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TESTS FOR UNIT ROOTS AND THE INITIAL CONDITION

By ULRICH K. MULLER AND GRAHAM ELLIOTT!

The paper analyzes the impact of the initial condition on the problem of testing for unit
roots. To this end, we derive a family of optimal tests that maximize a weighted average
power criterion with respect to the initial condition. We then investigate the relationship
of this optimal family to popular tests. We find that many unit root tests are closely related
to specific members of the optimal family, but the corresponding members employ very
different weightings for the initial condition. The popular Dickey-Fuller tests, for instance,
put a large weight on extreme deviations of the initial observation from the deterministic
component, whereas other popular tests put more weight on moderate deviations. Since
the power of unit root tests varies dramatically with the initial condition, this paper explains
the results of comparative power studies of unit root tests. The results allow a much deeper
understanding of the merits of particular tests in specific circumstances, and a guide to
choosing which statistics to use in practice.

KeYywoORDSs: Unit root tests, point optimal tests, weighted average power, asymptotic
distributions.

1. INTRODUCTION

IN TESTING FOR A UNIT ROOT, one faces a large array of possible methods. Monte
Carlo studies do not point to any dominant test. Part of the reason is that there exists
no uniformly most powerful test (cf. Elliott, Rothenberg, and Stock (1996), abbreviated
ERS in the following). In this paper we show analytically that treatment of the initial
condition of the process is a second reason for the lack of such an ordering. The power
of any unit root test will depend on the deviation of the initial observation y, from its
modelled deterministic part—call this deviation £&. We derive a family of optimal tests that
maximize a weighted average power criterion with respect to £, and then relate popular
unit root tests to this optimal family in an asymptotic framework. We find that all popular
unit root tests are either members of the optimal family or closely related to a specific
member.? These relationships allow us to infer the implicit weighting of £ of the various
popular tests, and we find stark differences in this regard. The popular Dickey-Fuller
tests, for instance, put a large weight on extreme deviations of the initial observation from
the deterministic component, whereas other popular tests that fare well in Monte Carlo
studies, like tests based on weighted symmetric estimators, put more weight on moderate
£

Our findings have several implications. First, the initial condition is a crucial aspect
of the unit root testing problem, as it profoundly affects both power and the form of
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2 Not all unit root tests have this property; however many do.
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optimal tests. Second, there is little point in deriving yet another unit root test statistic
as all of the popular tests are close to optimal for some weighting of £. Even if one
comes up with an additional statistic that has a different and potentially attractive power
characteristic in the ¢ dimension, it seems much more compelling to use our general
method for computing a test with this property directly. Third, the implicit weightings of &
found for the popular tests explain the results of comparative power studies. Monte Carlo
evidence is in general inconclusive. The careful analysis of the role of the initial condition
provides a unifying and consistent interpretation for the simulation results. Fourth, we
make clear that choices between statistics in practice come down to what types of initial
conditions are likely for the application at hand and reveal the merits of particular tests
for specific model parameterizations.

In the next section we build the basic model and discuss various methods for dealing
with the nuisance parameter ¢. We then derive the family of optimal tests that maximize
weighted average power over different initial conditions in both small and large samples.
Section four relates commonly employed unit root tests to members of the optimal family.

2. HYPOTHESIS TESTING AND THE INITIAL CONDITION

We will consider the following general model in this paper:

Y= XB+p+w, (t=0,1,...,T),
(2.1) w, =pw,_;+v, (t=1,...,7),
w():fa

where X, is a predetermined vector with no constant element, X, =0, and u, 8, and ¢ are
unknown. We also assume that the regressor matrix X = (X, ..., X7)  has full column
rank. We are interested in distinguishing the two hypotheses Hy:p=1vs. H; : p < 1.

This model has received a great deal of attention. Test statistics typically do not have
approximate normal distributions, and much of the intuition from the stationary world
as to which tests are optimal does not hold for this testing situation. Many feasible test
statistics have been suggested, the most famous being Dickey and Fuller’s (1979) t-test
and p-test. Monte Carlo evidence leads Pantula, Gonzalez-Farias, and Fuller (1994) to
promote tests based on weighted symmetric regressions. None of these tests have known
optimality properties.

Less work is concerned with the derivation of optimal tests. Dufour and King (1991)
derive the point optimal test and locally best test for independent Gaussian disturbances
v, and an independent zero-mean normal ¢ for various p. ERS derive the family of asymp-
totically optimal tests against a fixed alternative when ¢ is bounded in probability and for
(possibly correlated) Gaussian v,. Rothenberg and Stock (1997) extend this to alternate
distributions on the error terms. Elliott (1999) derives the family of asymptotically opti-
mal tests for independent v, when ¢ is drawn from its unconditional distribution under
the fixed alternative.

The initial value ¢ can be regarded as a fixed but unknown nuisance parameter. With
y=00s Vis--->Y7) w=(wy, wy,...,wr),and e a T+1 x 1 vector of ones, we can write
the model compactly as

y=XB+ue+w.

Note that the expectation of w is not zero, but rather E[w] = éR(p), where R(r) is the
T+1x1 vector R(r) = (1,r,7% ...,rT). Let A(r) be the T +1x T + 1 matrix with
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ones on its main diagonal, —r on the lower diagonal, and zeros elsewhere, and let v =
0,v,...,vp). Then A(p)(w—ER(p)) = v and the model can be written

y=XB+pe+ER(p)+ A(p) 'y

From a statistical perspective, the initial condition £ is an additional nuisance parameter
along with 8 and p and the covariance matrix of v. We are not primarily interested in its
value, but we must be concerned about its impact on the data generating process in order
to construct useful tests and evaluate their performance.

Under the null hypothesis (p = 1) different values of ¢ induce mean shifts in the data,
as R(1) =e. So with p=1, £ and p have the exact same impact on the data generating
process, and ¢ and u are not individually identified. This means that tests invariant to the
mean will be numerically unaffected by the initial condition, so that ¢ does not affect their
size. Under the alternative hypothesis (p < 1) altering £ amounts to adding a geometrically
decaying series Aép’ to the data. This results in an extra difference between the null and
alternative models and will affect power and the form of the optimal test for a unit root.

It is long known that the power of unit root tests depends on the initial condition
in small samples; see Evans and Savin (1981, 1984), for instance, and Stock (1994, p.
2777) for additional references. Typical asymptotic analyses assume ¢ to be either fixed or
random but bounded in probability. An application of a Functional Central Limit Theorem
(FCLT) to

(7s]
(22) Tﬁl/zw[m — T—l/Zp[Tsjg 4 T71/2 Z p[Ts]—ZV[
=1

with [-] denoting the largest smaller integer function then suggests that £ has no bearing
on the relevant asymptotic distributions either under the null or alternative hypotheses as
the first term is 0,(1).

More adequate asymptotic approximations for small sample inference, when ¢ is of
similar magnitude to variation in the data after deterministic terms are removed, arises
when the first term is O(1). Useful asymptotics for the unit root testing problem require
p to become ever closer to unity as the sample size T increases. Following the analysis of
Chan and Wei (1987) and Phillips (1987b), the appropriate rate of convergence of p to
one is achieved by setting p =1—yT ! for a fixed y. A stationary series in this framework
will have an unconditional variance that is proportional to (1 —p?)~! = T(2y)~' + o(T).
Taking the root of the unconditional variance as the natural scale for the initial condition,
that suggests treating ¢ as an O(T'/?) variable. But with £ = O(T"?), the first term in
(2.2) has the same order of magnitude as the second, so that the initial condition does
not vanish asymptotically.

With £ being a relevant nuisance parameter, we require some method to allow for it
in the testing procedure. A ‘plug-in’ approach that substitutes ¢ with an estimator ¢ in
a procedure that is optimal for a specific ¢ fails to provide an optimal test because &
cannot be estimated with sufficient precision to leave power unaffected by the substitution.
Alternatively one might consider tests that are invariant to ¢ (as is usually done with
deterministic terms). But with p unknown, the relevant group of transformations

(2.3) y— y+xR(r) VxVr<l1

is so large that a requirement of invariance with respect to this group yields tests with
trivial power. On a conceptual level the application of invariance is inappropriate for &
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because the form of the induced deterministic R(p) depends on p and thus on the upheld
hypothesis.

We hence derive tests that maximize weighted average power over various values of
&, where the weight function is a prespecified distribution function. Since tests that are
invariant to the mean are unaffected by different values of ¢ under the null, we only need
to specify the weight function under the alternative hypothesis. In this respect, the situa-
tion here is very similar to Andrews and Ploberger’s (1994) analysis of optimal asymptotic
tests for the general testing problem when a nuisance parameter is present only under the
alternative.’

3. A FAMILY OF OPTIMAL TESTS
3.1. Small Sample Analysis

In this section we develop optimal test statistics for the unit root testing problem and
derive their asymptotic distribution. We make the following assumption concerning the
generation of the disturbances v,. The stationarity assumption is only required for the
asymptotic optimality below.

CONDITION 1: The stationary sequence {v,} has a strictly positive spectral density function
£, (); it has a moving average representation v, =) ., 8,&,_, where the &, are independent
standard normal random variables and )7, s|8,| < oo.

With the distribution of the stochastic element v, specified to be normal, we would like
to apply the Neyman-Pearson Lemma to derive an optimal test statistic. But three prob-
lems arise: (i) B and p are unknown, (ii) the alternative is composite, and (iii) there is an
additional nuisance parameter &, that is individually identified only under the alternative.

To deal with the first problem, we will restrict attention to tests that are invariant to
the group of transformations

(3.1) y—>y+Zb Vb,

where Z = (e, X), i.e. the requirement that a test statistic S(y) has the property S(y+
Zb) = S(y) for all b. This has been the dominant strategy in the unit root literature for
the treatment of the unknown § and u, and we will follow this approach. As already noted
above, invariance to the mean also makes the test statistic automatically independent of
& under the null of p =1.

The composite nature of the alternative is indeed a problem for unit root testing, as
there does not exist a uniformly most powerful test, even asymptotically (cf. ERS). Dufour
and King (1991) have derived small sample point optimal tests that maximize power at
a specific alternative p =r < 1, and ERS have extended these results in a local-to-unity
asymptotic framework. We will follow this approach.

In order to deal with ¢, we derive tests that maximize a weighted average power cri-
terion. Specifically, let F(£¢) be a probability measure on the real line. We will refer to a
(possibly randomized) test ¢, (y; r, F) as an optimal test if for a given significance level
ay, ¢o(y; r, F) maximizes weighted average power at the alternative p =r <1,

(3.2) f:: P(¢(y) rejects|p=r, & =x)dF(x)

3 We cannot directly draw on their result, however, since several of their assumptions are not
satisfied for the testing problem here.
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over all tests ¢(y) of size a,. F may be seen as representing the importance a researcher
attaches to the test being able to distinguish the two hypotheses for various values of
&. In this perspective, the weighting F' is a device to derive tests with a certain power
characteristic as a function of &.

This treatment of a nuisance parameter is very similar to the approach of Andrews and
Ploberger (1994) for the general testing problem where a nuisance parameter is present
only under the alternative. Their analysis would suggest a second averaging over various
values of p. In this paper, we simplify the following derivations by sticking to the for-
mulation (3.2) and by considering only the cumulative distribution function of zero mean
normals for F (see Miiller (2002) for a more general treatment). These simplifications
lead to a class of optimal tests that are easier to interpret while being general enough to
successfully relate existing unit root tests to specific members of the class.

The following theorem provides an optimal unit root test for general X with our chosen
weighting function F for £&. We measure the variance of the normal weighting function
by multiples (denoted by k) of the unconditional variance of w, when p = r < 1, which is
given by vy (r) =var[372, r/v_;].* Choosing k larger thus gives greater weight to larger |£|.

THEOREM 1: Consider the data generating process (2.1) under Condition 1 where the
autocovariances y(j) = E[v,v,_;] are known for all j. Then the test of H,:p =1 against
H, : p=r <1 that is invariant to the transformations (3.1) and maximizes (3.2) with F being
the cumulative density function of a zero mean normal with variance kvy(r) rejects for small
values of the statistic

Q(r, k) =y'(G,—Gy)y

where G; =37 — E;ZLZ’E{Z)*Z’Z;, V is the covariance matrix of the last T elements of
v, 35 = A1) diag(1, V1) A1), and for k > 0, 37 = A(r) diag(kv,(r), V)L A(r), whereas
for k=0,

3T = A(ry (”O(r)_;:’_(;)}l)fjﬁ_lé - ;71)15/ﬁ_1> A(r)

with ¢ a T x 1 vector of ones.

An assumption of known autocovariances of v, is, of course, unlikely to be met in prac-
tice. But Q(r, k) will serve as a useful benchmark to evaluate the performance of popular
unit root tests, and it will be established below that standard tests are asymptotically opti-
mal (or close to optimal) even without the knowledge of the correlation structure of v,.
Note that the family of tests Q(r, k) contains the optimal tests considered in ERS and
Elliott (1999) with k£ =0 and k = 1, respectively.

As discussed above, the weighting function F may be seen as a simple device to con-
struct a family of optimal tests ¢,(y; r, F) with a different power characteristic in the &
dimension, where ¢ is regarded as a fixed nuisance parameter. Alternatively, one might

*9,(r) is necessarily finite because

wy(r) = (1- )" (7(0) L2y rfv(j)) <2(1-7) Y ()

j=1 j=0

and under Condition 1 the sequence 7y(j) is absolutely summable.
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interpret the result in a Bayesian manner: With ¢ random, Theorem 1 has the additional
interpretation as providing a test statistic that optimally (subject to the invariance restric-
tion) discriminates H, : p = 1 with arbitrary ¢ against H, : p =r and & ~ N(0, kvy(r))
independent of v.

Dufour and King’s (1991) point optimal invariant statistics are closely related to
QO(r, k). They consider the special case where v, are i.i.d. Gaussian with variance o2, but
impose invariance to the larger group of transformations of the form y — cy+Zb for any
nonzero ¢ and all vectors b. The additional invariance to scale makes the resulting tests
independent of o2. We focus in this paper on an asymptotic analysis, and since o can be
estimated consistently, the formulation of Dufour and King (1991) and Q(r, k) lead to
the same asymptotic power functions.

When the disturbances v, are independent, then the Bayesian interpretation implies
that Q(r, 1) is the most powerful invariant test of the unit root hypothesis against the
strictly stationary alternative p = r, i.e. when ¢ stems from the unconditional distribution
N (0, vy(r)). When v, is stationary but autocorrelated, however, a random ¢ that makes w,
stationary under the alternative cannot be stochastically independent of v,. The optimal
test statistic in this case is hence not a member of the family Q(r, k). The following
theorem provides the optimal test for this case.

THEOREM 2: Consider the data generating process (2.1) under Condition 1 where the
autocovariances y(j) = E[v,v,_;] are known for all j. The statistic that optimally tests H, :
p=1against H :p=r and & =) 2, r'v_, that is invariant to the transformations (3.1)
and rejects for small values is

Q(r) =y (L =)y,

)

where
JO = GO’
L=07"-07'2(Z07'2) 17 07",
A(N)Q,A(r) =V,

and

-4 1)

and the T x 1 vector 7 is given by ) = [n,] = [¥7, ry(t+ )]

Whilst in small samples there is a distinction between Q(r) and Q(r, 1), Theorem 3
below shows that they share the same asymptotic distribution.

3.2. Asymptotic Analysis

The following asymptotics are developed in the local-to-unity framework, i.e. we inves-
tigate the limiting destribution of the test statistics as the sample size 7" goes to infinity
and y=T(1—p) >0 is a fixed constant. The point alternative r against which the family of
tests Q(r, k) is optimal is treated accordingly as r =1—gT~! (we use vy for the true value
and g for a general value). In the asymptotic analysis we measure the magnitude of the
initial condition ¢ in terms of the square root of the unconditional variance of a stationary



TESTS FOR UNIT ROOTS 1275

process (y > 0) with p =1—yT~1, which is vy(1 —yT )2 = @T?(2y) V% +o(T?),
where ? is the ‘long-run’ variance of v,, w* = 27f,(0). Define « implicitly as the scaled
version of the initial condition, ¢ = awT/?(2y)~"/?, so that £ = O(T"?) matters asymp-
totically. A value of a =1 then generates relevant asymptotics for a finite sample where
the initial condition is equal to one standard deviation of the unconditional distribution
of y, when p < 1.

In this framework, it is straightforward to show by means of an adequate FCLT and
the Continuous Mapping Theorem (CMT) that

(3.3) T2 (wyrg — wp) = @M (s)

_ oW (s) for y=0,
| ea(e =1)@2y) Pt 0 fj e VAW (L) else

where ‘=’ denotes weak convergence of the underlying probability measures and W (-)
is a standard Brownian motion. Note that M (s) is continuous in y at y =0 (cf. Elliott
(1999)).

The subsequent derivations focus on the two most popular cases for the deterministic
component: the mean only case without X, which will be denoted by a superscript u,
and the mean and trend case X =7=(0,1,...,T)’, denoted with a superscript 7. See
the longer working paper version of this contribution for the analysis of more general
deterministics.

For the time trend case, it is useful to write the asymptotic distributions in terms of
the projection of M(s) off s, denoted M7(s), ie. M"(s) = M(s) —3s [ AM(A) dA (for
notational convenience, the limits of integration are understood to be zero and one, if not
stated otherwise). In order to simplify notation, we reparameterize the families of optimal
test statistics, denoted with a subscript a, which are given by Q,(g, k) = Q(1—gT', k)
and Q,(g) = O(1—gT™"). The following theorem states the asymptotic distributions of
Qi(g,k) and Qi (g) in terms of M*(s) = M(s) and M’ (s).

THEOREM 3: Under Condition 1 and with T(1—p) =17y >0, for i=pu, 1,
() Qu(8. k)= gy +qiM'(1)* + q3(f M'(s) ds)* + qsM' (1) [ M'(s) ds +q; [ M'(s)* ds

where qi = —g,q =g—gk/(2+gk), ¢y = —g°k/(2+gk), g = —28%k/(2+gk), g} = &,
and qf = —g, q] = (8g* +8¢> =3¢’k +g*k) /(24 +24g + 8¢ + g’k), ¢} = —4g°(3+3g +
g)k/(24+24g+8g> +8%k), ¢f =48> (3+g)k /(24 +24g + 88>+ g°k), q] = %

(ii) Qi (g) has the same asymptotic distribution as Q' (g, 1).

The statistics of Theorem 3 were all computed with the knowledge of the covariance
matrix of v. But their asymptotic distributions do not depend on the specific form of the
autocorrelations of v,. This—maybe surprising—result has already been established by
ERS for the statistic Q,(g, 0) in our notation. It carries over to more general assumptions
concerning the initial condition, as well as to the optimal statistic against the stationary
model Q,(g). The result implies that it is impossible to exploit autocorrelations in v,
to devise unit root tests that have higher asymptotic local power than optimal tests for
independent v,. Furthermore, since the optimal statistics have an asymptotic distribution
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that is a continuous function of M(-) and w is consistently estimable, one can build on
the results of Stock (2000) to derive feasible statistics that have the same asymptotic
distribution (and are hence asymptotically optimal) that do not require knowledge of the
autocovariances of v,. Such statistics attain the same asymptotic power as the optimal tests
as long as (3.3) holds, that is, under much more general conditions than Condition 1.

Figure 1 depicts the asymptotic power of Qf (7, k) and Q7(13.5, k) with k =0, 1, co and
v =5,10, 15,20, 25 as a function of « (the values for g are those suggested by ERS). All
power curves in this paper are for a level of 5%. For large enough |a|, the power of the
optimal tests with X =0 and k£ =1 drops to zero. The tests with k =0 achieve the maximal
power at a = 0 but their power drops to zero for |«| > 2 for all considered values of y.
The tests with k = 1 have an asymptotic power that is lower for « = 0 but decreases in
|| at a considerably slower rate. The optimal tests Q! (-, o) with an extreme weighting
of large |a| have power that increases in |a|, and have very low power for |a| < 2. The
figures hence demonstrate the quantitative importance of the power trade-off of optimal
unit root tests with respect to the weighting of the initial condition. The results are not
sensitive to the choice of g, at least for moderate k.

Q7,0 Q1(13.5, 0)

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

1 2 3 4 2 3 4 5
QYT Q:(13.5, 1)

1 I
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

(1]
—

1 2 3 4 ) 1 2 3 4 5
| QAT o) ) Q(13.5, o)
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
- @ a
1 2 3 4 5 1 2 3 4 5

FIGURE 1.—Asymptotic power as a function of a for y =5, 10, 15, 20, and 25.
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4. RELATION OF OPTIMAL TESTS TO SOME
POPULAR UNIT ROOT TESTS

In this section we explore the relationship of some popular unit root tests to the
family of optimal tests Q!(g, k). We compare the asymptotic distribution of Q(g, k) in
Theorem 3 on the one hand with the asymptotic distributions of the popular tests on the
other. This is an interesting exercise because a close correspondence implies near opti-
mality of the popular test, and the value of k of the corresponding optimal test measures
the weighting of the initial condition that is implicitly employed in the popular test.

Following Stock (2000), we classify unit root test statistics by their asymptotic distribu-
tions, written as some function % : C[0, 1] —> R of M (-), where C[0, 1] is the space of
square integrable continuous functions on the unit interval. Various tests lead to a mul-
titude of functions %, and many other tests could easily be devised. However, for most
classes of tests and resulting functions 4, nothing is known about their optimality.

Table I shows the classes of tests considered in this section. Members of the pPF-class
and 7PF-class include the statistic suggested by Dickey and Fuller (1979) as well as those
of Phillips (1987a) and Phillips and Perron (1988), members of the N-class and R-class
include the (appropriately scaled) N;, N, and R,, R, statistics of Bhargava (1986) as well
as the z-statistics suggested by Schmidt and Phillips (1992) and Schmidt and Lee (1991),
members of the LB-class include the (appropriately scaled) locally best invariant test
for the mean case as derived in Dufour and King (1991) and the locally best unbiased
invariant test for the trend case as derived by Nabeya and Tanaka (1990), members of
the pPFCS_class and #PFOLS_class, indexed by a positive parameter ¢ in the trend case,
include the statistics proposed in ERS and members of the 7%S-class include the weighted
symmetric estimator of Pantula, Gonzalez-Farias, and Fuller (1994), where appropriate
corrections for correlated disturbances are employed for all test statistics (see Stock (1994)
for details regarding this correction).

TABLE I
CLASSES OF UNIT ROOT TESTS*

# Class Asymptotic Distribution
1 N [f MY (s)*ds]™!
2 R [f M"R(s)?ds]™
3 LB M(1)? mean case
S M™N(s)?ds trend case
DFGLS s M P (12— P (o) —1
4 p (©) 2/ M5 P (5 2ds
5 DF i OLS (1)2_ i, OLS ()2
p 27 M OLS (5245
i, P1)2 i, P )2
6 #DFGLS (& MET ()T ME (Ot
( ) 24/ [ M P (5)2ds
7 sws M- OLS (124 37 OLS (0)2 1 _3 1 pi> OLS (5)2 4

sz Mi,OLS (524
Mi-OLS (1)2_ 7i, OLS ()2 _;

P /fM[,OLS(S)ZdS

apMmOLS () = M(s) — [M(A)dA, MT-OLS(s) = MT(s) — 4 MT(N)d\ +
65 [ MT(\)dA, M N(s) = M(s),M™N(s) = M7(s) — sM7(1), MM R(5) =
M#-OLS (5) MT-R(s) = M7(s) — (s — )MT(1) = [ MT(A)dr, MP-P () = M(s),
and M7 P (s) = M7 (s) - s(@+1)(} & +E+1)"TM7(1), ¢ > 0.
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Noting that for a positive random variable B, P(A/B <cv) = P(A <cv B), it is possible
to show that a test based on statistics 1-5 in Table I with critical value cv is asymptotically
equivalent to tests based on a statistic S], with asymptotic distribution

@D et el ([ M(s)ds) + ML) [ M) ds+ o [ M (s) ds

that reject for negative values, where some of the statistic specific weights gaj depend on
the critical value cv. Note that (4.1) is of the same form as the asymptotic distribution of
Qi (g, k). If there exists /, > 0 such that

where q} are the (nonlinear) functions of g and k given in Theorem 3, then S; and the
optimal test Q! (g, k) have the same local power. For such an asymptotic equivalence to
hold, four nonlinear equations must be satisfied by the three parameters g, k, and /,. The
next theorem describes for which statistics in Table I this equation can be satisfied.

THEOREM 4: Under the conditions of Theorem 3 the classes of unit root tests 1-4 of

Table I are asymptotically equivalent to optimal tests based on Q' (g, k) for a particular choice
of g and k:

mean mean and trend
g k g k
R o #0 -0 2/8
N S 0 -0 arbitrary constant
LB -0 k<2 -0 arbitrary constant
pDFGLS 2y 0 g™ DFOLS 0

where the equivalence for pPFS () in the trend case holds provided

roreis _ 1=3a+(1 —2a-3a%)'?
2a

8
with

¢*—6cv—12¢cv — 662 cv
2(3+3c+c?)%cv

a=—

is real.

The locally best tests that make up the LB class were derived by Dufour and King
(1991) and Nabeya and Tanaka (1990) under the assumption that the variance of ¢ is a
fixed number. This corresponds to the case k =0, and so by construction the L B-class
of tests is asymptotically equivalent to a test based on the (appropriately scaled) limit of
0,(g,0) as g — 0. But Theorem 4 additionally implies that this limit is independent of
k for k < 2. Additionally, since the asymptotic distribution of Q,(g) is the same as that
of 0,(g,1), the LB-class of tests is also asymptotically locally optimal when the initial
observation is drawn from the unconditional distribution under the alternative.

The (uncorrected) R and N statistics were constructed as approximations to the locally
best tests of the unit root hypothesis for independent disturbances v, against the stationary
model (¢ =Y ,p'v_,) and nonstationary model with ¢ = v, in the neighborhood of
p =1, respectively. Their derivation by Sargan and Bhargava (1983) and Bhargava (1986)
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uses the Anderson approximation to the covariance matrices in the Gaussian densities.
Interestingly, the different assumption concerning the initial condition in the derivation of
N and R leads to asymptotically different approximate locally best tests, in contrast to the
exact locally best tests based on LB. As already pointed out by Nabeya and Tanaka (1990),
the N and R statistics generally do not—even asymptotically—correspond to the locally
best test statistics when the exact densities are used. In fact, the R* and N* statistics
are optimal for a p that is just smaller than any alternative considered in the local-to-
unity framework, and a test based on R" is locally optimal against the alternative that &
is Gaussian with a variance that is an order of magnitude larger than the variance of the
unconditional distribution.

The p"PFOLS class of tests are asymptotically equivalent to a test based on Qi(g,0)
where g depends on the level of the test. Fixing ¢ at 13.5 in the trend case (the value
suggested by ERS), we find with the 5% critical values of p*PFOLS and p™PFOLS that
these tests correspond to Qf(16.08,0) and Q7(29.20,0) whereas for 1% critical values
the correspondences are to Q%(27.39,0) and Q7(36.14,0). The reduction of the level
therefore yields tests that are optimal for alternatives that are easier to distinguish.

The set of equations (4.2) does not have a solution for pPF, and the statistics 6-8 cannot
be written in the form (4.1). Thus these statistics are not in the optimal family. But it
is still insightful to identify particular values of g and k such that tests based on a class
of statistics 5-8 are roughly equivalent to tests based on Q,(g, k). By (approximately)
maximizing the asymptotic probability that either both tests reject or do not reject with
respect to g and k under H,, we obtain the results depicted in Table II. The column
cp is the (estimated) conditional asymptotic probability that the 5% level test based on
Q,(g, k) rejects given that the 5% level test based on the statistic in the first column
rejects. See the Appendix for details on the selection of suitable values of g and k.

The generally large values of cp imply that the behavior of the classes of test statis-
tics 5-8 can be mimicked very closely by specific members of the optimal family Q,(g, k),
maybe with the exception of 7PF in the mean case. We corroborate these close correspon-
dences by examining power curves for each test and the approximate optimal test—see
Figure 2. For most cases the asymptotic power of the popular tests (solid lines) is hardly
distinguishable from the corresponding optimal tests (dashed lines) over a wide range of
values of y and a.

The class of tests %S are very much comparable to tests based on Q,(g, 1) for some g
(since k is close to one for these tests). The implicit weighting of different « of these tests
almost corresponds to the optimal weighting if the initial value is drawn from the uncon-
ditional distribution. This explains why #%$ does well in such Monte Carlo designs—see

TABLE II

CLASSES OF UNIT ROOT TESTS AND VALUES OF g AND k OF A
COMPARABLE TEST BASED ON Q,(g, k)

Mean Mean and Trend
cp g k cp g k
WS 0.983 10.8 0.988 0.991 15.9 1.01
7DFGLS 0.996 8.36 0.00 0.999 17.7 0.00
¥ 0.995 27.4 30.1 0.988 41.9 24.3

7PF 0.810 8.60 9.71 0.927 213 o
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FIGURE 2.—Asymptotic power as a function of a for y =5, 10, 15, 20, and 25.

Pantula, Gonzalez-Farias, and Fuller (1994) and Elliott (1999). The class #PFOLS is, as
found in ERS, near optimal when « is near zero since the choice of k here is zero. Thus
these results explain the available Monte Carlo evidence for this test as well. Finally, the
Dickey-Fuller statistics put an extreme weighting on large ||, which results in asymptotic
power that increases with |«|, in stark contrast to all other considered statistics. But this
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increase in power for large || comes at the cost of much reduced power for small |a|—
in the mean case, for instance, the local power for @« =0 and y = 10 is 45.9% for p°F,
but 75.6% for Q,(7,0). Given that Monte Carlo studies typically generate moderate ini-
tial conditions, it is hence not surprising that the Dickey-Fuller statistics fail to be very
powerful in such set-ups.

5. CONCLUSION

In choosing a test, the choice comes down to choosing a power function. While the
form of this function in terms of trade-offs over different alternatives might be debatable,
certainly good tests must not have a power function that can be dominated uniformly over
all alternatives. In contrast to most contributions to the unit root literature, this paper
has derived a family of tests that by construction possesses this property. We related the
family of optimal tests to existing tests and found that all popular unit root tests are either
close or close to optimal tests. Their idiosyncratic power characteristics can be explained
by different implicit treatments of the initial condition.

The near optimality of existing procedures implies that it is impossible to develop a
unit root test that is uniformly better, at least within the standard assumptions on the data
generating process. Continuing attempts to do so hence must be futile; there is simply no
inefficiency left to exploit. Useful additions to the literature rather arise by considering the
implications of a different set of assumptions for optimal procedures—see, for instance,
the analysis by Rothenberg and Stock (1997) of how one might exploit nonnormality of
the disturbances in the unit root testing context.

Interestingly, the near optimality holds even with respect to the Dickey-Fuller statistics.
Already the first attempt at deriving a unit root testing procedure hence did not leave
any ‘free lunch’ on the table. This paper makes plain that many ad hoc suggestions for
‘better’ unit root tests were in effect just trading more power at some initial condition for
less power at other ones. Given the number of proposed statistics, it is perhaps not even
surprising that tests that ‘survived’ are close to optimal.

While it is quite clear that inefficient tests should not be used, which efficient test to
pick is a much more difficult question. One way to interpret our finding that efficient
unit root tests have greatly varying power in the dimension of the initial condition is that
knowledge about the initial condition is very informative for the problem. If a researcher
is confident that reasonable initial conditions are relatively small, then it is precisely this
knowledge that will enable him to generate more discriminatory power for the unit root
testing problem. A useful choice then is, for instance, the tests suggested by ERS. In
absence of any specific knowledge about the beginning of the series, assuming a weighting
under the alternative that corresponds to the unconditional distribution of a stationary
process seems like a useful starting point. This would suggest using tests based on the
weighted symmetric estimator or the tests suggested by Elliott (1999). Alternatively, one
could rely on the results of this paper to construct an asymptotically optimal statistic for
this purpose. Given that the power of tests based on Dickey-Fuller statistics is increasing
in the magnitude of the initial condition, these tests seem attractive only when there
are compelling reasons why the potentially mean reverting series should start far off its
equilibrium value. At any rate researchers should keep the effect of the initial condition
in mind while interpreting results, and choose tests that accord to initial conditions they
find sensible for their application.
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APPENDIX

NotATION: The following derivations often make use of the (7 +1) x 1 vector u, which is defined
as u = w — §e. Vectors with tildas have 7 elements that correspond to the last 7 elements of the
same vector without a tilda, i.e. R= (r,r?, .. - Ty, 7=(1,2,...,T), and so forth. Similarly, T x
T matrices like the covariance matrix of 7, or the T x T identity matrix / also carry a tilda.
Furthermore, if 4 is a T x g matrix A = [a,], then let 4_; be the T x q matrix A_; = B =[b;], where
for 1 <t<T,b;=a,,; and b; = 0. Define the operator A as A4 = A— A_,. The limit and limit in

probability as T — oo are denoted ‘—’ and A

PROOF OF THEOREM 1: From the theory about invariant tests, we know that an optimal invari-
ant procedure can always be written as a function of a maximal invariant (cf. Lehmann (1986,
p-285)). Let M =1—Z(Z'Z)"'Z', where I is the (T +1) x (T +1) identity matrix. Then My is such
a maximal invariant. Maximizing the weighted average power criterion (3.2) is equivalent to max-
imizing power against the simple alternative H;: the density of y is given by [~ f(y|r,x)dF(x),
where f(y|r, x) is the density of y given p=r and & = x (cf. Andrews and Ploberger (1994)). With
F the cumulative distribution function of a zero mean Gaussian with variance kv,(r), the density
of w=y— XB—pue under H; is given by a zero mean multivariate normal with covariance matrix
3, = A(r)"\diag(kv,(r), V) A(r)~!, so that My = Mw ~ N(0, M3,M). Under H, the (singular)
covariance matrix of w is given by 3, = 4(1)~'diag(0, V') A(1)'~!, leading to My|H, ~ N (0, M 3 M).
Noting that the common null space of M X, M for i =0, 1 is the column space of Z, the Neyman-
Pearson lemma leads to optimal discrimination of the two hypotheses by the following statistic
(cf. Rao and Mitra (1971, p. 206)):

O(r,k)=yM(M3,M)"My—yM(MZ,M)"My

where (-)~ is any generalized inverse.

We are hence left to show that the G, are generalized inverses of M X, M. Recall that a generalized
inverse G of the matrix H has the property HGH = H. Since G;Z =0 and Z'G,; =0, G, has a row
and column space no larger than the projection matrix M, so that MG,M = G,. We find

MIMGM3IM=M3,[3 —3;Z(Z'3;Z)'Z’ 313, M.
For i=1and k > 0, 3] = 37!, so that we find M3 MG M3 M = M3 M immediately. For i =0

ori=1and k=0, we compute 3,3, 3, =3, and

MZ@[Z:M( 0~ Q)Z:O,
—el

yielding M3, MG .M3M = M3;M, as required. Q.E.D.
PROOF OF THEOREM 2: As in the proof of Theorem 1, My is a maximal invariant, and the
aim is to optimally discriminate between the two multivariate normals My|H, ~ N(0, MQ, M) and

My|H, ~ N (0, M3 M). The proof now follows from the same steps as for the proof of Theorem 1
above with 3| replaced by Q7. Q.E.D.
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LEMMA 1: Let B = 1'%, R(p)) Then under the conditions of Theorem 3,
() T'B(V '~ )B - 0,
(i) T32B(V'—w?Di_, >0,
(i) TR @ - arZT)Aa 20,
(v) T20_ (V"' — 2D, >0,
V) 2T 1AZV Y +1— 0 2[2T ' Aiti_, +y(0)] > 0.

PROOF: The proof of the theorem draws heavily on the Appendix of ERS. For any matrix K,
let |K| = tr'*[K’K] and note that for real conformable matrices K and L, |tr(KL)| < |K||L|, and
|KL| < |K[r(L) < |K||Ll|, where r(L) is the largest characteristic root of L. Define the T x T matri-
ces A=V 12— V2 ¥ the Toeplitz matrix of p(j), the Fourier coefficients of [27f,(-)]! and
Fr= [F/] with F/ = r"~J if i > j and 0 otherwise. Furthermore, let 2 = W — £R(p), such that @i is
the disturbance vector purged of the influence of ¢. ERS show in their Appendix that under Condi-
tion 1, 0 < w < o0, =37 _y(j), 0> =37 p(j), both y(j) and p(j) are absolutely summable,
T AF'| - 0 forall r =1—gT~! with g > 0,1(V) = o(), r(V-Y=0(), T2 (V' —w2Dia_, >
0, and 27" AV, +1— 02T Ad'd_ +y(0)] = 0.

We proceed by ﬁrst proving that 7~ 1/2|AB| — 0. With B, being the th row of B define the 7' x 3
matrix C whose rth row is C, = T(B,., — B,) = (0,1, —yp") and C; =0, so that B=T-'FIC+¢B,.
Now

T'|AB? =T tr[B'A2B]
=T tr[(B+éB,) A’F'C|+ T 'B,B,& A%¢
< T2o|t[(B+&B,)V2AF'Cl|+ T 20 \|tr[(B+éB,) V2 AF'C]|
+T7'B,B,é A%
<T2w (V)| AFY|C(B+éB)) |+ T 20" (V)| AF'||C(B+éB,)|
+T7'B,B||¢ (02V + 0V —2D)é).

But |C(B+¢éB,)| = tr'?|C'C(B+éB,)(B+¢éB,)| = O(T) and T~ |AF!| — 0 by the result of ERS,
so that we are left to show that the final element in the sum above converges to zero, too.
With 02 =37 _ p(j) and o* =37 y(j) we find

2T - p()—2T S ()

j=1 j=1

e (W —w?2T)e|=T"

=2'T” Y in()+ 3 p()

j=1 j=T

<23 min( £.1)lp()] = 0

Jj=1

and
e - <23 min ( £.1)lvG)] 0
j=1

from the absolute summability of the sequences p(j) and 7y(j). The result now follows from
Lemma Al of ERS.
(i) With the help of the result just established, we find

T BV —w?D)B| =T "' |BV"2AB| < T"'o™"|B|t(V"?)|AB| - 0
since tr[B'B] = O(T).
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(ii) We first treat the case y > 0. With pii_, = F* ¥+ aw(2y)2T"2 B(—p,0, 1), we find
T=pB (V' 0 Di_, =T B (V" - o) F'v
+T'a(2y) " PwB (V' =0 2)B(-p,0,1).
The second term goes to zero by (i). The trace of the covariance matrix of the first term is
(A1) tr[var[T 2B (V"' — 0 2 F?5]] = T3 w > u[B V2 AFPV F» AV 1/2B]
< T30 2|AF2|1BB| 2(V")r(V) —> 0
since T-!|BB'| = O(1). For y =0, ii_, = F'7, so that the result follows from (A.1) with p = 1.
(iil) As
trvar[T2B (V"' = 02 D)p]] = T 02 tu[B A’ Bl = T 2|ABP > 0
and Al = v — yT7 i | — aw2 V?y2T~1/2¢, the result follows using parts (i) and (ii).
(iv) and (v) For y =0,4 = @, and we are back to the analysis of ERS. For y > 0, we have

i =0_+awy) 2PTY2B(~1,0, p!) and Ai = Ali—awy(2y) 2 T-12p~1B(0,0, 1), so the result
follows applying parts (i), (ii), and (iii) to the respective pieces. Q.E.D.

LEMMA 2: Let b be a T x 1 vector. If the elements b, of b satisfy sup,|b,| = 0,(1), then under
Condition 1 b'V~"4 =0 ,(1). Furthermore, A V'i=0 ,(1).

PROOF: The proof will be carried out in the framework developed in the Appendix of ERS
and already employed in Lemma 1. Define the T x T matrix D =T — ¥V, For a real T x p matrix
=[K,], let |[K| = > _ |K,|. Then |K| < ||K||. Furthermore, ERS argue at the beginning of
their Appendix that under Condltlon 1,32 17y ()] < oo and \|5|| = O(1). Note that these inequalities
imply that the sequence 7, is absolutely summable, since

Z |7h| = Z
t=1 =1

o

Y v+ < ZZIV(JH)\ —Z|J7’(l)| < o0,

j=0 t=1 j=0

Now

|BV15| = |b' (W +DV)q| < | Wi+ |7 VDbl

Since sup, |b,| = O, (1) and the sequences p(j) and 7, are absolutely summable, we have that |l~)’f’ﬁ\ =
0,(1). B .
For the second term, first note that sup, |b,| = O,(1) together with | D|| = O(1) implies | D'b|| =
O,(1). Furthermore, the absolute summability of the sequence 7, implies boundedness of 7'7. We
hence find
|7V DB| < |7V ID'B] < |7 |r(V ) DB
= (@7)"1(V ) |D'B] = 0,(1).

For the second claim of the lemma, note that A = ¥ — yT~'ii_; — aw2 V2y2T~12¢. But

(YT, + a2 2y 2T-128y V15 = O ,(1) because T-'ii_, and T~'/2¢ satisfy the conditions for
the vector b of the lemma, and var[v V- 7]] n - 1= 0,(1) from another application of the first
claim of the lemma, which concludes the proof. Q.E.D.

PrROOF OF THEOREM 3: First note that since G;Z =0, y'G,y = v/ G,;u. The proof is for the time
trend case X = 7, the mean only case is a special simplified case using Z = e and involves only the
first element of each vector and matrix below. ~

(i) Let r=1—¢cT"! for ¢ =0, g. Define ¢(c) = Ai+cT'i_, and H(c) = é+cT'7_,. Then
A(ryu = (0,8(c)), A(r)e = (1,cT7'eY), and A(r)T = (0,17(6)’)’. Since the first element of u
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is zero, from direct calculation /(37 — 35)u = 2gT'Ad'V~"i_, + g*T2&_,V-'i_,. Noting that
2T ARG, = T3 — T Y Au? = oM (1)> — y(0), an application of parts (iv) and (v) of
Lemma 1, (3.3), and the CMT yield v/ (37 — 37)u = gM (1)* — g+ g* [ M(s)* ds. Furthermore, let
T, = diag(k'2T"2, T-'72) for k > 0, T, = diag(T"/2, T~'/%) for k =0, and T, = diag(1, T-'/?). Then
12527, = <2gw FEKT 1V 2+ o(1) N s 1H(g))
gT 'k H(g)V e T-'H(g)'V"H(g)

and similarly T,72'3; ZTO = diag(1, T~ 1H(O) V- 1H(O)) T,Z'S7u = (gk'2T-'2&V1¢(g), T2 x
H(g)V'¢(g)), and T,Z’ 2 u= (07" 1/ZH(O) V-1 $(0)). From Lemma 1 and direct calculations,
we find T-'éV-1é > w2, T- 1e/V 1H(c) - 2f(l—}—cs)ds T-'H(c)V'H(c) > o 2f(l—i—
es)2ds, T2 V-1¢(c) — 1/2 26¢(c) > 0, and T-V2H (c)V1¢(c) — T- "0 2H(c) @(c) > 0.
Now

H(e)@(c) = H(cY Ai+cTH(c) i,
= (1 +)uy+cT ™ (H(c) = &) ii_, +0,(1)

and similarly &@(c) = ur + cT~'&i_,. The application of (3.3) and the CMT hence yields
T H(c)@(c) = (1+c)M(1) +c* [sM(s)ds and T-?07'¢$(c) = M(1)+ ¢ [ M(s)ds. Since
Qr(g, k) is invariant to a time trend, we can substitute M(s) with its projection off s, M"(s) =
M (s)—3s [ AM(X) dA. From the above results and the joint convergence of the separate pieces we
find

Qi) = (4 DM (1) —g-vg? 17 (oyas— (K€L M0 FEM ()

( 2g+g%k k”z(%g2+g)> (k‘/z(g [ M7 (s)ds+gM™ (1))>
kK'?(3g*+g) 388 +g+1 (g+1)M™(1)

The coefficients g/ now follow after some algebra.
(ii) The only difference that arises between Q,(g) and Q,(g,1) is through the terms u'Q;'u,
Z'07'Z, and Z'Q;'u. From the formula for partitioned inverses we find

piost( _ v
7V—1ﬁ 8V—1+V LﬁﬁrV—l >

where 8 = vy(r) — 7'V "% = 0*T(2g)~" + o(T) from Lemma 2. With r =1—gT~!, A(r)u = (0, Al +
gT'i ), A(r)e=(1,gT'¢'), and A(r)7 = (0, ¢ —|—gT 1#,); the additional terms of Q, (g) com-
pared to Q,(g,1) are of the form T-'5/ V=15, 814/ V-'b, and 8610’V '/ V-'d, where b and d
stand for either of T-"2i_, Aii, é or T~'7_,. But sup, |7~"u,| = sup, oM (s)| = O,(1), so that an
application of Lemma 2 shows that all of these terms converge to zero in probability. Q.E.D.

METHOD TO FIND A COMPARABLE Q,(g, k) FOR A GIVEN CLASS OF TESTS: Denote with 7,
the decision of a given class of tests of size 5% to reject (r, = 1) or not to reject (r, =0) the nth draw
Wi(s) of a random sample n=1,..., N of a detrended Wiener process. Consider a nonlinear logit
regression of r, on a constant and a scaled weighted sum of W/ (1)?, (f W/(s)ds)*, Wi(1) [ Wi(s)ds,
and [W](s)*ds, where the weights depend on g and k and are given by the weights g of Qi (g, k)
(cf. Theorem 3),

= (zw[ Wi +45 [ Wi(s)ds® + W (1) [ Wi(s)ds+ i [ Wﬁ(s)zds])“"’

where L(x) is the logistic function L(x) =1/(1+¢7), and the estimated parameters are [, [, g, and
k. Then the estimated values of g and k in this regression may serve as approximations to the values
of g and k that maximize the asymptotic probability that the two tests both reject or do not reject
under the null hypothesis of p = 1. The values of Table II were calculated with N = 80,000.
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