log(Yt−1))
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Figure: U.S. Real GDP Quarterly Growth
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Example 2

U.S. Monthly 10-Year Treasury Bill Rate
I 1960:1-2012:4
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Figure: U.S. 10-Year Treasury Rate
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Monthly Change

yt = Yt − Yt−1
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Figure: U.S. 10-Year Treasury Rate Change
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Notation

yt : time series to forecast
n : last observation
n+ h : time period to forecast
h : forecast horizon

I We often want to forecast at long, and multiple, horizons
I For the first days we focus on one-step (h = 1) forecasts, as they are
the simplest

In : Information available at time n to forecast yn+h
I Univariate: In = (yn , yn−1, ...)
I Multivariate: In = (xn , xn−1, ...) where xt includes yt , “leading
indicators”, covariates, dummy indicators
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Forecast Distribution

When we say we want to forecast yn+h given In,
I We mean that yn+h is uncertain.
I yn+h has a (conditional) distribution
I yn+h | In ∼ F (yn+h |In)

A complete forecast of yn+h is the conditional distribution F (yn+h |In)
or density f (yn+h |In)
F (yn+h |In) contains all information about the unknown yn+h
Since F (yn+h |In) is complicated (a distribution) we typically report
low dimensional summaries, and these are typically called forecasts

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 16 / 105



Standard Forecast Objects

Point Forecast

Variance Forecast

Interval Forecast

Density forecast

Fan Chart

All of these forecast objects are features of the conditional distribution

Today, we focus on point forecasts
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Point Forecasts
fn+h|h, the most common forecast object
“Best guess” for yn+h given the distribution F (yn+h |In)
We can measure its accuracy by a loss function, typically squared error

` (f , y) = (y − f )2

The risk is the expected loss

En` (f , yn+h) = E
(
(yn+h − f )2 |In

)
The “best”point forecast is the one with the smallest risk

f = argmin
f

E
(
(yn+h − f )2 |In

)
= E (yn+h |In)

Thus the optimal point forecast is the true conditional expectation
Point forecasts are estimates of the conditional expectation
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Estimation

The conditional distribution F (yn+h |In) and ideal point forecast
E (yn+h |In) are unknown
They need to be estimated from data and economic models

Estimation involves
I Approximating E (yn+h |In) with a parametric family
I Selecting a model within this parametric family
I Selecting a sample period (window width)
I Estimating the parameters

The goal of the above steps is not to uncover the “true”E (yn+h |In),
but to construct a good approximation.
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Information Set

What variables are in the information set In?
All past lags

I In = (xn , xn−1, ...)

What is xt?
I Own lags, “leading indicators”, covariates, dummy indicators
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Markov Approximation

E (yn+1|In) = E (yn+1|xn, xn−1, ...)
I Depends on infinite past

We typically approximate the dependence on the infinite past with a
Markov (finite memory) approximation

For some p,

E (yn+1|xn, xn−1, ...) ≈ E (yn+1|xn, ..., xn−p)

This should not be interpreted as true, but rather as an
approximation.
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Linear Approximation

While the true E (yn+1|xn, ..., xn−p) is probably a nasty non-linear
function, we typically approximate it by a linear function

E (yn+1|xn, ..., xn−p) ≈ β0 + β′1xn + · · ·+ β′pxn−p

= β′xn

Again, this should not be interpreted as true, but rather as an
approximation.

The error is defined as the difference between yn+h and the linear
function

et+1 = yt+1 − β′xt
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Linear Forecasting Model

We now have the linear point forecasting model

yt+1 = β′xt + et+h

As this is an approximation, the coeffi cient and eror are defined by
projection

β =
(
E
(
xtx′t

))−1
(E (xtyt+1))

et+1 = yt+1 − β′xt
E (xtet+1) = 0

σ2 = E
(
e2t+1

)
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Properties of the Error

E (xtet+1) = 0
I Projection

E (et+1) = 0
I Inclusion of an intercept

If xt = (yt , yt−1, ..., yt−k+1)
I E

(
yt−j et+1

)
= 0, for j = 0, ..., k − 1

I E
(
yt−j et+1

)
6= 0 possible for j ≥ k

σ2 = E
(
e2t+1

)
I This is the unconditional variance
I The conditional variance σ2t = E

(
e2t+1 |It

)
may be time-varying
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Univariate (Autoregressive) Model

xt = (yt , yt−1, ..., yt−k+1)

A linear forecasting model is

yt+1 = β0 + β1yt + β2yt−1 + · · ·+ βkyt−k+1 + et+1

AR(k) —Autoregression of order k
I Typical AR(k) models add a stronger assumption about the error et+1

F IID (independent)
F MDS (unpredictable)
F white noise (linearly unpredicatable/uncorrelated)

I These assumptions are convenient for analytic purpose (calculations,
simulations)

I But they are unlikely to be true

F Making an assumption does not make the assumption true
F Do not confuse assumptions with truth
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Least Squares Estimation

β̂ =

(
n−1
∑
t=0

xtx′t

)−1 (n−1
∑
t=0

xtyt+1

)
ŷn+1|n = f̂n+1|n = β̂

′
xn
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Distribution Theory - Consistent Estimation
If (yt , xt ) are weakly dependent (stationary and mixing, not trended
nor unit roots) then

I Sample means satisfy the WLLN

1
n

n−1
∑
t=0

xtx′t
p−→ Q = E

(
xtx′t

)
1
n

n−1
∑
t=0

xtyt+1
p−→ E (xtyt+1)

I Thus by the continuous mapping theory

β̂ =

(
n−1
∑
t=0

xtx′t

)−1 (n−1
∑
t=0

xtyt+1

)

p−→
(
Extx′t

)−1
(Extyt+1)

= β
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Distribution Theory - Asymptotic Normality

If (yt , xt ) are weakly dependent (stationary and mixing) then:
I Mean-zero random variables satisfy the CLT.
If ut = g(yt+1, xt ) and E (ut ) = 0, then

1√
n

n−1
∑
t=0

ut
d−→ N(0,Ω)

where

Ω = E
(
utu′t

)
+

∞

∑
j=1

(
utu′t+j + ut+ju

′
t

)
is the long-run (HAC) covariance matrix

I If ut is serially uncorrelated, then Ω = E (utu′t )
I This occurs when ut is a martingale difference sequence
E (ut |It−1) = 0
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Set ut = xtet+1, which satisifes E (xtet+1) = 0. Thus

1
n

n−1
∑
t=0

xtet+1
d−→ N(0,Ω)

Ω = E
(
xtx′te

2
t+1

)
+

∞

∑
j=1

(
xtx′t+jet+1et+1+j + xt+jx

′
tet+1et+1+j

)
Simplifies to Ω = E

(
xtx′te2t+1

)
when xtet+1 serially uncorrelated

I A suffi cient condition is that et+1 is a MDS

F When the linear forecasting model is the true conditional expectation
F Otherwise, et+1 is not a MDS

I If the forecasting model is a good approximation, then

F et+1 will be close to a MDS
F xtet+1 will be close to uncorrelated
F Ω ≈ E

(
xtx′te2t+1

)
I However, this is best thought of as an approximation, not the truth.
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Homoskedasticity

σ2t = E
(
e2t+1|It

)
= σ2 is a constant

Ω = E
(
xtx′te2t+1

)
simplifies to Ω = E (xtx′t )E

(
e2t+1

)
Common assumption in introductory textbooks

Empirically unsound

Unnecessary for empirical practice

Avoid!
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Distribution Theory

√
n
(

β̂− β
)

d−→ N(0,V )

V = Q−1ΩQ−1

Ω ≈ E
(
xtx′te2t+1

)
“Sandwich”variance matrix
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Least-Squares Residuals

êt+1 = yt+1 − β̂
′
xt

Easy to compute

Overfit (tend to be too small) when model dimension is large relative
to sample size
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Leave One-Out Residuals

ẽt+1 = yt+1 − β̂
′
−txt

β̂−t =
(

∑j 6=t xjx′j
)−1 (

∑j 6=t xjyj+1
)

No tendency to overfit

Easy to compute:

I ẽt+1 =
êt+1
1− htt

where htt = x′t (X ′X )
−1 xt

I Not necessary to actually compute n regressions!
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Computation n R

Regressor Matrix: x

xxi=solve(t(x)%*%x)

h=rowSums((x%*%xxi)*x)

Commands

t(x)= trace of x

%*% = matrix multiplication

solve(a)= inverse of matrix a

rowSums = sum across column by row
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Sequential Prediction Residuals

et+1 = yt+1 − β̂
′
txt

β̂t =
(

∑t−1
j=0 xjx

′
j

)−1 (
∑t−1
j=0 xjyj+1

)
Commonly used for pseudo out-of-sample forecast evaluation

However, β̂t is highly variable for small t (small initial sample sizes)

Can be noisy
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Variance Estimator/Standard Errors

Asymptotic variance (White) estimator with leave-one-out residuals

V̂ = Q̂−1Ω̂Q̂−1

Q̂ =
1
n

n−1
∑
t=0

xtx′t

Ω̂ =
1
n

n−1
∑
t=0

xtx′t ẽ
2
t+1

Can use least-squares resiudals êt+1 instead of leave-one-out
residuals, but then multiply V̂ by n/(n− dim(xt )).
Standard errors for β̂ are the square roots of the diagonal elements of
n−1V̂

Report standard errors to interpret precision of coeffi cient estimates.
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GDP Example

yt = ∆ log(GDPt ), quarterly
AR(4) (reasonable benchmark for quarterly data)

yt+1 = β0 + β1yt + β2yt−1 + β3yt−2 + β4yt−3 + et+1

β̂ s(β̂)
Intercept 1.54 (0.45)
∆ log(GDPt ) 0.29 (0.09)
∆ log(GDPt−1) 0.18 (0.10)
∆ log(GDPt−2) −0.05 (0.08)
∆ log(GDPt−3) 0.06 (0.10)
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Point Forecast - GDP Growth

AR(4)

Actual Forecast
2011:1 0.36
2011:2 1.33
2011:3 1.80
2011:4 2.91
2012:1 1.84
2012:2 2.59
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Interest Rate Example
yt = ∆Ratet
AR(12) (reasonable benchmark for monthly data)

β̂ s(β̂)
Intercept −0.002 (0.01)
∆Ratet 0.40 (0.06)
∆Ratet−1 −0.26 (0.07)
∆Ratet−2 0.11 (0.06)
∆Ratet−3 −0.07 (0.07)
∆Ratet−4 0.10 (0.07)
∆Ratet−5 −0.08 (0.07)
∆Ratet−6 −0.05 (0.06)
∆Ratet−7 −0.09 (0.06)
∆Ratet−8 −0.01 (0.07)
∆Ratet−9 0.03 (0.07)
∆Ratet−10 0.09 (0.07)
∆Ratet−11 −0.08 (0.06)
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Point Forecast - 10-year Treasury Rate

AR(12)

Actual Forecast
Level Change Level Change

2012:1 1.97 -0.01
2012:2 1.97 0.00
2012:3 2.17 0.20
2012:4 2.05 -0.12
2012:5 1.93 -0.12
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Forecast Selection
We used (arbitrarily) an AR(4) for GDP,
and an AR(12) for the 10-year rate
The forecasts will be sensitive to this choice
GDP Example

Model Forecast
AR(0) 2.99
AR(1) 2.59
AR(2) 2.65
AR(3) 2.68
AR(4) 2.59
AR(5) 2.83
AR(6) 2.83
AR(7) 2.83
AR(8) 2.78
AR(9) 2.87
AR(10) 2.87
AR(11) 2.91
AR(12) 3.45Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 41 / 105



Forecast Selection - Big Picture

What is the goal?
I Accurate Forecasts

F Low Risk (low MSFE)

Finding the “true”model is irrelevant
I The true model may be an AR(∞) or have a very large number of
non-zero coeffi cients
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Testing

It is common to use statistical tests to select empirical models

This is inappropriate
I Tests answer the scientific question: Is there suffi cient evidence to
reject the hypothesis that this coeffi cient is zero?

I Tests are not designed to answer the question: Which estimate yields
the better forecast?

This is not a minor issue
I Lengthy statistics literature documenting the poor properties of "post
selection" estimators.

I Estimators based on testing have particularly bad properties

Tests are appropriate for answering scientific questions about
parameters

Standard errors are appropriate for measuring estimation precision

For model selection, we want something different
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Model Selection: Framework

Set of estimates (models)

I β̂(m), m = 1, ...,M

Corresponding forecasts f̂n+1|n(m)

There is some population criterion C (m) which evaluates the
accuracy of f̂n+1|n(m)

I m0 = argminm C (m) is infeasible best estimator

There is a sample estimate Ĉ (m) of C (m)

m̂ = argminm Ĉ (m) is empirical analog of m0
β̂(m̂) is selected estimator

f̂n+1|n(m̂) selected forecast
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Selection Criterion

Bayesian Information Criterion (BIC)
I C (m) = P (m is true)

Akaike Information Criterion (AIC), Corrected AIC (AICc )
I C (m) = KLIC

Mallows, Predictive Least Squares, Final Prediction Error,
Leave-one-out Cross Validation:

I C (m) = MSFE

LASSO
I Penalized LS
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Important: Sample must be constant when comparing
models

This requires careful treatment of samples

Suppose you observe yt , t = 1, ..., n

Estimation of an AR(k) requires k initial conditions, so the effective
sample is for obserations t = 1+ k , ..., n

The sample varies with k, sample size is n− k
For valid comparison of AR(k) models for k = 1, ...,K

I Fix sample with observations t = 1+K , ..., n
I n−K observations
I Estimate all AR(k) models using this same n−K observations
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Bayesian Information Criterion

M models, equal prior probability that each is the “true”model

Compute posterior probability that model m is true, given data

Schwarz showed that in the normal linear regression model the
posterior probability is proportional to

p(m) ∝ exp
(
−BIC (m)

2

)
BIC (m) = n log σ̂2(m) + log(n)k(m)

where
I k(m) = # of parameters
I σ̂2(m) = n−1 ∑n−1t=0 ê

2
t+1(m) = MLE estimate of σ2 in model m

The model with highest probability maximizes p(m),
or equivalently minimizes BIC (m)
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Bayesian Information Criterion - Properties

Consistent
I If true model is finite dimensional, BIC will identify it asymptotically

Conservative
I Tends to pick small models

Ineffi cient in nonparametric settings
I If there is no true finite-dimensional model, BIC is sub-optimal
I It does not select a finite-sample optimal model

We are not interested in “truth”, rather we want good performance
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Akaike Information Criterion
Motivated to minimize KLIC distance

The true density of y = y1, , ..., yn is f(y) = ∏ f (yi )

A model density g(y, θ) = ∏ g(yi , θ).

The Kullback-Leibler information criterion (KLIC) is

KLIC (f, g) =
∫
f(y) log

(
f(y)
g(y, θ)

)
dy

=
∫
f(y) log f(y)dy−

∫
f(y) log g(y, θ)dy

= Cf − E log g(y, θ)

where the constant Cf =
∫
f(y) log f(y)dy is independent of the

model g .

KLIC (f , g) ≥ 0, and KLIC (f , g) = 0 iff g = f . Thus a “good”
approximating model g is one with a low KLIC.
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Pseudo-True

The pseudo-true value θ0 is the maximizer of E log g(y , θ)

Equivalently, θ0 minimizes KLIC (f , g(θ)).
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Estimation

The negative log-likelihood function is

L(θ) = − log g(y, θ)

The (quasi) MLE is θ̂ = argminθ L(θ).
The fitted log-likelihood is L(θ̂) = − log g(y, θ̂(y))
Under general conditions, θ̂ →p θ0

The QMLE estimates the best-fitting density, where best is measured
in terms of the KLIC.
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Asymptotic Theory

√
n
(

θ̂QMLE − θ0
)
→d N (0,V )

V = Q−1ΩQ−1

Q = −E ∂2

∂θ∂θ′
log g(y , θ)

Ω = E
(

∂

∂θ
log g(y , θ)

∂

∂θ
log g(y , θ)′

)
If the model is correctly specified (g (y , θ0) = f (y)), then Q = Ω (the
information matrix equality).
Otherwise Q 6= Ω.
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KLIC of Fitted Model

The MLE θ̂ = θ̂(y) is a function of the data vector y.
The fitted model at any ~y is ĝ(~y) = g(~y, θ̂(y)) .
The fitted likelihood is L(θ̂) = − log g(y, θ̂(y)) (the model evaluated at
the observed data).
The KLIC of the fitted model is is

KLIC (f, ĝ) = Cf −
∫
f(~y) log g(~y, θ̂(y))d~y

= Cf − E~y log g(~y, θ̂(y))

where ~y has density f, independent of y.
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Expected KLIC

The expected KLIC is the expectation over the observed values y

E (KLIC (f, ĝ)) = Cf − EyE~y log g(~y, θ̂(y))
= Cf − E~yEy log g(y, θ̂(~y))
= Cf + T

where
T = −E log g(y, θ̃)

the second equality by symmetry, and the third setting θ̃ = θ̂(~y), and y
and θ̃ are independent.
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Estimating KLIC
Ignore Cf , goal is to estimate T = −E log g(y, θ̃)
Second-order Taylor expansion about θ̂,

− log g(y, θ̃) ' L(θ̂) + n
2

(
θ̃ − θ̂

)′
Q
(

θ̃ − θ̂
)

Asymptotically,
√
n
(

θ̃ − θ̂
)
→d Z ∼ N

(
0, 2Q−1ΩQ−1

)
Take expectations

T = −E log g(y, θ̃)

' EL(θ̂) + 1
2
E
(
Z ′QZ

)
= EL(θ̂) + tr

(
Q−1Ω

)
An (asymptotically) unbiased estimate of T is then

T̂ = L(θ̂) + tr
(
Q−1Ω

)
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AIC

When g(x , θ0) = f (x) (the model is correctly specified) then Q = Ω
I tr

(
Q−1Ω

)
= k = dim(θ)

I T̂ = L(θ̂) + k

Akaike Information Criterion (AIC). It is typically written as 2T̂ , e.g.

AIC = 2L(θ̂) + 2k
= n log σ̂2(m) + 2k(m)

in the linear regression model

Similar in form to BIC, but “2” replaces log(n)

Picking a model with the smallest AIC is picking the model with the
smallest estimated KLIC.
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TIC

Takeuchi (1976) proposed a robust AIC, and is known as the Takeuchi
Information Criterion (TIC)

TIC = 2L(θ̂) + 2 tr
(
Q̂−1Ω̂

)
where

Q̂ = −1
n

n

∑
i=1

∂2

∂θ∂θ′
log g(yi , θ̂)

Ω̂ =
1
n

n

∑
i=1

(
∂

∂θ
log g(yi , θ̂)

∂

∂θ
log g(yi , θ̂)′

)
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Corrected AIC

In the normal linear regression model, Hurvich-Tsai (1989) calculated
the exact AIC

AICc (m) = AIC (m) +
2k(m) (k(m) + 1)
n− k(m)− 1

Works better in finite samples than uncorrected AIC

It is an exact correction when the true model is a linear regression,
not time series, with iid normal errors.

In time-series or non-normal errors, it is not an exact correction.
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Comments on AIC Selection

Widely used, partially because of its simplicity

Full justification requires correct specification
I normal linear regression

TIC allows misspecification, but not widely known

Critical specification assumption: homoskedasticity
I AIC is a biased estimate of KLIC under heteroskedasticity

Criterion: KLIC
I Not a natural measure of forecast accuracy.
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Point Forecast and MSFE
Given an estimate β̂(m) of β , the point forecast for yn+1 is

fn+1|n = β̂(m)′xn

The forecast error is

yn+1 − fn+1|n = x′nβ+ et+1 − x′n β̂(m)

= en+1 − x′n
(

β̂(m)− β
)

The mean-squared-forecast-error (MSFE) is

MSFE (m) = E
(
en+1 − x′n

(
β̂(m)− β

))2
' σ2 + E

((
β̂(m)− β

)′
Q(m)

(
β̂(m)− β

))
where Q(m) = E (xnx′n) .
The approximation is an equality if xn is independent of β̂(m)

I Ing and Wei (Annals, 2003) show that this holds asymptotically
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Estimation and MSFE

The MSFE is

MSFE (m) ' σ2 + E
((

β̂(m)− β
)′
Q(m)

(
β̂(m)− β

))
= σ2 +MSE (β̂(m))

where

MSE (β̂(m)) = trE
(
Q(m)

(
β̂(m)− β

) (
β̂(m)− β

)′)
is the weighted mean-squared-error (MSE) of β̂(m) for β

Given a model β′xt for the conditional mean, the choice of estimator
β̂(m) impacts the MSFE through MSE (β̂(m))

The best point forecast (the one with the smallest MSFE) is obtained
by using an estimator β̂(m) with the smallest MSE
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Residual Fit

σ̂2 =
1
n

n−1
∑
t=0

êt+1(m)2

=
1
n

n−1
∑
t=0

e2t+1 +
1
n

n−1
∑
t=0

(
x′t
(

β̂(m)− β
))2

−2
n

n−1
∑
t=0

et+1x′t
(

β̂(m)− β
)

First two terms are estimates of

MSFE (m) = E
(
en+1 − x′n

(
β̂(m)− β

))2
Third term is

n−1
∑
t=0

et+1x′t
(

β̂(m)− β
)
= e′P(m)e

where P(m) = X(m) (X(m)′X(m))−1 X(m)′
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Residual Variance as Biased estimate of MSFE

σ̂2 =
1
n

n−1
∑
t=0

e2t+1 +
1
n

n−1
∑
t=0

(
x′t
(

β̂(m)− β
))2
− 2
n
e′P(m)e

E
(

σ̂2
)
= σ2 + E

(
x′t
(

β̂(m)− β
))2
− 2
n
E
(
e′P(m)e

)
' MSFEn(m)−

2
n
B(m)

where
B(m) = E

(
e′P(m)e

)
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Relation between Residual variance and MSFE

σ̂2 = MSFEn(m)−
2
n
B(m)

B(m) = E
(
e′P(m)e

)
The residual variance is smaller than the MSFE by

2
n
B(m)

This is a classic relationship

It suggests that “estimates”of the MSFE need to be equivalent to

Cn(m) = σ̂2(m) +
2
n
B(m)

The residual variance plus a optimal penalty 2B(m)/n
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Asymptotic Penalty

From asymptotic theory, for any m

1
n
X(m)′X(m)→p Q(m) = E

(
xt (m)xt (m)′

)
1√
n
X(m)′e→d Z (m) ∼ N(0,Ω(m))

Ω(m) = E
(
xt (m)x′t (m)e

2
t+1

)
Thus

e′P(m)e =
(
1√
n
e′X(m)

)(
1
n
X(m)′X(m)

)−1 ( 1√
n
X(m)′e

)
→d Z (m)

′Q(m)−1Z (m)

= tr
(
Q(m)−1Z (m)Z (m)′

)
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Asymptotic Penalty

e′P(m)e→d Z (m)
′Q(m)−1Z (m)

= tr
(
Q(m)−1Z (m)Z (m)′

)
Thus

B(m) = E
(
e′Pe

)
−→ tr

(
Q(m)−1E

(
Z (m)Z (m)′

))
= tr

(
Q(m)−1Ω(m)

)
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MSFE Criterion for Least-Squares

Cn(m) = σ̂2(m) +
2
n

tr
(
Q(m)−1Ω(m)

)

Q(m) = E
(
xt (m)xt (m)′

)
Ω(m) = E

(
xt (m)x′t (m)e

2
t+1

)
This is an (asymptotically) unbiased estimate of the MSFE
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Homoskedastic Case

When
E
(
e2t+1 | It

)
= σ2

then
Ω(m) = E

(
xt (m)x′t (m)e

2
t+1

)
= Q(m)σ2

tr
(
Q(m)−1Ω(m)

)
= σ2 tr (I(m)) = σ2k(m)

Cn(m) = σ̂2(m) +
2
n

σ2k(m)

Under homoskedasticity, the MSFE can be estimated by the residual
variance, plus a penalty which is proportional to the number of estimated
parameters
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Mallows Criterion

Cn(m) = σ̂2(m) +
2
n

σ2k(m)

Replace the unknown σ2 with a preliminary estimate σ̃2

I bias-corrected residual variance from a “large”model

σ̃2 =
1

n−K
n−1
∑
t=0

êt+1(K )
2

Cn(m) = σ̂2(m) +
2
n

σ̃2k(m)

Sometimes written as

Cn(m) =
n−1
∑
t=0

êt+1(m)2 + 2σ̃2k(m)
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Final Prediction Error (FPE) Criterion

Cn(m) = σ̂2(m) +
2
n

σ2k(m)

Replace the unknown σ2 with σ̂2(m)

FPEn(m) = σ̂2(m)
(
1+

2
n
k(m)

)
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Relations betwees Mallows, FPE, and Akaike

Take log of FPE and multiply by n

n log (FPEn(m)) = n log
(

σ̂2(m)
)
+ n log

(
1+

2
n
k(m)

)
' n log

(
σ̂2(m)

)
+ 2k(m)

= AIC (m)

Thus Mallows, FPE and Akaike model selection is quite similar

Mallows, FPE, and exp (AIC (m)/n) are estimates of MSFE under
homoskedasticity
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Robust Mallows
Ideal Criterion

Cn(m) = σ̂2(m) +
2
n

tr
(
Q(m)−1Ω(m)

)
Q(m) = E

(
xt (m)xt (m)′

)
Ω(m) = E

(
xt (m)x′t (m)e

2
t+1

)
Sample estimate

C ∗n (m) = σ̂2(m) +
2
n

tr
(
Q̂(m)−1Ω̂(m)

)
Q̂(m) =

1
n

n−1
∑
t=0

xtx′t

Ω̂(m) =
1
n

n−1
∑
t=0

xtx′t ẽ
2
t+1

where ẽt+1 is residual from a preliminary estimate
Robust Mallows similar to TIC, not
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Cross-Validation

Leave-one-out estimator

β̂−t (m) =

(
∑
j 6=t
xj (m)xj (m)′

)−1 (
∑
j 6=t
xj (m)yj+1

)

Leave-one-out prediction residual

ẽt+1(m) = yt+1 − β̂−t (m)
′xt (m)

=
êt+1(m)
1− htt (m)

ẽt+1(m) is a forecast error based on estimation without observation t

E ẽt+1(m)2 ' MSFEn(m)

CVn(m) =
1
n

∑n−1
t=0 ẽt+1(m)

2 is an estimate of MSFEn(m)

Called the leave-one-out cross-validation (CV) criterion

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 73 / 105



CV is Similar to Robust Mallows
By a Taylor expansion,

1

(1− a)2
' 1− 2a

CVn(m) =
1
n

n−1
∑
t=0

ẽt+1(m)2

=
1
n

n−1
∑
t=0

êt+1(m)2

(1− htt (m))2

' 1
n

n−1
∑
t=0

êt+1(m)2 + 2
1
n

n−1
∑
t=0

êt+1(m)2htt (m)

= σ̂2(m) +
2
n

n−1
∑
t=0

êt+1(m)2x′t
(
X ′X

)−1 xt
= σ̂2(m) +

2
n

tr

((
X ′X

)−1 n−1∑
t=0

êt+1(m)2xtx′t

)
= C ∗n (m)
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Comments on CV Selection

Selecting one-step forecast models by cross-validation is
computationally simple, generally valid, and robust to
heteroskedasticity

Does not require correct specification

Similar to robust Mallows

Similar to Mallows, AIC and FPE under homoskedasticity

Conceptually easy to generalize beyond least-squares estimation
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Predictive Least Squares (Out-of-Sample MSFE)

Sequential estimates

β̂t (m) =

(
t−1
∑
j=0
xj (m)xj (m)′

)−1 (t−1
∑
j=0
xj (m)yj+1

)

Sequential prediction residuals

et+1(m) = yt+1 − β̂t (m)
′xt (m)

Predictive Least Squares. For some P

PLSn(m) =
1
P

n−1
∑

t=n−P
et+1(m)2

Major Diffi culty: PLS very sensitive to P
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Comments on Predictive Least Squares

Conceptually simple, easy to generalize beyond least-squares
I Can be applied to actual forecasts, without need to know forecast
method

et+1(m) are fully valid prediction errors

Possibly more robust to structural change than CV
I Intuitive, but this claim has not been formally justified

Very common in applied forecasting
I Frequently asserted as “empirical performance”

On the negative side, PLS over-estimates MSFE
I et+1(m) is a prediction error from a sample of length t < n
I PLS will tend to be overly-parsimonious
I Very sensitive to number of pseudo out-of-sample observations P
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LASSO

L1 constrained optimization

Least-Angle regression

Let β = (β1, ..., βP )

β̂ minimizes the penalized least-squares criterion

S(β) =
n−1
∑
t=0

(
yt+1 − β′xt

)2
+ λ

P

∑
j=1

∣∣∣βj ∣∣∣
Many coeffi cient estimates β̂j will be zero

I LASSO is effectively a variable selection method

Even if P > n, LASSO is still feasible!

Choice of λ important
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Comments on LASSO

Theory for time-series and forecasting not well developed

Current theory suggests LASSO appropriate for sparse models
I Most coeffi ents are zero
I A few, fixed, coeffi cients are non-zero
I (Adaptive) LASSO can consistently select the non-zero coeffi cients
I LASSO has similarities with BIC selection, but better

A huge advantage is that LASSO allows for extremely large P,
without need for ordering.
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Theory of Optimal Selection

MSFEn(m) is the MSFE from model m

infmMSFEn(m) is the (infeasible) best MSFE

Let m̂ be the selected model

Let MSFEn(m̂) denote the MSFE using the selected estimator

We say that selection is asymptotically optimal if

MSFEn(m̂)
infmMSFEn(m)

p−→ 1
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Theory of Optimal Selection

A series of papers have shown that AIC, Mallows, FPE are
asymptotically optimal for selection

Assumptions
I Autoregressions
I Errors are iid, homoskedastic
I True model is AR(∞)

Shibata (Annals, 1980), Ching-Kang Ing with co-authors (2003, 2005,
etc)

Proof Method: Show that the selection criterion is uniformly close to
MSFE
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Theory of Optimal Selection - Regression Case

In regression (iid date) case

Li (1987), Andrews (1991), Hansen (2007), Hansen and Racine
(2012)

AIC, Mallows, FPE, CV are asymptotically optimal for seletion under
homoskedasticity

CV is asymptotically optimal for seletion under heteroskedasticity

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 82 / 105



Forecast Selection - Summary

Testing inappropriate for forecast selection

Feasible selection criteria: BIC, AIC, AICc , Mallows, Robust Mallows,
FPE, PLS, CV, LASSO

Valid comparisons require holding sample constant across models

All methods except CV and PLS require conditional homoskedasticity

PLS sensitive to choice of P

BIC and LASSO appropriate when true structure is sparse

CV quite general and flexible
I Recommended method

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 83 / 105



GDP Example
Methods: BIC, AICc , Robust Mallows, CV

Model BIC AICc C ∗n CV
AR(1) 473 466 10.7 10.7
AR(2) 472 462 10.6 10.5
AR(3) 477 464 10.7 10.7
AR(4) 481 465 10.8 10.8
AR(5) 483 464 10.8 10.8
AR(6) 489 466 11.0 10.9
AR(7) 494 468 11.1 11.1
AR(8) 498 470 11.3 11.2
AR(9) 500 469 11.3 11.2
AR(10) 505 471 11.4 11.4
AR(11) 511 473 11.5 11.5
AR(12) 511 471 11.4 11.3

Methods select AR(2)
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10-Year Treasury Rate

Model BIC AICc C ∗n CV
AR(1) −1518 −1527 0.0798 0.0798
AR(2) −1541∗ −1554 0.0768∗ 0.0768∗

AR(3) −1538 −1555 0.0769 0.0769
AR(4) −1532 −1554 0.0773 0.0773
AR(6) −1531 −1561 0.0772 0.0770
AR(8) −1522 −1562 0.0777 0.0774
AR(10) −1513 −1561 0.0784 0.0781
AR(12) −1506 −1563 0.079 0.0787
AR(20) −1471 −1561 0.081 0.080
AR(22) −1470 −1570∗ 0.081 0.080
AR(24) −1458 −1565 0.081 0.081

Mallows, AICc , FPE select AR(22)
Robust Mallows, CV select AR(2)
Difference due to conditional heteroskedasticity
AR(2) through AR(6) near equivalent with respect to C ∗n and CV
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Point Forecast - GDP Growth

AR(2)

Actual Forecast
2011:1 0.36
2011:2 1.33
2011:3 1.80
2011:4 2.91
2012:1 1.84
2012:2 2.65
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Point Forecast - 10-year Treasury Rate

AR(2)

Actual Forecast
Level Change Level Change

2012:1 1.97 -0.01
2012:2 1.97 0.00
2012:3 2.17 0.20
2012:4 2.05 -0.12
2012:5 1.96 -0.09
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Forecasting with Leading Indicators

Recall, the ideal forecast is

E (yn+1|In) = E (yn+1|xn, xn−1, ...)

where In contains all information

xn = lags + leading indicators
I Variables which help predict yt+1
I We have focused on univariate lags
I Typically more information in related series
I Which?
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Good Leading Indicators

Measured quickly

Anticipatory

Varies by forecast variable
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Interest Rate Spreads

Difference between Long and Short Rate

Measured immediately

Indicate monetary policy, aggregate demand

Term Structure of Interest Rates:

Long Rate is the market expectation of the average future short rates

Spread is the market expectation of future short rates

I use U.S. Treasury rates, difference between 10-year and 3-month
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Figure: 10-Year and 3-Month T-Bill Rates
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Figure: Term Spread
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High Yield Spread

“Riskless” rate: U.S. Treasury

Low-risk rate: AAA grade corporate bond

High Yield rate: Low grade corporate bond

Theory: high-yield rate includes premium for probability of default

Low grade bond rates increase with probability of default —when real
activity is expected to fall

Spread: Difference between corporate bond rates

I use difference between AAA and BAA bond rates
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Figure: AAA and BAA Corporate Bond Rates
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Figure: High Yield Spread
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Construction Indicators

Building Permits

Housing Starts

Anticipate construction spending
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Figure: Housing Starts, Building Permits
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Mixed Frequency Data

U.S. GDP is measured quarterly

Interest rates: Daily

Permits: Monthly

Simplest approach: Quarterly aggregation
I Aggregate (average) daily and monthly variables to quarterly level

Mixed Frequency approach
I Use lower frequency data as predictors

For now, we use aggregate (quarterly) data
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Timing

Variables reported in separate sequences

Should we use only "quarter 1" variables to forecast "quarter 2"?

Or should we use whatever is available?
I E.g., use quarter 2 interest rates to forecast quarter 1 GDP?

Let’s use quarter 1 data to forecast quarter 2
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Models Selection by CV
All estimates include intercept plus two lags of GDP growth

Model CV Forecast
Spread 10.4 2.8
HY Spread 10.6 2.5
Housing Starts 10.3 1.4
Bulding Permits 10.3 1.7
Sp+HY 10.3 2.7
Sp+HS 10.02 1.5
Sp+BP 10.1 1.9
HY+HS 10.4 1.4
HY+BP 10.4 1.6
HS+BP 10.4 1.4
Sp+HY+HS 10.00 1.3
Sp+HY+BP 10.1 1.7
Sp+HS+BP 10.05 1.3
HY+HS+BP 10.5 1.3
Sp+HY+HS+BP 10.02 1.1Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 100 / 105



Coeffi cient Estimates

∆ log(GDPt+1) β̂ s(β̂)
Intercept −0.33 (1.03)
∆ log(GDPt ) 0.16 (0.10)
∆ log(GDPt−1) 0.09 (0.10)
Bond Spreadt 0.61 (0.23)
High Yield Spread −1.10 (0.75)
Housing Startst 1.86 (0.65)
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Alternative Specifications

Lags of Leading Indicators

Transformations (Changes, Growth Rates, Logs, Differences)
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Practical Session

Data Set: U.S. macro data
I Monthly 1960:1 - 2012:4
I Unemployment Rates
I 10-year Treasury Rate
I 3-month Treasury Rate
I AAA bond rate
I BAA bond rate
I Housing Starts
I Building Permits
I Industrial Production Index
I CPI Index (less food and energy)

www.ssc.wisc.edu/~bhansen/crete
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Assignment 1

Estimate model for Unemployment Rate
I Write your own programs!

First model: Autoregression
I Estimate a set of autoregressions
I Compute model selection criteria:

F CV
F Optional: BIC, AIC, AICc , Mallows, Robust Mallows, FPE

I Select model
I Compute point forecast for next period

Second model add leading indicators
I Select and transform relevant varibles
I Estimate a set of models, select via information criteria
I Compute point forecast for next period
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Figure: U.S. Unemployment Rate
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