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1 Introduction

Parametric means �nite-dimensional. Non-parametric means in�nite-dimensional.
The di¤erences are profound.

Typically, parametric estimates converge at a n�1=2 rate. Non-parametric estimates typically

converge at a rate slower than n�1=2:

Typically, in parametric models there is no distinction between the true model and the �tted

model. In contrast, non-parametric methods typically distinguish between the true and �tted

models.

Non-parametric methods make the complexity of the �tted model depend upon the sample.

The more information is in the sample (i.e., the larger the sample size), the greater the degree of

complexity of the �tted model. Taking this seriously requires a distinct distribution theory.

Non-parametric theory acknowledges that �tted models are approximations, and therefore are

inherently misspeci�ed. Misspeci�cation implies estimation bias. Typically, increasing the com-

plexitiy of a �tted model decreases this bias but increases the estimation variance. Nonparametric

methods acknowledge this trade-o¤ and attempt to set model complexity to minimize an overall

measure of �t, typically mean-squared error (MSE).

There are many nonparametric statistical objects of potential interest, including density func-

tions (univariate and multivariate), density derivatives, conditional density functions, conditional

distribution functions, regression functions, median functions, quantile functions, and variance func-

tions. Sometimes these nonparametric objects are of direct interest. Sometimes they are of interest

only as an input to a second-stage estimation problem. If this second-stage problem is described

by a �nite dimensional parameter we call the estimation problem semiparametric.
Nonparametric methods typically involve some sort of approximation or smoothing method.

Some of the main methods are called kernels, series, and splines.
Nonparametric methods are typically indexed by a bandwidth or tuning parameter which

controls the degree of complexity. The choice of bandwidth is often critical to implementation.

Data-dependent rules for determination of the bandwidth are therefore essential for nonparametric

methods. Nonparametric methods which require a bandwidth, but do not have an explicit data-

dependent rule for selecting the bandwidth, are incomplete. Unfortunately this is quite common,

due to the di¢ culty in developing rigorous rules for bandwidth selection. Often in these cases

the bandwidth is selected based on a related statistical problem. This is a feasible yet worrisome

compromise.

Many nonparametric problems are generalizations of univariate density estimation. We will

start with this simple setting, and explore its theory in considerable detail.
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2 Kernel Density Estimation

2.1 Discrete Estimator

Let X be a random variable with continuous distribution F (x) and density f(x) = d
dxF (x): The

goal is to estimate f(x) from a random sample fX1; :::; Xng:
The distribution function F (x) is naturally estimated by the EDF F̂ (x) = n�1

Pn
i=1 1 (Xi � x) :

It might seem natural to estimate the density f(x) as the derivative of F̂ (x); d
dx F̂ (x); but this

estimator would be a set of mass points, not a density, and as such is not a useful estimate of f(x).

Instead, consider a discrete derivative. For some small h > 0, let

f̂(x) =
F̂ (x+ h)� F̂ (x� h)

2h

We can write this as

1

2nh

nX
i=1

1 (x+ h < Xi � x+ h) =
1

2nh

nX
i=1

1

�
jXi � xj
h

� 1
�

=
1

nh

nX
i=1

k

�
Xi � x
h

�

where

k(u) =

(
1
2 ; juj � 1
0 juj > 1

is the uniform density function on [�1; 1]:
The estimator f̂(x) counts the percentage of observations which are clsoe to the point x: If

many observations are near x; then f̂(x) is large. Conversely, if only a few Xi are near x; then f̂(x)

is small. The bandwidth h controls the degree of smoothing.
f̂(x) is a special case of what is called a kernel estimator. The general case is

f̂(x) =
1

nh

nX
i=1

k

�
Xi � x
h

�

where k(u) is a kernel function.

2.2 Kernel Functions

A kernel function k(u) : R! R is any function which satis�es
R1
�1 k(u)du = 1:

A non-negative kernel satis�es k(u) � 0 for all u: In this case, k(u) is a probability density

function.

The moments of a kernel are �j(k) =
R1
�1 u

jk(u)du:

A symmetric kernel function satis�es k(u) = k(�u) for all u: In this case, all odd moments
are zero. Most nonparametric estimation uses symmetric kernels, and we focus on this case.

2



The order of a kernel, �; is de�ned as the order of the �rst non-zero moment. For example, if
�1(k) = 0 and �2(k) > 0 then k is a second-order kernel and � = 2. If �1(k) = �2(k) = �3(k) = 0

but �4(k) > 0 then k is a fourth-order kernel and � = 4. The order of a symmetric kernel is always

even.

Symmetric non-negative kernels are second-order kernels.

A kernel is higher-order kernel if � > 2: These kernels will have negative parts and are not
probability densities. They are also refered to as bias-reducing kernels.

Common second-order kernels are listed in the following table

Table 1: Common Second-Order Kernels

Kernel Equation R(k) �2(k) eff(k)

Uniform k0(u) =
1
21 (juj � 1) 1=2 1=3 1:0758

Epanechnikov k1(u) =
3
4

�
1� u2

�
1 (juj � 1) 3=5 1=5 1:0000

Biweight k2(u) =
15
16

�
1� u2

�2
1 (juj � 1) 5=7 1=7 1:0061

Triweight k3(u) =
35
32

�
1� u2

�3
1 (juj � 1) 350=429 1=9 1:0135

Gaussian k�(u) =
1p
2�
exp

�
�u2

2

�
1=2
p
� 1 1:0513

In addition to the kernel formula we have listed its roughness R(k), second moment �2(k), and

its e¢ ciency eff(k), the last which will be de�ned later. The roughness of a function is

R(g) =

Z 1

�1
g(u)2du:

The most commonly used kernels are the Epanechnikov and the Gaussian.

The kernels in the Table are special cases of the polynomial family

ks(u) =
(2s+ 1)!!

2s+1s!

�
1� u2

�s
1 (juj � 1)

where the double factorial means (2s+ 1)!! = (2s+ 1) (2s� 1) � � � 5 � 3 � 1: The Gaussian kernel is
obtained by taking the limit as s ! 1 after rescaling. The kernels with higher s are smoother,

yielding estimates f̂(x) which are smoother and possessing more derivatives. Estimates using the

Gaussian kernel have derivatives of all orders.

For the purpose of nonparametric estimation the scale of the kernel is not uniquely de�ned.

That is, for any kernel k(u) we could have de�ned the alternative kernel k�(u) = b�1k(u=b) for

some constant b > 0: These two kernels are equivalent in the sense of producing the same density

estimator, so long as the bandwidth is rescaled. That is, if f̂(x) is calculated with kernel k and

bandwidth h; it is numerically identically to a calculation with kernel k� and bandwidth h� = h=b:

Some authors use di¤erent de�nitions for the same kernels. This can cause confusion unless you

are attentive.
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Higher-order kernels are obtained by multiplying a second-order kernel by an (�=2�1)�th order
polynomial in u2: Explicit formulae for the general polynomial family can be found in B. Hansen

(Econometric Theory, 2005), and for the Gaussian family in Wand and Schucany (Canadian Journal

of Statistics, 1990). 4th and 6th order kernels of interest are given in Tables 2 and 3.

Table 2: Fourth-Order Kernels

Kernel Equation R(k) �4(k) eff(k)

Epanechnikov k4;1(u) =
15
8

�
1� 7

3u
2
�
k1(u) 5=4 �1=21 1:0000

Biweight k4;2(u) =
7
4

�
1� 3u2

�
k2(u) 805=572 �1=33 1:0056

Triweight k4;3(u) =
27
16

�
1� 11

3 u
2
�
k3(u) 3780=2431 �3=143 1:0134

Gaussian k4;�(u) =
1
2

�
3� u2

�
k�(u) 27=32

p
� �3 1:0729

Table 3: Sixth-Order Kernels

Kernel Equation R(k) �6(k) eff(k)

Epanechnikov k6;1(u) =
175
64

�
1� 6u2 + 33

5 u
4
�
k1(u) 1575=832 5=429 1:0000

Biweight k6;2(u) =
315
128

�
1� 22

3 u
2 + 143

15 u
4
�
k2(u) 29295=14144 1=143 1:0048

Triweight k6;2(u) =
297
128

�
1� 26

3 u
2 + 13u4

�
k3(u) 301455=134368 1=221 1:0122

Gaussian k6;�(u) =
1
8

�
15� 10u2 + u4

�
k�(u) 2265=2048

p
� 15 1:0871

2.3 Density Estimator

We now discuss some of the numerical properties of the kernel estimator

f̂(x) =
1

nh

nX
i=1

k

�
Xi � x
h

�

viewed as a function of x:

First, if k(u) is non-negative then it is easy to see that f̂(x) � 0: However, this is not guarenteed
if k is a higher-order kernel. That is, in this case it is possible that f̂(x) < 0 for some values of x:

When this happens it is prudent to zero-out the negative bits and then rescale:

~f(x) =
f̂(x)1

�
f̂(x) � 0

�
R1
�1 f̂(x)1

�
f̂(x) � 0

�
dx
:

~f(x) is non-negative yet has the same asymptotic properties as f̂(x): Since the integral in the

denominator is not analytically available this needs to be calculated numerically.

Second, f̂(x) integrates to one. To see this, �rst note that by the change-of-variables u =

(Xi � x)=h which has Jacobian h;Z 1

�1

1

h
k

�
Xi � x
h

�
dx =

Z 1

�1
k (u) du = 1:
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The change-of variables u = (Xi � x)=h will be used frequently, so it is useful to be familiar with
this transformation. ThusZ 1

�1
f̂(x)dx =

Z 1

�1

1

n

nX
i=1

1

h
k

�
Xi � x
h

�
dx =

1

n

nX
i=1

Z 1

�1

1

h
k

�
Xi � x
h

�
dx =

1

n

nX
i=1

1 = 1

as claimed. Thus f̂(x) is a valid density function when k is non-negative.

Third, we can also calculate the numerical moments of the density f̂(x): Again using the change-

of-variables u = (Xi � x)=h; the mean of the estimated density isZ 1

�1
xf̂(x)dx =

1

n

nX
i=1

Z 1

�1
x
1

h
k

�
Xi � x
h

�
dx

=
1

n

nX
i=1

Z 1

�1
(Xi + uh) k (u) du

=
1

n

nX
i=1

Xi

Z 1

�1
k (u) du+

1

n

nX
i=1

h

Z 1

�1
uk (u) du

=
1

n

nX
i=1

Xi

the sample mean of the Xi:

The second moment of the estimated density isZ 1

�1
x2f̂(x)dx =

1

n

nX
i=1

Z 1

�1
x2
1

h
k

�
Xi � x
h

�
dx

=
1

n

nX
i=1

Z 1

�1
(Xi + uh)

2 k (u) du

=
1

n

nX
i=1

X2
i +

2

n

nX
i=1

Xih

Z 1

�1
k(u)du+

1

n

nX
i=1

h2
Z 1

�1
u2k (u) du

=
1

n

nX
i=1

X2
i + h

2�2(k):

It follows that the variance of the density f̂(x) is

Z 1

�1
x2f̂(x)dx�

�Z 1

�1
xf̂(x)dx

�2
=

1

n

nX
i=1

X2
i + h

2�2 �
 
1

n

nX
i=1

Xi

!2
= �̂2 + h2�2(k)

where �̂2 is the sample variance. Thus the density estimate in�ates the sample variance by the

factor h2�2(k).

These are the numerical mean and variance of the estimated density f̂(x); not its sampling
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mean and variance.

2.4 Estimation Bias

It is useful to observe that expectations of kernel transformations can be written as integrals

which take the form of a convolution of the kernel and the density function:

E
1

h
k

�
Xi � x
h

�
=

Z 1

�1

1

h
k

�
z � x
h

�
f(z)dz

Using the change-of variables u = (z � x)=h; this equalsZ 1

�1
k (u) f(x+ hu)du:

By the linearity of the estimator we see

Ef̂(x) =
1

n

nX
i=1

E
1

h
k

�
Xi � x
h

�
=

Z 1

�1
k (u) f(x+ hu)du

The last expression shows that the expected value is an average of f(z) locally about x:

This integral (typically) is not analytically solvable, so we approximate it using a Taylor expan-

sion of f(x+ hu) in the argument hu; which is valid as h! 0: For a ��th-order kernel we take the

expansion out to the ��th term

f (x+ hu) = f(x) + f (1)(x)hu+
1

2
f (2)(x)h2u2 +

1

3!
f (3)(x)h3u3 + � � �

+
1

�!
f (�)(x)h�u� + o (h�) :

The remainder is of smaller order than h� as h ! 1; which is written as o(h�): (This expansion
assumes f (�+1)(x) exists.)

Integrating term by term and using
R1
�1 k (u) du = 1 and the de�nition

R1
�1 k (u)u

jdu = �j(k);Z 1

�1
k (u) f (x+ hu) du = f(x) + f (1)(x)h�1(k) +

1

2
f (2)(x)h2�2(k) +

1

3!
f (3)(x)h3�3(k) + � � �

+
1

�!
f (�)(x)h���(k) + o (h

�)

= f(x) +
1

�!
f (�)(x)h���(k) + o (h

�)

where the second equality uses the assumption that k is a ��th order kernel (so �j(k) = 0 for j < �).
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This means that

Ef̂(x) =
1

n

nX
i=1

E
1

h
k

�
Xi � x
h

�
= f(x) +

1

�!
f (�)(x)h���(k) + o (h

�) :

The bias of f̂(x) is then

Bias(f̂(x)) = Ef̂(x)� f(x) = 1

�!
f (�)(x)h���(k) + o (h

�) :

For second-order kernels, this simpli�es to

Bias(f̂(x)) =
1

2
f (2)(x)h2�2(k) +O

�
h4
�
:

For second-order kernels, the bias is increasing in the square of the bandwidth. Smaller bandwidths

imply reduced bias. The bias is also proportional to the second derivative of the density f (2)(x):

Intuitively, the estimator f̂(x) smooths data local to Xi = x; so is estimating a smoothed version

of f(x): The bias results from this smoothing, and is larger the greater the curvature in f(x):

When higher-order kernels are used (and the density has enough derivatives), the bias is pro-

portional to h� ; which is of lower order than h2: Thus the bias of estimates using higher-order

kernels is of lower order than estimates from second-order kernels, and this is why they are called

bias-reducing kernels. This is the advantage of higher-order kernels.

2.5 Estimation Variance

Since the kernel estimator is a linear estimator, and k
�
Xi � x
h

�
is iid,

var
�
f̂(x)

�
=

1

nh2
var

�
k

�
Xi � x
h

��
=

1

nh2
Ek

�
Xi � x
h

�2
� 1

n

�
1

h
Ek

�
Xi � x
h

��2

From our analysis of bias we know that
1

h
Ek

�
Xi � x
h

�
= f(x)+o(1) so the second term is O

�
1

n

�
:

For the �rst term, write the expectation as an integral, make a change-of-variables and a �rst-order
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Taylor expansion

1

h
Ek

�
Xi � x
h

�2
=

1

h

Z 1

�1
k

�
z � x
h

�2
f(z)dz

=

Z 1

�1
k (u)2 f (x+ hu) du

=

Z 1

�1
k (u)2 (f (x) +O (h)) du

= f (x)R(k) +O (h)

where R(k) =
R1
�1 k (u)

2 du is the roughness of the kernel. Together, we see

var
�
f̂(x)

�
=
f (x)R(k)

nh
+O

�
1

n

�

The remainder O
�
1

n

�
is of smaller order than the O

�
1

nh

�
leading term, since h�1 !1:

2.6 Mean-Squared Error

A common and convenient measure of estimation precision is the mean-squared error

MSE(f̂(x)) = E
�
f̂(x)� f(x)

�2
= Bias(f̂(x))2 + var

�
f̂(x)

�
'

�
1

�!
f (�)(x)h���(k)

�2
+
f (x)R(k)

nh

=
�2�(k)

(�!)2
f (�)(x)2h2� +

f (x)R(k)

nh

= AMSE(f̂(x))

Since this approximation is based on asymptotic expansions this is called the asymptotic mean-

squared-error (AMSE). Note that it is a function of the sample size n; the bandwidth h; the kernel

function (through �� and R(k)), and varies with x as f (�)(x) and f(x) vary.

Notice as well that the �rst term (the squared bias) is increasing in h and the second term (the

variance) is decreasing in nh: For MSE(f̂(x)) to decline as n ! 1 both of these terms must get

small. Thus as n!1 we must have h! 0 and nh!1: That is, the bandwidth must decrease,
but not at a rate faster than sample size. This is su¢ cient to establish the pointwise consistency

of the estimator. That is, for all x; f̂(x)!p f(x) as n!1. We call this pointwise convergence as
it is valid for each x individually. We discuss uniform convergence later.
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A global measure of precision is the asymptotic mean integrated squared error (AMISE)

AMISE =

Z 1

�1
AMSE(f̂(x))dx

=
�2�(k)

(�!)2
R
�
f (�)

�
h2� +

R(k)

nh
:

where R(f (�)) =
R1
�1

�
f (�)(x)

�2
dx is the roughness of f (�):

2.7 Asymptotically Optimal Bandwidth

The AMISE formula expresses the MSE as a function of h: The value of h which minimizes this

expression is called the asymptotically optimal bandwidth. The solution is found by taking the

derivative of the AMISE with respect to h and setting it equal to zero:

d

dh
AMISE =

d

dh

�
�2�(k)

(�!)2
R
�
f (�)

�
h2� +

R(k)

nh

�
= 2�h2��1

�2�(k)

(�!)2
R
�
f (�)

�
� R(k)
nh2

= 0

with solution

h0 = C� (k; f)n
�1=(2�+1)

C� (k; f) = R
�
f (�)

��1=(2�+1)
A� (k)

A� (k) =

 
(�!)2R(k)

2��2�(k)

!1=(2�+1)

The optimal bandwidth is propotional to n�1=(2�+1): We say that the optimal bandwidth is

of order O
�
n�1=(2�+1)

�
: For second-order kernels the optimal rate is O

�
n�1=5

�
: For higher-order

kernels the rate is slower, suggesting that bandwidths are generally larger than for second-order

kernels. The intuition is that since higher-order kernels have smaller bias, they can a¤ord a larger

bandwidth.

The constant of proportionality C� (k; f) depends on the kernel through the function A� (k)

(which can be calculated from Table 1), and the density through R(f (�)) (which is unknown):

If the bandwidth is set to h0; then with some simpli�cation the AMISE equals

AMISE0 (k) = (1 + 2�)

 
R
�
f (�)

�
�2�(k)R (k)

2�

(�!)2 (2�)2�

!1=(2�+1)
n�2�=(2�+1):
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For second-order kernels, this equals

AMISE0 (k) =
5

4

�
�22(k)R(k)

4R
�
f (2)

��1=5
n�4=5:

As � gets large, the convergence rate approaches the parametric rate n�1: Thus, at least as-

ymptotically, the slow convergence of nonparametric estimation can be mitigated through the use

of higher-order kernels.

This seems a bit magical. What�s the catch? For one, the improvement in convergence rate

requires that the density is su¢ ciently smooth that derivatives exist up to the (� + 1)�th order. As

the density becomes increasingly smooth, it is easier to approximate by a low-dimensional curve,

and gets closer to a parametric-type problem. This is exploiting the smoothness of f; which is

inherently unknown. The other catch is that there is a some evidence that the bene�ts of higher-

order kernels only develop when the sample size is fairly large. My sense is that in small samples, a

second-order kernel would be the best choice, in moderate samples a 4th order kernel, and in larger

samples a 6th order kernel could be used.

2.8 Asymptotically Optimal Kernel

Given that we have picked the kernel order, which kernel should we use? Examining the

expression AMISE0 we can see that for �xed � the choice of kernel a¤ects the asymptotic precision

through the quantity �� (k)R(k)� : All else equal, AMISE will be minimized by selecting the kernel

which minimizes this quantity. As we discussed earlier, only the shape of the kernel is important, not

its scale, so we can set �� = 1. Then the problem reduces to minimization of R(k) =
R1
�1 k(u)

2du

subject to the constraints
R1
�1 k(u)du = 1 and

R1
�1 u

�k(u)du = 1: This is a problem in the calculus

of variations. It turns out that the solution is a scaled of k�;1 ( see Muller (Annals of Statistics,

1984)). As the scale is irrelevant, this means that for estimation of the density function, the higher-

order Epanechikov kernel k�;1 with optimal bandwidth yields the lowest possible AMISE. For this

reason, the Epanechikov kernel is often called the �optimal kernel�.

To compare kernels, its relative e¢ ciency is de�ned as

eff(k) =

�
AMISE0 (k)

AMISE0 (k�;1)

�(1+2�)=2�
=

�
�2� (k)

�1=2�
R (k)

(�2� (k�;1))
1=2� R (k�;1)

The ratios of the AMISE is raised to the power (1 + 2�) =2� as for large n; the AMISE will be the

same whether we use n observations with kernel k�;1 or n eff(k) observations with kernel k. Thus

the penalty eff(k) is expressed as a percentage of observations.

The e¢ ciencies of the various kernels are given in Tables 1-3. Examining the second-order

kernels, we see that relative to the Epanechnikov kernel, the uniform kernel pays a penalty of about

7%, the Gaussian kernel a penalty of about 5%, the Triweight kernel about 1.4%, and the Biweight
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kernel less than 1%. Examining the 4th and 6th-order kernels, we see that the relative e¢ ciency of

the Gaussian kernel deteriorates, while that of the Biweight and Triweight slightly improves.

The di¤erences are not big. Still, the calculation suggests that the Epanechnikov and Biweight

kernel classes are good choices for density estimation.

2.9 Rule-of-Thumb Bandwidth

The optimal bandwidth depends on the unknown quantity R
�
f (�)

�
: Silverman proposed that

we try the bandwidth computed by replacing R
�
f (�)

�
in the optimal formula by R

�
g
(�)
�̂

�
where

g� is a reference density �a plausible candidate for f; and �̂2 is the sample standard deviation.

The standard choice is to set g� = ��̂; the N(0; �̂
2) density. The idea is that if the true density is

normal, then the computed bandwidth will be optimal. If the true density is reasonably close to

the normal, then the bandwidth will be close to optimal. While not a perfect solution, it is a good

place to start looking.

For any density g; if we set g�(x) = ��1g(x=�); then g
(�)
� (x) = ��1��g(�)(x=�): Thus

R
�
g(�)�

��1=(2�+1)
=

�Z
g(�)� (x)2dx

��1=(2�+1)
=

�
��2�2�

Z
g(�)(x=�)2dx

��1=(2�+1)
=

�
��1�2�

Z
g(�)(x)2dx

��1=(2�+1)
= �R

�
g(�)

��1=(2�+1)
:

Furthermore, �
R
�
�(�)

���1=(2�+1)
= 2

 
�1=2�!

(2�)!

!1=(2�+1)
:

Thus

R
�
�
(�)
�̂

��1=(2�+1)
= 2�̂

 
�1=2�!

(2�)!

!1=(2�+1)
:

The rule-of-thumb bandwidth is then h = �̂C� (k)n�1=(2�+1) where

C� (k) = R
�
�(�)

��1=(2�+1)
A�(k)

= 2

 
�1=2 (�!)3R(k)

2� (2�)!�2� (k)

!1=(2�+1)

We collect these constants in Table 4.

Table 4: Rule of Thumb Constants
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Kernel � = 2 � = 4 � = 6

Epanechnikov 2:34 3:03 3:53

Biweight 2:78 3:39 3:84

Triweight 3:15 3:72 4:13

Gaussian 1:06 1:08 1:08

Silverman Rule-of-Thumb: h = �̂C� (k)n
�1=(2�+1) where �̂ is the sample standard devia-

tion, � is the order of the kernel, and C� (k) is the constant from Table 4.

If a Gaussian kernel is used, this is often simpli�ed to h = �̂n�1=(2�+1): In particular, for the

standard second-order normal kernel, h = �̂n�1=5:

2.10 Density Derivatives

Consider the problem of estimating the r�th derivative of the density:

f (r)(x) =
dr

dxr
f(x):

A natural estimator is found by taking derivatives of the kernel density estimator. This takes

the form

f̂ (r)(x) =
dr

dxr
f̂(x) =

1

nh1+r

nX
i=1

k(r)
�
Xi � x
h

�
where

k(r)(x) =
dr

dxr
k(x):

This estimator only makes sense if k(r)(x) exists and is non-zero. Since the Gaussian kernel has

derivatives of all orders this is a common choice for derivative estimation.

The asymptotic analysis of this estimator is similar to that of the density, but with a couple of

extra wrinkles and noticably di¤erent results. First, to calculate the bias we observe that

E
1

h1+r
k(r)

�
Xi � x
h

�
=

Z 1

�1

1

h1+r
k(r)

�
z � x
h

�
f(z)dz

To simplify this expression we use integration by parts. As the integral of h�1k(r)
�
z � x
h

�
is

�k(r�1)
�
z � x
h

�
; we �nd that the above expression equals

Z 1

�1

1

hr
k(r�1)

�
z � x
h

�
f (1)(z)dz:

Repeating this a total of r times, we obtainZ 1

�1

1

h
k

�
z � x
h

�
f (r)(z)dz:

12



Next, apply the change of variables to obtainZ 1

�1
k (u) f (r)(x+ hu)dz:

Now expand f (r)(x+hu) in a ��th-order Taylor expansion about x, and integrate the terms to �nd

that the above equals

f (r)(x) +
1

�!
f (r+�)(x)h��� (k) + o (h

�)

where � is the order of the kernel. Hence the asymptotic bias is

Bias(f̂ (r)(x)) = Ef̂ (r)(x)� f (r)(x)

=
1

�!
f (r+�)(x)h��� (k) + o (h

�) :

This of course presumes that f is di¤erentiable of order at least r + � + 1.

For the variance, we �nd

var
�
f̂ (r)(x)

�
=

1

nh2+2r
var

�
k(r)

�
Xi � x
h

��
=

1

nh2+2r
Ek(r)

�
Xi � x
h

�2
� 1

n

�
1

nh1+r
Ek(r)

�
Xi � x
h

��2
=

1

nh2+2r

Z 1

�1
k(r)

�
z � x
h

�2
f(z)dz � 1

n
f (r)(x)2 +O

�
1

n

�
=

1

nh1+2r

Z 1

�1
k(r) (u)2 f (x+ hu) du+O

�
1

n

�
=

f (x)

nh1+2r

Z 1

�1
k(r) (u)2 du+O

�
1

n

�
=

f (x)R(k(r))

nh1+2r
+O

�
1

n

�
:

The AMSE and AMISE are

AMSE(f̂ (r)(x)) =
f (r+�)(x)2h2��2� (k)

(�!)2
+
f (x)R(k(r))

nh1+2r

and

AMISE(f̂ (r)(x)) =
R
�
f (r+�)

�
h2��2� (k)

(�!)2
+
R(k(r))

nh1+2r
:

Note that the order of the bias is the same as for estimation of the density. But the variance is

now of order O
�

1

nh1+2r

�
which is much larger than the O

�
1

nh

�
found earlier.

13



The asymptotically optimal bandwidth is

hr = Cr;� (k; f)n
�1=(1+2r+2�)

Cr;� (k; f) = R
�
f (r+�)

��1=(1+2r+2�)
Ar;� (k)

Ar;� (k) =

 
(1 + 2r) (�!)2R(k(r))

2��2� (k)

!1=(1+2r+2�)

Thus the optimal bandwidth converges at a slower rate than for density estimation. Given this

bandwidth, the rate of convergence for the AMISE is O
�
n�2�=(2r+2�+1)

�
; which is slower than the

O
�
n�2�=(2�+1)

��4=5
) rate when r = 0:

We see that we need a di¤erent bandwidth for estimation of derivatives than for estimation

of the density. This is a common situation which arises in nonparametric analysis. The optimal

amount of smoothing depends upon the object being estimated, and the goal of the analysis.

The AMISE with the optimal bandwidth is

AMISE(f̂ (r)(x)) = (1 + 2r + 2�)

�
�2� (k)

(�!)2 (1 + 2r)

�(2r+1)=(1+2r+2�) R �k(r)�
2�

!2�=(1+2r+2�)
n�2�=(1+2r+2�):

We can also ask the question of which kernel function is optimal, and this is addressed by

Muller (1984). The problem amounts to minimizing R
�
k(r)
�
subject to a moment condition, and

the solution is to set k equal to k�;r+1; the polynomial kernel of ��th order and exponent r+1: Thus

to a �rst derivative it is optimal to use a member of the Biweight class and for a second derivative

a member of the Triweight class.

The relative e¢ ciency of a kernel k is then

eff(k) =

�
AMISE0 (k)

AMISE0 (k�;r+1)

�(1+2�+2r)=2�
=

�
�2� (k)

�2� (k�;r+1)

�(1+2r)=2� R
�
k(r)
�

R
�
k
(r)
�;r+1

� :
The relative e¢ ciencies of the various kernels are presented in Table 5. (The Epanechnikov kernel

is not considered as it is inappropriate for derivative estimation, and similarly the Biweight kernel

for r = 2): In contrast to the case r = 0; we see that the Gaussian kernel is highly ine¢ cient, with

the e¢ ciency loss increasing with r and �: These calculations suggest that when estimating density

derivatives it is important to use the appropriate kernel.

Table 5: Relative E¢ ciency eff(k)
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Biweight Triweight Gaussian

r = 1 � = 2 1:0000 1:0185 1:2191

� = 4 1:0000 1:0159 1:2753

� = 6 1:0000 1:0136 1:3156

r = 2 � = 2 1:0000 1:4689

� = 4 1:0000 1:5592

� = 6 1:0000 1:6275

The Silverman Rule-of-Thumb may also be applied to density derivative estimation. Again using

the reference density g� = ��; we �nd the rule-of-thumb bandwidth is h = Cr;� (k) �̂n
�1=(2r+2�+1)

where

Cr;� (k) = 2

 
�1=2 (1 + 2r) (�!)2 (r + �)!R

�
k(r)
�

2��2� (k) (2r + 2�)!

!1=(2r+2�+1)
:

The constants Cr;v are collected in Table 6. For all kernels, the constants Cr;� are similar but

slightly decreasing as r increases.

Table 6: Rule of Thumb Constants
Biweight Triweight Gaussian

r = 1 � = 2 2:49 2:83 0:97

� = 4 3:18 3:49 1:03

� = 6 3:44 3:96 1:04

r = 2 � = 2 2:70 0:94

� = 4 3:35 1:00

� = 6 3:84 1:02

2.11 Multivariate Density Estimation

Now suppose that Xi is a q-vector and we want to estimate its density f(x) = f(x1; :::; xq): A

multivariate kernel estimator takes the form

f̂(x) =
1

n jHj

nX
i=1

K
�
H�1 (Xi � x)

�
where K(u) is a multivariate kernel function depending on a bandwidth vector H = (h1; :::; hq)

0

and jHj = h1h2 � � �hq: A multivariate kernel satis�es That is,Z
K(u) (du) =

Z
K(u)du1 � � � duq = 1

Typically, K(u) takes the product form:

K(u) = k (u1) k (u2) � � � k (uq) :

15



As in the univariate case, f̂(x) has the property that it integrates to one, and is non-negative

if K(u) � 0: When K(u) is a product kernel then the marginal densities of f̂(x) equal univariate
kernel density estimators with kernel functions k and bandwidths hj :

With some work, you can show that whenK(u) takes the product form, the bias of the estimator

is

Bias(f̂(x)) =
��(k)

�!

qX
j=1

@�

@x�j
f(x)h�j + o

�
h�1 + � � �+ h�q

�
and the variance is

var
�
f̂(x)

�
=

f (x)R(K)

n jHj +O

�
1

n

�
=

f (x)R(k)q

nh1h2 � � �hq
+O

�
1

n

�
:

Hence the AMISE is

AMISE
�
f̂(x)

�
=
�2�(k)

(�!)2

Z 0@ qX
j=1

@�

@x�j
f(x)h�j

1A2 (dx) + R(k)q

nh1h2 � � �hq

There is no closed-form solution for the bandwidth vector which minimizes this expression.

However, even without doing do, we can make a couple of observations.

First, the AMISE depends on the kernel function only through R(k) and �2�(k); so it is clear

that for any given �; the optimal kernel minimizes R(k); which is the same as in the univariate

case.

Second, the optimal bandwidths will all be of order n�1=(2�+q) and the optimal AMISE of order

n�2�=(2�+q): This rates are slower than the univariate (q = 1) case. The fact that dimension has

an adverse e¤ect on convergence rates is called the curse of dimensionality. Many theoretical
papers circumvent this problem through the following trick. Suppose you need the AMISE of the

estimator to converge at a rate O
�
n�1=2

�
or faster. This requires 2�= (2� + q) > 1=2; or q < 2�:

For second-order kernels (� = 2) this restricts the dimension to be 3 or less. What some authors

will do is slip in an assumption of the form: �Assume f(x) is di¤erentiable of order � + 1 where

� > q=2;� and then claim that their results hold for all q: The trouble is that what the author

is doing is imposing greater smoothness as the dimension increases. This doesn�t really avoid the

curse of dimensionality, rather it hides it behind what appears to be a technical assumption. The

bottom line is that nonparametric objects are much harder to estimate in higher dimensions, and

that is why it is called a �curse�.

To derive a rule-of-thumb, suppose that h1 = h2 = � � � = hq = h: Then

AMISE
�
f̂(x)

�
=
�2�(k)R (r�f)

(�!)2
h2� +

R(k)q

nhq
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where

r�f(x) =
qX
j=1

@�

@x�j
f(x):

We �nd that the optimal bandwidth is

h0 =

 
(�!)2 qR(k)q

2��2�(k)R (r�f)

!1=(2�+q)
n�1=(2�+q)

For a rule-of-thumb bandwidth, we replace f by the multivariate normal density �: We can

calculate that

R (r��) = q

�q=22q+�

�
(2� � 1)!! + (q � 1) ((� � 1)!!)2

�
:

Making this substitution, we obtain h0 = C� (k; q)n�1=(2�+q)where

C� (k; q) =

0@ �q=22q+��1 (�!)2R(k)q

��2�(k)
�
(2� � 1)!! + (q � 1) ((� � 1)!!)2

�
1A1=(2�+q) :

Now this assumed that all variables had unit variance. Rescaling the bandwidths by the standard

deviation of each variable, we obtain the rule-of-thumb bandwidth for the j�th variable:

hj = �̂jC� (k; q)n
�1=(2�+q):

Numerical values for the constants C�(k; q) are given in Table 7 for q = 2; 3; 4.

Table 7: Rule of Thumb Constants
� = 2 q = 2 q = 3 q = 4

Epanechnikov 2:20 2:12 2:07

Biweight 2:61 2:52 2:46

Triweight 2:96 2:86 2:80

Gaussian 1:00 0:97 0:95

� = 4

Epanechnikov 3:12 3:20 3:27

Biweight 3:50 3:59 3:67

Triweight 3:84 3:94 4:03

Gaussian 1:12 1:16 1:19

� = 6

Epanechnikov 3:69 3:83 3:96

Biweight 4:02 4:18 4:32

Triweight 4:33 4:50 4:66

Gaussian 1:13 1:18 1:23
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2.12 Least-Squares Cross-Validation

Rule-of-thumb bandwidths are a useful starting point, but they are in�exible and can be far

from optimal.

Plug-in methods take the formula for the optimal bandwidth, and replace the unknowns by

estimates, e.g. R
�
f̂ (�)

�
: But these initial estimates themselves depend on bandwidths. And each

situation needs to be individually studied. Plug-in methods have been thoroughly studied for

univariate density estimation, but are less well developed for multivariate density estimation and

other contexts.

A �exible and generally applicable data-dependent method is cross-validation. This method

attempts to make a direct estimate of the squared error, and pick the bandwidth which minimizes

this estimate. In many senses the idea is quite close to model selection based on a information

criteria, such as Mallows or AIC.

Given a bandwidth h and density estimate f̂(x) of f(x); de�ne the mean integrated squared

error (MISE)

MISE (h) =

Z �
f̂(x)� f(x)

�2
(dx) =

Z
f̂(x)2 (dx)� 2

Z
f̂(x)f(x) (dx) +

Z
f(x)2 (dx)

Optimally, we want f̂(x) to be as close to f(x) as possible, and thus for MISE (h) to be as small

as possible.

As MISE (h) is unknown, cross-validation replaces it with an estimate.

The goal is to �nd an estimate of MISE (h), and �nd the h which minimizes this estimate.

As the third term in the above expression does not depend on the bandwidth h; it can be

ignored.

The �rst term can be directly calculated.

For the univariate case

Z
f̂(x)2dx =

Z  
1

nh

nX
i=1

k

�
Xi � x
h

�!2
dx

=
1

n2h2

nX
i=1

nX
j=1

Z
k

�
Xi � x
h

�
k

�
Xj � x
h

�
dx

The convolution of k with itself is �k(x) =
R
k (u) k (x� u) du =

R
k (u) k (u� x) du (by symmetry

of k). Then making the change of variables u =
Xi � x
h

;

1

h

Z
k

�
Xi � x
h

�
k

�
Xi � x
h

�
dx =

Z
k (u) k

�
u� Xi �Xj

h

�
du

= �k

�
Xi �Xj

h

�
:
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Hence Z
f̂(x)2dx =

1

n2h

nX
i=1

nX
j=1

�k

�
Xi �Xj

h

�
:

Discussion of �k (x) can be found in the following section.

In the multivariate case,Z
f̂(x)2dx =

1

n2 jHj

nX
i=1

nX
j=1

�K
�
H�1 (Xi �Xj)

�
where �K (u) = �k (u1) � � � �k (uq)

The second term in the expression for MISE (h) depends on f(x) so is unknown and must be

estimated. An integral with respect to f(x) is an expectation with respect to the random variable

Xi:While we don�t know the true expectation, we have the sample, so can estimate this expectation

by taking the sample average. In general, a reasonable estimate of the integral
R
g(x)f(x)dx is

1

n

Pn
i=1 g (Xi) ; suggesting the estimate

1

n

Pn
i=1 f̂ (Xi) : In this case, however, the function f̂ (x) is

itself a function of the data. In particular, it is a function of the observation Xi: A way to clean

this up is to replace f̂ (Xi) with the �leave-one-out�estimate f̂�i (Xi) ; where

f̂�i (x) =
1

(n� 1) jHj
X
j 6=i

K
�
H�1 (Xj � x)

�
is the density estimate computed without observation Xi; and thus

f̂�i (Xi) =
1

(n� 1) jHj
X
j 6=i

K
�
H�1 (Xj �Xi)

�
:

That is, f̂�i (Xi) is the density estimate at x = Xi; computed with the observations except Xi: We

end up suggesting to estimate
R
f̂(x)f(x)dx with

1

n

nX
i=1

f̂�i (Xi) =
1

n (n� 1) jHj

nX
i=1

X
j 6=i

K
�
H�1 (Xj �Xi)

�
: It turns out that this is an unbiased estimate, in the sense that

E

 
1

n

nX
i=1

f̂�i (Xi)

!
= E

�Z
f̂(x)f(x)dx

�
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To see this, the LHS is

Ef̂�n (Xn) = E
�
E
�
f̂�n (Xn) j X1; :::; Xn�1

��
= E

�Z
f̂�n(x)f(x) (dx)

�
=

Z
E
�
f̂(x)

�
f(x) (dx)

= E

�Z
f̂(x)f(x) (dx)

�

the second-to-last equality exchanging integration, and since E
�
f̂(x)

�
depends only in the band-

width, not the sample size.

Together, the least-squares cross-validation criterion is

CV (h1; :::; hq) =
1

n2 jHj

nX
i=1

nX
j=1

�K
�
H�1 (Xi �Xj)

�
� 2

n (n� 1) jHj

nX
i=1

X
j 6=i

K
�
H�1 (Xj �Xi)

�
:

Another way to write this is

CV (h1; :::; hq) =
�K (0)

n jHj +
1

n2 jHj

nX
i=1

X
j 6=i

�K
�
H�1 (Xi �Xj)

�
� 2

n (n� 1) jHj

nX
i=1

X
j 6=i

K
�
H�1 (Xj �Xi)

�
' R(k)q

n jHj +
1

n2 jHj

nX
i=1

X
j 6=i

�
�K
�
H�1 (Xi �Xj)

�
� 2K

�
H�1 (Xj �Xi)

��
using �K (0) = �k(0)q and �k(0) =

R
k (u)2 ; and the approximation is by replacing n� 1 by n:

The cross-validation bandwidth vector are the value ĥ1; :::; ĥq which minimizes CV (h1; :::; hq) :

The cross-validation function is a complicated function of the bandwidhts; so this needs to be done

numerically.

In the univariate case, h is one-dimensional this is typically done by plotting (a grid search).

Pick a lower and upper value [h1; h2]; de�ne a grid on this set, and compute CV (h) for each h in

the grid. A plot of CV (h) against h is a useful diagnostic tool.

The CV (h) function can be misleading for small values of h: This arises when there is data

rounding. Some authors de�ne the cross-validation bandwidth as the largest local minimer of CV (h)

(rather than the global minimizer). This can also be avoided by picking a sensible initial range

[h1; h2]: The rule-of-thumb bandwidth can be useful here. If h0 is the rule-of-thumb bandwidth,

then use h1 = h0=3 and h2 = 3h0 or similar.

We we discussed above, CV (h1; :::; hq) +
R
f(x)2 (dx) is an unbiased estimate of MISE (h) :

This by itself does not mean that ĥ is a good estimate of h0; the minimizer of MISE (h) ; but it
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turns out that this is indeed the case. That is,

ĥ� h0
h0

!p 0

Thus, ĥ is asymptotically close to h0; but the rate of convergence is very slow.

The CV method is quite �exible, as it can be applied for any kernel function.

If the goal, however, is estimation of density derivatives, then the CV bandwidth ĥ is not

appropriate. A practical solution is the following. Recall that the asymptotically optimal bandwidth

for estimation of the density takes the form h0 = C� (k; f)n�1=(2�+1) and that for the r�th derivative

is hr = Cr;� (k; f)n�1=(1+2r+2�): Thus if the CV bandwidth ĥ is an estimate of h0; we can estimate

C� (k; f) by Ĉ� = ĥn1=(2�+1):We also saw (at least for the normal reference family) that Cr;� (k; f)

was relatively constant across r: Thus we can replace Cr;� (k; f) with Ĉ� to �nd

ĥr = Ĉ�n
�1=(1+2r+2�)

= ĥn1=(2�+1)�1=(1+2r+2�)

= ĥn(1+2r+2�)=(2�+1)(1+2r+2�)�(2�+1)=(1+2r+2�)(2�+1)

= ĥn2r=((2�+1)(1+2r+2�))

Alternatively, some authors use the rescaling

ĥr = ĥ
(1+2�)=(1+2r+2�)

2.13 Convolution Kernels

If k(x) = �(x) then �k(x) = exp(�x2=4)=
p
4�:

When k(x) is a higher-order Gaussian kernel, Wand and Schucany (Canadian Journal of Sta-

tistics, 1990, p. 201) give an expression for �k(x).

For the polynomial class, because the kernel k(u) has support on [�1; 1]; it follows that �k(x)
has support on [�2; 2] and for x � 0 equals �k(x) =

R 1
x�1 k(u)k(x � u)du: This integral can be

easily solved using algebraic software (Maple, Mathematica), but the expression can be rather

cumbersome.

For the 2nd order Epanechnikov, Biweight and Triweight kernels, for 0 � x � 2;

�k1(x) =
3

160
(2� x)3

�
x2 + 6x+ 4

�
�k2(x) =

5

3584
(2� x)5

�
x4 + 10x3 + 36x2 + 40x+ 16

�
�k3(x) =

35

1757 184
(2� x)7

�
5x6 + 70x5 + 404x4 + 1176x3 + 1616x2 + 1120x+ 320

�
These functions are symmetric, so the values for x < 0 are found by �k(x) = �k(�x):
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For the 4th, and 6th order Epanechnikov kernels, for 0 � x � 2;

�k4;1(x) =
5

2048
(2� x)3

�
7x6 + 42x5 + 48x4 � 160x3 � 144x2 + 96x+ 64

�
�k6;1(x) =

105

3407 872
(2� x)3

�
495x10 + 2970x9 + 2052x8 � 19 368x7 � 32 624x6

+53 088x5 + 68 352x4 � 48 640x3 � 46 720x2 + 11 520x+ 7680
�

2.14 Asymptotic Normality

The kernel estimator is the sample average

f̂(x) =
1

n

nX
i=1

1

jHjK
�
H�1 (Xi � x)

�
:

We can therefore apply the central limit theorem.

But the convergence rate is not
p
n: We know that

var
�
f̂(x)

�
=
f (x)R(k)q

nh1h2 � � �hq
+O

�
1

n

�
:

so the convergence rate is
p
nh1h2 � � �hq: When we apply the CLT we scale by this, rather than

the conventional
p
n:

As the estimator is biased, we also center at its expectation, rather than the true value

Thus

p
nh1h2 � � �hq

�
f̂(x)� Ef̂(x)

�
=

p
nh1h2 � � �hq

n

nX
i=1

1

jHjK
�
H�1 (Xi � x)

�
� E

�
1

jHjK
�
H�1 (Xi � x)

��

=

p
h1h2 � � �hqp

n

nX
i=1

�
1

jHjK
�
H�1 (Xi � x)

�
� E

�
1

jHjK
�
H�1 (Xi � x)

���

=
1p
n

nX
i=1

Zni

where

Zni =
p
h1h2 � � �hq

�
1

jHjK
�
H�1 (Xi � x)

�
� E

�
1

jHjK
�
H�1 (Xi � x)

���
We see that

var (Zni) ' f (x)R(k)q

Hence by the CLT,

p
nh1h2 � � �hq

�
f̂(x)� Ef̂(x)

�
!d N (0; f (x)R(k)

q) :
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We also know that

E(f̂(x)) = f(x) +
��(k)

�!

qX
j=1

@�

@x�j
f(x)h�j + o

�
h�1 + � � �+ h�q

�
So another way of writing this is

p
nh1h2 � � �hq

0@f̂(x)� f(x)� ��(k)
�!

qX
j=1

@�

@x�j
f(x)h�j

1A!d N (0; f (x)R(k)
q) :

In the univariate case this is

p
nh

�
f̂(x)� f(x)� ��(k)

�!
f (2)(x)h�

�
!d N (0; f (x)R(k))

This expression is most useful when the bandwidth is selected to be of optimal order, that is

h = Cn�1=(2�+1); for then
p
nhh� = C�+1=2 and we have the equivalent statement

p
nh
�
f̂(x)� f(x)

�
!d N

�
C�+1=2

��(k)

�!
f (2)(x); f (x)R(k)

�
This says that the density estimator is asymptotically normal, with a non-zero asymptotic bias

and variance.

Some authors play a dirty trick, by using the assumption that h is of smaller order than the

optimal rate, e.g. h = o
�
n�1=(2�+1)

�
: For then then obtain the result

p
nh
�
f̂(x)� f(x)

�
!d N (0; f (x)R(k))

This appears much nicer. The estimator is asymptotically normal, with mean zero! There are

several costs. One, if the bandwidth is really seleted to be sub-optimal, the estimator is simply less

precise. A sub-optimal bandwidth results in a slower convergence rate. This is not a good thing.

The reduction in bias is obtained at in increase in variance. Another cost is that the asymptotic

distribution is misleading. It suggests that the estimator is unbiased, which is not honest. Finally, it

is unclear how to pick this sub-optimal bandwidth. I call this assumption a dirty trick, because it is

slipped in by authors to make their results cleaner and derivations easier. This type of assumption

should be avoided.

2.15 Pointwise Con�dence Intervals

The asymptotic distribution may be used to construct pointwise con�dence intervals for f(x):

In the univariate case conventional con�dence intervals take the form

f̂(x)� 2
�
f̂ (x)R(k)= (nh)

�1=2
:
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These are not necessarily the best choice, since the variance equals the mean: This set has the

unfortunate property that it can contain negative values, for example.

Instead, consider constructing the con�dence interval by inverting a test statistic. To test

H0 : f(x) = f0; a t-ratio is

t (f0) =
f̂(x)� f0p
nhf0R(k)

:

We reject H0 if jt (f0)j > 2: By the no-rejection rule, an asymptotic 95% con�dence interval for f

is the set of f0 which do reject, i.e. the set of f such that jt (f)j � 2: This is

C(x) =

(
f :

����� f̂(x)� fp
nhfR(k)

����� � 2
)

This set must be found numerically.
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