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ESTIMATING SEMIPARAMETRIC ARCH(∞) MODELS BY
KERNEL SMOOTHING METHODS1

BY O. LINTON2 AND E. MAMMEN3

We investigate a class of semiparametric ARCH(∞) models that includes as a spe-
cial case the partially nonparametric (PNP) model introduced by Engle and Ng (1993)
and which allows for both flexible dynamics and flexible function form with regard to
the “news impact” function. We show that the functional part of the model satisfies a
type II linear integral equation and give simple conditions under which there is a unique
solution. We propose an estimation method that is based on kernel smoothing and pro-
filed likelihood. We establish the distribution theory of the parametric components and
the pointwise distribution of the nonparametric component of the model. We also dis-
cuss efficiency of both the parametric part and the nonparametric part. We investigate
the performance of our procedures on simulated data and on a sample of S&P500 in-
dex returns. We find evidence of asymmetric news impact functions, consistent with the
parametric analysis.

KEYWORDS: ARCH, inverse problem, kernel estimation, news impact curve, non-
parametric regression, profile likelihood; semiparametric estimation, volatility.

1. INTRODUCTION

STOCHASTIC VOLATILITY MODELS are of considerable current interest in em-
pirical finance following the seminal work of Engle (1982). Perhaps the most
popular version of this is Bollerslev’s (1986) GARCH(1�1)model in which the
conditional variance σ2

t of a martingale difference sequence yt is

σ2
t = βσ2

t−1 + α+ γy2
t−1�(1)

This model has been extensively studied and generalized in various ways. See
the review of Bollerslev, Engle, and Nelson (1994). This paper is about a par-
ticular class of nonparametric/semiparametric generalizations of (1). The mo-
tivation for this line of work is to increase the flexibility of the class of models
we use and to learn from this the shape of the volatility function without re-
stricting it a priori to have or not have certain shapes.

The nonparametric ARCH literature apparently begins with Pagan and
Schwert (1990) and Pagan and Hong (1991). They consider the case where
σ2
t = σ2(yt−1), where σ(·) is a smooth but unknown function, and the multilag
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version σ2
t = σ2(yt−1� yt−2� � � � � yt−d). Härdle and Tsybakov (1997) applied local

linear fit to estimate the volatility function together with the mean function and
derived their joint asymptotic properties. The multivariate extension is given in
Härdle, Tsybakov, and Yang (1996). Masry and Tjøstheim (1995) also estimate
nonparametric ARCH models using the Nadaraya–Watson kernel estimator.
In practice, it is necessary to include many lagged variables. The problem with
this is that nonparametric estimation of a multidimensional regression surface
suffers from the well-known “curse of dimensionality”: the optimal rate of con-
vergence decreases with dimensionality d; see Stone (1980). In addition, it is
hard to describe, interpret, and understand the estimated regression surface
when the dimension is more than two. Furthermore, even for large d this model
greatly restricts the dynamics for the variance process since it effectively cor-
responds to an ARCH(d) model, which is known in the parametric case not
to capture the dynamics well. In particular, if the conditional variance is highly
persistent, the nonparametric estimator of the conditional variance will pro-
vide a poor approximation, as reported in Perron (1998). So not only does this
model not capture adequately the time series properties of many data sets,
but the statistical properties of the estimators can be poor and the resulting
estimators hard to interpret.

Additive models offer a flexible but parsimonious alternative to nonpara-
metric models, and have been used in many contexts, see Hastie and Tibshirani
(1990). Suppose that σ2

t = cv + ∑d

j=1σ
2
j (yt−j). The best achievable rate of con-

vergence for estimates of σ2
j (·) is that of one-dimensional nonparametric re-

gression; see Stone (1985). Yang, Härdle, and Nielsen (1999) proposed an
alternative nonlinear ARCH model in which the conditional mean is addi-
tive, but the volatility is multiplicative: σ2

t = cv
∏d

j=1σ
2
j (yt−j). Their estima-

tion strategy is based on the method of partial means/marginal integration
using local linear fits as a pilot smoother. Kim and Linton (2004) generalize
this model to allow for arbitrary (but known) transformations, i.e., G(σ2

t ) =
cv + ∑d

j=1σ
2
j (yt−j), where G(·) is a known function like log or level. Horowitz

(2001) has analyzed the model whereG(·) is also unknown, but his results were
only in a cross-sectional setting. These separable models deal with the curse of
dimensionality, but still do not capture the persistence of volatility and specifi-
cally they do not nest the favorite GARCH(1�1) process.

This paper analyzes a class of semiparametric ARCH models that has both
general functional form aspects and flexible dynamics. A special case of our
model is the Engle and Ng (1993) PNP model where σ2

t = βσ2
t−1 + m(yt−j),

where m(·) is a smooth but unknown function. Our semiparametric model
nests the simple GARCH(1�1) model but permits more general functional
form: it allows for an asymmetric leverage effect and as much dynamics as
GARCH(1�1). A major issue we solve is how to estimate the function m(·)
by kernel methods. Our estimation approach is to derive population moment
conditions for the nonparametric part and then solve them with empirical
counterparts. The moment conditions we obtain are linear type II Fredholm



SEMIPARAMETRIC ARCH(∞) MODELS 773

integral equations, and so they fall in the class of inverse problems reviewed in
Carrasco, Florens, and Renault (2003). These equations have been extensively
studied in the applied mathematics literature; see, for example, Tricomi (1957).
They also arise a lot in economic theory; see Stokey and Lucas (1989). The
solution of these equations in our case only requires the computation of two-
dimensional smoothing operations and one-dimensional integration, and so is
attractive computationally. From a statistical perspective, there has been some
recent work on this class of estimation problems. Starting with Friedman and
Stuetzle (1981), in Breiman and Friedman (1985) and Hastie and Tibshirani
(1990) these methods have been investigated in the context of additive non-
parametric regression and related models, where the estimating equations
are usually of type II. Recently, Opsomer and Ruppert (1997) and Mammen,
Linton, and Nielsen (1999) have provided a pointwise distribution theory for
this specific class of problems. Newey and Powell (2003) studied nonparamet-
ric simultaneous equations and obtained an estimation equation that was a
linear integral equation also, except that it is the more difficult type I. They es-
tablish the uniform consistency of their estimator; see also Darolles, Florens,
and Renault (2002). Hall and Horowitz (2003) establish the optimal rate for
estimation in this problem and propose two estimators that achieve this rate.
Neither paper provides pointwise distribution theory. Our estimation meth-
ods and proof technique are purely applicable to the type II situation, which is
nevertheless quite common elsewhere in economics. For example, Berry and
Pakes (2002) derive estimators for a class of semiparametric dynamic models
used in industrial organization applications, and which solve type II equations
similar to ours.

Our paper goes significantly beyond the existing literature in two respects.
First, the integral operator does not necessarily have norm less than 1 so that
the iterative solution method of successive approximations is not feasible. This
also affects the way we derive the asymptotic properties, and we cannot di-
rectly apply the results of Mammen, Linton, and Nielsen (1999) here. Second,
we have also finite-dimensional parameters and their estimation is of interest
in itself. We establish the consistency and pointwise asymptotic normality of
our estimates of the parameter and of the function. We establish the semipara-
metric efficiency bound for a Gaussian special case and show that our para-
meter estimator achieves this bound. We also discuss the efficiency question
regarding the nonparametric component and conclude that a likelihood-based
version of our estimator cannot be improved on without additional structure.
We investigate the practical performance of our method on simulated data and
present the result of an application to S&P500 data. The empirical results in-
dicate some asymmetry and nonlinearity in the news impact curve.

Our model is introduced in the next section. In Section 3 we present our
estimators. In Section 4 we give the asymptotic properties. In Section 5 we dis-
cuss an extension of our basic setting that accommodates a richer variety of tail
behavior. Section 6 reports some numerical results and Section 7 concludes.
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2. THE MODEL AND ITS PROPERTIES

We shall suppose throughout that the process {yt}∞
t=−∞ is stationary with fi-

nite fourth moment. We concentrate most of our attention on the case where
there is no mean process, although we later discuss the extension to allow for
some mean dynamics. Define the volatility process model

σ2
t (θ�m)= µt +

∞∑
j=1

ψj(θ)m(yt−j)�(2)

where µt ∈ R� θ ∈ Θ ⊂ R
p, and m ∈ M, where M = {m : measurable}. The

coefficients ψj(θ) satisfy at least ψj(θ)≥ 0 and
∑∞

j=1ψj(θ) <∞ for all θ ∈Θ.
The true parameters θ0 and the true function m0(·) are unknown and to be
estimated from a finite sample {y1� � � � � yT }. The process µt can be allowed to
depend on covariates and unknown parameters, but at this stage it assumed to
be known. In much of the sequel it can be put equal to zero without any loss of
generality. It will become important below when we consider more restrictive
choices of M. Robinson (1991) is perhaps the first study of ARCH(∞)models,
although he restricted attention to the quadratic m case.

Following Drost and Nijman (1993), we can give three interpretations to (2).
The strong form ARCH(∞) process arises when

yt

σt
= εt(3)

is i.i.d with mean 0 and variance 1, where σ2
t = σ2

t (θ0�m0). The semistrong form
arises when

E(yt|Ft−1)= 0 and E(y2
t |Ft−1)≡ σ2

t �(4)

where Ft−1 is the sigma field generated by the entire past history of the
y process. Finally, there is a weak form in which σ2

t is defined as the projec-
tion on a certain subspace. Specifically, let θ0�m0 be defined as the minimizers
of the population least squares criterion function

S(θ�m)= E
[{
y2
t −

∞∑
j=1

ψj(θ)m(yt−j)

}2]
(5)

and let σ2
t = ∑∞

j=1ψj(θ0)m0(yt−j). The criterion (5) is well defined only when
E(y4

t ) <∞.
In the special case that ψj(θ)= θj−1, with 0< θ < 1, we can rewrite (2) as a

difference equation in the unobserved variance

σ2
t = θσ2

t−1 +m(yt−1) (t = 1�2� � � � )�(6)
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and this is consistent with a stationary GARCH(1�1) structure for the unob-
served variance when m(y) = α + γy2 for some parameters α�γ. It also in-
cludes other parametric models as special cases: the Glosten, Jegannathan, and
Runkle (1993) model, taking m(y)= α+ γy2 + δy21(y < 0), the Engle (1990)
asymmetric model, taking m(y)= α+ γ(y + δ)2, and the Engle and Bollerslev
(1986) model, taking m(y)= α+ γ|y|δ.

The function m(·) is the “news impact function,” and it determines the way
in which the volatility is affected by shocks to y . Our model allows for general
news impact functions including both symmetric and asymmetric functions,
and so accommodates the leverage effect (Nelson (1991)). The parameter θ,
through the coefficients ψj(θ), determines the persistence of the process, and
we in principle allow for quite general coefficient values. A general class of
coefficients can be obtained from the expansion of autoregressive moving av-
erage (ARMA) lag polynomials, as in Nelson (1991).

Our model generalizes the model considered in Carroll, Mammen, and
Härdle (2002) in which σ2

t = ∑τ

j=1 θ
j−1
0 m0(yt−j) for some finite τ. Their esti-

mation strategy was quite different from ours: they relied on an initial esti-
mator of a τ-dimensional surface and then marginal integration (Linton and
Nielsen (1995)) to improve the rate of convergence. This method is likely to
work poorly when τ is very large. Also, their theory requires the smoothness
ofm to increase with τ. Indeed, a contribution of our paper is to provide an es-
timation method for θ0 andm(·) that just relies on one-dimensional smoothing
operations, but is also amenable to theoretical analysis. Some other papers can
be considered precursors to this one. First, Gouriéroux and Monfort (1992)
introduced the qualitative threshold ARCH (QTARCH) which allowed quite
flexible patterns of conditional mean and variance through step functions, al-
though their analysis was purely parametric. Engle and Ng (1993) analyzed
precisely the semistrong model (2) withψj(θ)= θj−1 and called it partially non-
parametric or PNP for short. They proposed an estimation strategy based on
piecewise linear splines. Finally, we should mention some work by Audrino and
Bühlmann (2001): their model is that σ2

t = Λ(yt−1�σ
2
t−1) for some smooth but

unknown function Λ(·), and includes the PNP model as a special case. How-
ever, although they proposed an estimation algorithm, they did not establish
the distribution theory of their estimator.

In the next subsection we discuss a characterization of the model that gen-
erates our estimation strategy. If m were known, it would be straightforward
to estimate θ from some likelihood or least squares criterion. The main issue
is how to estimate m(·) even when θ is known. The kernel method likes to ex-
press the function of interest as a conditional expectation or density of a small
number of observable variables, but this is not directly possible here because
m is only implicitly defined. However, we are able to show that m can be ex-
pressed in terms of all the bivariate joint densities of (yt� yt−j), j = ±1� � � � � i.e.,
this collection of bivariate densities forms a set of sufficient statistics for our
model. We use this relationship to generate our estimator.
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2.1. Linear Characterization

Suppose for pedagogic purposes that the semistrong process defined in (4)
holds, and for simplicity define ỹ 2

t = y2
t − µt . Take marginal expectations for

any j ≥ 1,

E(̃y 2
t |yt−j = y)=ψj(θ0)m(y)+

∞∑
k �=j
ψk(θ0)E[m(yt−k)|yt−j = y]�(7)

For each such j the above equation implicitly defines m(·). This is really a
moment condition in the functional parameterm(·) for each j, and can be used
as an estimating equation. As in the parametric method of moments case, it can
pay to combine the estimating equations in terms of efficiency. Specifically, we
take the linear combination of these moment conditions,

∞∑
j=1

ψj(θ0)E(̃y
2
t |yt−j = y)(8)

=
∞∑
j=1

ψ2
j (θ0)m(y)+

∞∑
j=1

ψj(θ0)

∞∑
k �=j
ψk(θ0)E[m(yt−k)|yt−j = y]�

which yields another implicit equation in m(·).
This equation arises as the first order condition from the least squares def-

inition of σ2
t , given in (5), as we now discuss. We can assume that the quanti-

ties θ0�m0(·) are the unique minimizers of (5) over Θ×M by the definition of
conditional expectation, see Drost and Nijman (1993). Furthermore, the mini-
mizer of (5) satisfies a first-order condition and in the Appendix we show that
this first-order condition is precisely (8). In fact, if we minimize (5) with respect
tom ∈M for any θ ∈Θ and letmθ denote this minimizer, thenmθ satisfies (8)
with θ0 replaced by θ. Note that we are treating µt as a known quantity.

We next rewrite (8) (for general θ) in a more convenient form. Let p0 denote
the marginal density of y and let pj�l denote the joint density of yj� yl. Define

Hθ(y�x)= −
±∞∑
j=±1

ψ∗
j (θ)

p0�j(y�x)

p0(y)p0(x)
�(9)

m∗
θ(y)=

∞∑
j=1

ψ†
j (θ)gj(y)�(10)

whereψ†
j (θ)=ψj(θ)/∑∞

l=1ψ
2
l (θ) andψ∗

j (θ)=∑
k �=0ψj+k(θ)ψj(θ)/

∑∞
l=1ψ

2
l (θ),

while gj(y)= E(̃y 2
t |yt−j = y) for j ≥ 1. Then the function mθ(·) satisfies

mθ(y)=m∗
θ(y)+

∫
Hθ(y�x)mθ(x)p0(x)dx(11)
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for each θ ∈ Θ (this equation is equivalent to (8) for all θ ∈ Θ). The opera-
tor Hj(y�x) = p0�j(y�x)/p0(y)p0(x) is well studied in the statistics literature
(see Bickel, Klaassen, Ritov, and Wellner (1993, p. 440)); our operator Hθ

is just a weighted sum of such operators, where the weights are declining to
zero rapidly. In additive nonparametric regression, the corresponding integral
operator is an unweighted sum of operators like Hj(y�x) over the finite num-
ber of dimensions (see Hastie and Tibshirani (1990) and Mammen, Linton,
and Nielsen (1999)). Although the operators Hj are not self-adjoint without
an additional assumption of time reversibility, it can easily be seen that Hθ is
self-adjoint in L2(p0) due to the two-sided summation.4

Our estimation procedure will be based on plugging estimates m̂∗
θ and Ĥθ

of m∗
θ or Hθ, respectively, into (11) and then solving for m̂θ. The estimates

m̂∗
θ and Ĥθ will be constructed by plugging estimates of p0�j , p0, and gj into

(10) and (9). Nonparametric estimates of these functions only work accurately
for arguments not too large. We do not want to enter into a discussion of
tail behavior of nonparametric estimates at this point. For this reason we
change our minimization problem (5), or rather restrict the parameter sets
further. We consider minimization of (5) over all θ ∈ Θ and m ∈ Mc , where
now Mc is the class of all bounded measurable functions that vanish out-
side [−c� c], where c is some fixed constant (this makes σ2

t = µt whenever
yt−j /∈ [−c� c] for all j). Let us denote these minimizers by θc and mc . Fur-
thermore, denote the minimizer of (5) for fixed θ over m ∈ Mc by mθ�c . Then
θc andmc minimize E[{̃y 2

t −∑∞
j=1ψj(θ)m(yt−j)}2] over Θ×Mc andmθ�c mini-

mizes E[{̃y 2
t − ∑∞

j=1ψj(θ)mθ(yt−j)}2] over Mc . For now we adopt a fixed trun-
cation where c and µt are constant and known, but return to this in Section 5.
Then mθ�c satisfies mθ�c(y) =m∗

θ(y)+ ∫ c

−cHθ(y�x)mθ�c(x)p0(x)dx for |y| ≤ c
and vanishes for |y| > c. For simplicity but in abuse of notation we omit the
subindex c of mθ�c and we write

mθ =m∗
θ +Hθmθ�(12)

For each θ ∈Θ� Hθ is a self-adjoint linear operator on the Hilbert space of
functions m that are defined on [−c� c] with norm ‖m‖2

2 = ∫ c

−c m(x)
2p0(x)dx

and (12) is a linear integral equation of the second kind. There are some gen-
eral results providing sufficient conditions under which such integral equations
have a unique solution. See Darolles, Florens, and Renault (2002) for a discus-
sion on existence and uniqueness for the more general class of type I equations.

We assume the following high level condition:

4Specifically, with 〈f�g〉 = ∫
f (x)g(x)p0(x)dx denoting the usual inner prod-

uct in L2(p0), we have 〈g�Hθm〉 = −∑∑
j �=k ψj(θ)ψk(θ)E[g(yt−j)E[m(yt−k)|yt−j]] =

−∑∑
j �=k ψj(θ)ψk(θ)E[g(yt−j)m(yt−k)] = 〈Hθg�m〉 because the double sum is symmetric

in j�k. The definition of adjoint operator can be found in Bickel, Klaassen, Ritov, and Wellner
(1993, p. 416).
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ASSUMPTION A1: The operator Hθ(x� y) is Hilbert–Schmidt uniformly over θ,
i.e., supθ∈Θ

∫ c

−c
∫ c

−cHθ(x� y)
2p0(x)p0(y)dxdy <∞.

A sufficient condition for Assumption A1 is that the joint densities p0�j(y�x)
are uniformly bounded for j �= 0 and |x|� |y| ≤ c, and that the density p0(x) is
bounded away from 0 for |x| ≤ c.

Under Assumption A1, for each θ ∈ Θ, Hθ is a self-adjoint bounded com-
pact linear operator on the Hilbert space of functions L2(p0), and there-
fore has a countable number of eigenvalues: ∞ > |λθ�1| ≥ |λθ�2| ≥ · · · � with
supθ∈Θ

∑∞
j=1 λ

2
θ�j <∞.

ASSUMPTION A2: There exist no θ ∈Θ and m ∈ Mc with ‖m‖2 = 1 such that∑∞
j=1ψj(θ)m(yt−j)= 0 with probability 1.

This condition rules out a certain “concurvity” in the stochastic process. That
is, the data cannot be functionally related in this particular way. It is a natural
generalization to our situation of the condition that the regressors be not lin-
early related in a linear regression. A special case of this condition was used in
Weiss (1986) and Kristensen and Rahbek (2003) for identification in paramet-
ric ARCH models, see also the arguments used in Lumsdaine (1996, Lemma 5)
and Robinson and Zaffaroni (2002, Lemma 9).

ASSUMPTION A3: The operator Hθ fulfills the following continuity condition
for θ�θ′ ∈Θ : sup‖m‖2≤1 ‖Hθm−Hθ′m‖2 → 0 for ‖θ− θ′‖ → 0.

This condition is straightforward to verify. We now argue that because of
Assumptions A2 and A3, for a constant 0< γ < 1,

sup
θ∈Θ

λθ�1 < γ�(13)

To prove this note that for θ ∈Θ and m ∈Mc with ‖m‖2 = 1,

0< E

[( ∞∑
j=1

ψj(θ)m(yt−j)

)2]

= χθ

∫ c

−c
m2(x)p0(x)dx

+χθ
∫ c

−c

∫ c

−c
m(x)m(y)

∑
|k|≥1

ψ∗
k(θ)p0�k(x� y)dxdy

= χθ

∫ c

−c
m2(x)p0(x)dx−χθ

∫ c

−c
m(x)Hθm(x)p0(x)dx�
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where χθ = ∑∞
j=1ψ

2
j (θ) is a positive constant depending on θ. For eigenfunc-

tions m ∈ Mc of Hθ with eigenvalue λ this shows that
∫
m2(x)p0(x)dx −

λ
∫
m2(x)p0(x)dx > 0. Therefore λθ�j < 1 for θ ∈Θ and j ≥ 1. Now, because

of Assumption A3 and compactness of Θ, this implies (13).
From (13) we get that I − Hθ has eigenvalues bounded from below by

1 − γ > 0. Therefore I − Hθ is strictly positive definite and hence invertible,
and (I −Hθ)

−1 has only positive eigenvalues that are bounded by (1 − γ)−1:

sup
θ∈Θ�m∈Mc�‖m‖2=1

‖(I −Hθ)
−1m‖2 ≤ (1 − γ)−1�(14)

Therefore, we can directly solve the integral equation (12) and write

mθ = (I −Hθ)
−1m∗

θ(15)

for each θ ∈Θ� The representation (15) is fundamental to our estimation strat-
egy, as it yields identification of mθ.

We next discuss a further property that leads to an iterative solution method
rather than a direct inversion. If it holds that |λθ�1|< 1, then mθ = ∑∞

j=0 H
j
θm

∗
θ.

In this case the sequence of successive approximations m[n]
θ =m∗

θ + Hθm
[n−1]
θ ,

n = 1�2� � � � � converges in norm geometrically fast to mθ from any starting
point. This sort of property has been established in other related problems—
see Hastie and Tibshirani (1990) for discussion—and is the basis of most es-
timation algorithms in this area. Unfortunately, the conditions that guarantee
convergence of the successive approximations method are not likely to be sat-
isfied here even in the special case that ψj(θ) = θj−1. The reason is that the
unit function is always an eigenfunction of Hθ with eigenvalue determined by
−∑±∞

j=±1 θ
|j|1 = λθ · 1, which implies that λθ = −2θ/(1 − θ). This is less than 1

in absolute value only when θ < 1/3. This implies that we will not be able to
use directly the particularly convenient method of successive approximations
(i.e., backfitting) for estimation: however, with some modifications it can be
applied; see Linton and Mammen (2003).

2.2. Likelihood Characterization

In this section we provide an alternative characterization ofmθ�θ in terms of
the Gaussian likelihood. We use this characterization later to define the semi-
parametric efficiency bound for estimating θ in the presence of unknown m.
This characterization is also important for robustness reasons, since it does
not require fourth moments on yt .

Suppose thatm0(·)�θ0 are defined as the minimizers of the criterion function

�(θ�m)=E
[

logσ2
t (θ�m)+ y2

t

σ2
t (θ�m)

]
(16)
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with respect to both θ�m(·), where σ2
t (θ�m) = µt + ∑∞

j=1ψj(θ)m(yt−j). No-
tice that this criterion is well defined in many cases where the quadratic loss
function is not.

Minimizing (16) with respect to m for each given θ yields the first-order
condition, which is a nonlinear integral equation in m:

∞∑
j=1

ψj(θ)E
[
σ−4
t (θ�m){y2

t − σ2
t (θ�m)}|yt−j = y

] = 0�(17)

This equation is difficult to work with from the point of view of statistical analy-
sis because of the nonlinearity; see Horowitz and Mammen (2002). We con-
sider instead a linearized version of this equation. Suppose that we have some
initial approximation to σ2

t . Then linearizing (17) about σ2
t , we obtain the lin-

ear integral equation

mθ =m∗
θ +Hθmθ;(18)

m∗
θ =

∑∞
j=1ψj(θ)g

a
j (y)∑∞

j=1ψ
2
j (θ)g

b
j (y)

�

Hθ(x� y)= −∑∞
j=1

∑∞
l=1�l �=j ψj(θ)ψl(θ)g

c
l�j(x� y)

p0�l−j (x�y)
p0(y)p0(x)∑∞

j=1ψ
2
j (θ)g

b
j (y)

�

Here, gaj (y) = E[σ−4
t y

2
t |yt−j = y] = E[σ−2

t |yt−j = y], gbj (y)= E[σ−4
t |yt−j = y],

and gcl�j(x� y) = E[σ−4
t |yt−l = x� yt−j = y]. This is a second kind linear integral

equation in mθ(·) but with a different intercept and operator from (12). See
Hastie and Tibshirani (1990, Section 6.5) for a similar calculation. Under our
assumptions, see B4, the weighted operator satisfies Assumptions A1 and A3
also. For a proof of Assumption A3 note that 0<E[σ−4

t

∑∞
j=1ψj(θ)m(yt−j)]2.

Note that in generalmθ differs frommθ, since they are defined as minimizers
of different criteria. However, for the strong and semistrong versions of our
model we get mθ0 =mθ0 .

3. ESTIMATION

We shall construct estimates of θ and m from a sample {y1� � � � � yT }. We pro-
ceed in four steps. First, for each given θ we compute estimates of m∗

θ and Hθ,
and then estimate mθ by solving an empirical version of the integral equa-
tion (12). We then estimate θ by minimizing a profile least squares criterion.
We then use the estimated parameter to give an estimator of m(·). Finally,
we use our consistent estimators to define likelihood-based estimators that im-
prove efficiency under some conditions. In particular, we solve an empirical
version of the linearized likelihood implied integral equation (18) and then
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minimize a negative quasi-likelihood criterion to update the parameter esti-
mate. In Section 3.1 we discuss how to computem∗

θ and Hθ, while in Section 3.2
we state our estimation algorithm; in Section 3.3 we give further details about
solving integral equations of this type.

3.1. Our Estimators of m∗
θ and Hθ

We now define local polynomial-based estimates m̂∗
θ ofm∗

θ and kernel density
estimates Ĥθ of Hθ, respectively. Local linear estimation is a popular approach
for estimating various conditional expectations with nice properties (see Fan
(1992)). Define the estimator ĝj(y)= â0, where (̂a0� � � � � âp) are the minimizers
of the weighted sums of squares criterion∑

t : 1≤t−j≤T
{y2
t −µt − a0 − a1(yt−j − y)− · · · − ap(yt−j − y)p}2

×Kh(yt−j − y)
with respect to (a0� � � � � ap)� where K is a symmetric probability density
function, h is a positive bandwidth, and Kh(·) = K(·/h)/h. We can allow
h= hT(y), but for notational and theoretical simplicity we shall drop the de-
pendence on y . Our theoretical properties are stated for the case p = 1, but
the theory easily extends; in practice other choices may have some advantages.

Select a truncation sequence τT with 1 < τT < T and compute m̂∗
θ(y) =∑τT

j=1ψ
†
j (θ)ĝj(y) for any |y| ≤ c� To estimate Hθ we take the scheme

Ĥθ(y�x)= −
±τT∑
j=±1

ψ∗
j (θ)

p̂0�j(y�x)

p̂0(y)p̂0(x)
�

p̂0�j(y�x)= 1
T − |j|

∑
t : 1≤t−j≤T

Kh(y − yt)Kh(x− yt+j) and

p̂0(x)= 1
T

T∑
t=1

Kh(x− yt)�

The action of the empirical operator is defined as Ĥθm= ∫ c

−c Ĥθ(y�x)m(x)×
p̂0(x)dx. For each θ ∈ Θ, Ĥθ is a self-adjoint linear operator on the Hilbert
space of functionsm that are defined on [−c� c] with norm ‖m‖2

2 = ∫ c

−c m(x)
2 ×

p̂0(x)dx.
Suppose that the sequence {σ̂2

t � t = 1� � � � �T } and θ are given. Then de-
fine ĝaj (·) to be the local linear smooth of σ̂−4

t ỹ
2
t on yt−j , let ĝbj (·) be the local

linear smooth of σ̂−4
t on yt−j , and let ĝcl�j(·) be the bivariate local linear smooth
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of σ̂−4
t on (yt−l� yt−j). Then define

m̂
∗
θ(y)=

∑τT
j=1ψj(θ)ĝ

a
j (y)∑τT

j=1ψ
2
j (θ)ĝ

b
j (y)

�

Ĥθ(x� y)= −∑τT
j=1

∑τT
l=1�l �=j ψj(θ)ψl(θ)ĝ

c
l�j(x� y)

p̂0�l−j (x�y)
p̂0(x)p̂0(y)∑τT

j=1ψ
2
j (θ)ĝ

b
j (y)

�

3.2. Our Estimators of θ and m

Here we give a formal definition of our estimators.

STEP 1: Define m̂θ(·) as any sequence of random functions defined on [−c� c]
that approximately solves m̂θ = m̂∗

θ + Ĥθm̂θ. Specifically, we shall assume that
m̂θ is any sequence of functions that satisfies

sup
θ∈Θ�y∈[−c�c]

|(I − Ĥθ)m̂θ(y)− m̂∗
θ(y)| = op(T−1/2)�(19)

This step is the most difficult and requires a number of choices. In practice, we
solve the integral equation on a finite grid of points, which reduces it to a large
linear system.

STEP 2: Choose θ̂ ∈Θ to be any sequence such that

ŜT (θ̂)≤ arg min
θ∈Θ

ŜT (θ)+ op(T−1/2)� where

ŜT (θ)= 1
T

T∑
t=1

{y2
t − σ̂2

t (θ)}2�

where σ̂2
1 (θ)= T−1

∑T

t=1 y
2
t and σ̂2

t (θ)= max{µt+∑min{t−1�τT }
j=1 ψj(θ)m̂θ(yt−j)� ε},

t = 2� � � � � T . Here, ε is a small nonnegative number introduced to ensure that
σ̂2
t (θ) ≥ 0.5 When θ is scalar this optimization can be done by grid search.

Otherwise it may be desirable to use some derivative-based optimization algo-
rithm like Newton–Raphson or its variants, which would require analytical or
numerical derivatives of ŜT (θ).

STEP 3: Define for any y ∈ [−c� c] and t ≥ 2,

m̂(y)= m̂θ̂(y)�

5Note that in small samples we can find m̂θ(y) < 0 for some y , even if m̂∗
θ(y) > 0 for all y and

Ĥθ(x� y) > 0 for all x� y . One can replace m̂θ(y) by a trimmed version to ensure its positivity.
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σ̂2
t = max

{
µt +

min{t−1�τT }∑
j=1

ψj(θ)m̂θ(yt−j)� ε

}
�

and σ̂2
1 (θ) = T−1

∑T

t=1 y
2
t . The estimates (m̂(·)� θ̂ ) are our proposal for the

weak version of our model. For the semistrong and strong version of the model
the following updates of the estimate may yield improvements.

STEP 4: Given (θ̂� m̂(·)). Compute m̂∗
θ and Ĥθ using the sequence {σ̂2

t ,
t = 1� � � � � T } defined in Step 3. Then solve the linear integral equation

m̃θ = m̂∗
θ + Ĥθm̃θ(20)

for the estimator m̃θ and let σ̃2
t (θ) = max{µt + ∑τT

j=1ψj(θ)m̃θ(yt−j)� ε},
t = 2� � � � � T , for each θ. Define θ̃ ∈Θ to be any sequence such that

�̃T (θ̃)≤ arg min
θ∈Θ

�̃T (θ)+ op(T−1/2)� where

�̃T (θ)= 1
T

T∑
t=1

log σ̃2
t (θ)+ y2

t

σ̃2
t (θ)

�

To avoid a global search we suppose that θ̃ is the location of the local minimum
of �̃T (θ) with smallest distance to θ̂. Let m̃(y) = m̃θ̃(y) and σ̃2

t = max{µt +∑τT
j=1ψj(θ̃)m̃(yt−j)� ε}, t = 2� � � � �T .

These calculations may be iterated for numerical improvements. Step 4 can
be interpreted as a version of Fisher scoring, discussed in Hastie and Tibshirani
(1990, Section 6.2).

3.3. Solution of Integral Equations

There are many approaches to computing the solutions of integral equations.
Rust (2000) gives a nice discussion about solution methods for a more general
class of problems, with emphasis on the high-dimensional state. The two issues
are how to approximate the integral in Ĥθm and how to solve the resulting
linear system.

For any integrable function f on [−c� c] define J(f ) = ∫ c

−c f (t)dt. Let
{tj�n� j = 1� � � � � n} be some grid of points in [−c� c] and let wj�n be some weights
with n a chosen integer. A valid integration rule would satisfy Jn(f )→ J(f ) as
n→ ∞, where Jn(f )= ∑n

j=1wj�nf (tj�n). Simpson’s rule and Gaussian quadra-
ture both satisfy this for smooth f . Now approximate (19) by

m̂θ(x)= m̂∗
θ(x)+

n∑
j=1

wj�nĤθ(x� tj�n)m̂θ(tj�n)p̂0(tj�n)�(21)
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In solvability, this is equivalent to the linear system (Atkinson (1976))

m̂θ(ti�n)= m̂∗
θ(ti�n)+

n∑
j=1

wj�nĤθ(ti�n� tj�n)m̂θ(tj�n)p̂0(tj�n)(22)

(i= 1� � � � � n)�

To each solution of (22) there is a unique corresponding solution of (21) with
which it agrees at the node points. The solution of the system (22) converges
in L2(p̂) to the solution of (19) as n→ ∞, at a rate determined partly by the
smoothness of Ĥθ. The linear system (22) can be written in matrix notation

(In − Ĥθ)m̂θ = m̂∗
θ�(23)

where In is the n × n identity, m̂θ = (m̂θ(t1�n)� � � � � m̂θ(tn�n))
�, and m̂∗

θ =
(m̂∗

θ(t1�n)� � � � � m̂
∗
θ(tn�n))

�, while

Ĥθ = −
[
wj�n

±τT∑
�=±1

ψ∗
�(θ)

p̂0��(ti�n� tj�n)

p̂0(ti�n)

]n
i�j=1

is an n × n matrix. We then find the solution values m̂θ = (m̂θ(t1�n)� � � � �
m̂θ(tn�n))

� to this system (23). Note that once we have found m̂θ(tj�n), j =
1� � � � � n, we can substitute back into (21) to obtain m̂θ(x) for any x ∈ [−c� c],
which is called Nyström interpolation. More sophisticated methods also in-
volve adaptive selection of the grid size n and the weighting scheme {wj�n� tj�n}.

There are two main classes of methods for solving large linear systems: direct
methods, including Cholesky decomposition or straight inversion, and iterative
methods. Direct methods work fine so long as n is only moderate, say up to
n= 1000; we have used direct computation of m̂θ = (In − Ĥθ)

−1m̂∗
θ in our nu-

merical work below. For larger grid sizes, iterative methods are indispensable.
In Linton and Mammen (2003) we describe various iterative approaches.

4. ASYMPTOTIC PROPERTIES

4.1. Regularity Conditions

We will discuss properties of the estimates m̂θ and θ̂ first under the weak
form model where we do not assume that (4) holds but where θ0�m0 are de-
fined as the minimizers of the least squares criterion function (5). Asymptotics
for m̂= m̂θ̂ and for the likelihood corrected estimates m̃ and θ̃ will be discussed
under the more restrictive setting that (4) holds. Note that as usual our regu-
larity conditions are not necessary, only sufficient, and our method is expected
to work well under more general circumstances.
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Define ηj�t = y2
t+j −E(y2

t+j|yt) and ζj�t(θ)=mθ(yt+j)−E[mθ(yt+j)|yt], and let

η1
θ�t =

∞∑
j=1

ψ†
j (θ)ηj�t and η2

θ�t = −
±∞∑
j=±1

ψ∗
j (θ)ζj�t(θ)�(24)

where ψ†
j (θ)�ψ

∗
j (θ) were defined below (10). Let α(k) be the strong mixing

coefficient of {yt} defined as α(k) ≡ supA∈F0−∞�B∈F∞
k

|P(A ∩ B) − P(A)P(B)|,
where F a

b is the sigma algebra of events generated by {yt}ba.
B1: The process {yt}∞

t=−∞ is stationary with absolutely continuous density p0,
and α-mixing with a mixing coefficient α(k) such that for some C ≥ 0 and some
large s0, α(k)≤ Ck−s0 .

B2: The expectation E(|yt|2ρ) <∞ for some ρ > 2.
B3: The kernel function is a symmetric probability density function with

bounded support such that for some constant C , |K(u)−K(v)| ≤ C|u− v|. De-
fine µj(K)= ∫

ujK(u)du and νj(K)= ∫
ujK2(u)du.

B4: The function m together with the densities (marginal and joint) m(·),
p0(·), and p0�j(·) are continuous and twice continuously differentiable over
[−c� c], and are uniformly bounded. The density p0(·) is bounded away from zero
on [−c� c], i.e., inf−c≤w≤c p0(w) > 0. Furthermore, for a constant cσ > 0 we have
that a.s.

σ2
t > cσ�(25)

B5: The density function λ of (η1
θ�0�η

2
θ�0) is Lipschitz continuous on its do-

main.
B6: The joint densities λ0�j , j = 1�2� � � � � of ((η1

θ�0�η
2
θ�0)� (η

1
θ�j�η

2
θ�j)) are uni-

formly bounded.
B7: The parameter space Θ is a compact subset of R

p and the value θ0

is an interior point of Θ. Also, Assumption A2 holds and for any ε > 0,
inf‖θ−θ0‖>ε S(θ�mθ) > S(θ0�mθ0).

B8: The truncation sequence τT satisfies τT = C logT for some constant C .
B9: The bandwidth sequence h(T) satisfies h(T) = γ(T)T−1/5 with γ(T)

bounded away from zero and infinity.
B10: The coefficients satisfy supθ∈Θ�k=0�1�2 ‖∂kψj(θ)/∂θk‖ ≤ Cψj for some

ψ< 1 and some finite constant C , while infθ∈Θ
∑∞

j=1ψ
2
j (θ) > 0.

The following assumption will be used when we make asymptotics under the
assumption of (4).

B11: The semistrong model assumption (4) holds, so that the variables
ηt = y2

t − σ2
t form a stationary ergodic martingale difference sequence with respect

to Ft−1. Let εt = yt/σt and ut = (y2
t − σ2

t )/σ
2
t , which are also both stationary er-

godic martingale difference sequences.
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Note that B1–B11 imply Assumption A1–A3. Condition B1 is quite weak,
although the value of s0 can be quite large depending on the value of ρ given
in B2. Carrasco and Chen (2002) provide some general conditions for a class
of strong GARCH(1�1)-type processes to be strongly stationary, to have finite
ρ moments, and to be exponentially β-mixing (which implies α-mixing); these
conditions involve restrictions on the function m0 and on the distribution of
the innovations, in addition to restrictions on the parameters of the process.
Masry and Tjøstheim (1995, Lemma 3.1) also provides conditions on finite or-
der but “nonparametric” processes that imply geometric strong mixing.6 We
will make use of the mixing property to apply the exponential inequality of
Bosq (1998) and to establish a central limit theorem for m̂θ in the weak form
case. In this weak form case we cannot apply martingale limit theory. We need
to apply a central limit theorem to (local) averages of the processes η1

θ�t andη2
θ�t

defined in (24). These processes need not be mixing but are near epoch depen-
dent processes on the α-mixing bases y2

t or mθ(yt) (see Hansen (1991) for dis-
cussion) with exponentially declining weights under our conditions on ψj(θ);
we apply a central limit theorem (CLT) due to Lu (2001) for such processes.

The moment condition B2 on yt may appear quite strong: it is common prac-
tice now in the parametric literature to not assume any moments for yt but
to make assumptions on the rescaled error εt = yt/σt ; see Lee and Hansen
(1994). This is because in many financial data sets there is evidence that the
tails preclude fourth moments from existing. Note however that although we
assume more than four moments in B2 and in defining (5), the moment con-
ditions (7) and (8) are well defined under only second moments, and so some
results like consistency will hold under less moments. Indeed, the results for
likelihood-based estimators only require this condition because it provides a
consistent initial estimator; if one is willing to assume the existence of a con-
sistent estimator (with some rate) like in Horowitz and Mammen (2002), the
distribution theory should follow through without moments on y . Bollerslev
(1986) showed that in the strong GARCH(1�1) model with εt ∼N(0�1)� it is
necessary and sufficient for E(y4

t ) <∞ that 2γ2 + (γ+β)2 < 1. Thus only lim-
ited dynamics (β�γ) are consistent with fourth moments in this model. Because
we have freed up the shape of m, this problem does not arise in our model. In
principle, any value of the dynamic parameter θ is consistent with ρ moments
existing provided the tails of m increase only slowly.

Conditions B3 and B4 are quite standard assumptions in the nonparametric
regression literature. Under the assumption of (4), the bound (25) follows if
we assume that inf−c≤w≤c m(w) >− supt�θ µt/

∑∞
j=1ψj(θ).

Conditions B5 and B6 are used to apply the central limit theorem of Lu
(2001) for NED processes over an α-mixing base.

6These include restrictions on the tail of the conditional moments, for example, that
lim‖(y1�����yd)‖2→∞ var(yt |yt−1 = y1� � � � � yt−d = yd)/‖(y1� � � � � yd)‖2 ≤ c < 0.
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In B7 we explicitly assume the identification of the parametric part. We make
this high level assumption for three reasons. First, we need identification in
the weak ARCH(∞) case, and this seems like a natural assumption to make in
view of our definition of the process through (5). Second, we allow the coeffi-
cients ψj(θ) to depend on θ in a complicated way. Third, the mapping θ �→mθ

may be quite complicated to analyze. Hannan (1973) used high level conditions
(cf. his condition (4)) similar to ours. In special parametric ARCH models it
has been possible to work from more primitive conditions: see Lee and Hansen
(1994) and Lumsdaine (1996) for the GARCH(1�1)model, and Robinson and
Zaffaroni (2002) for a parametric ARCH(∞) model.

The distribution theory for parametric GARCH(1�1) models has only re-
cently been established. Lumsdaine (1996) established the consistency and
asymptotic normality of the quasi-maximum likelihood estimator in a strong
form model, while Lee and Hansen (1994) established the same results but
for semistrong form case, i.e., they allowed for martingale difference errors.
Both authors make use of ergodicity in their consistency proof and martingale
central limit theorems in the asymptotic normality. The distribution theory for
weak form GARCH processes has not yet been worked out, to our knowledge.

The truncation rate assumed in B8 can be weakened at the expense of
more detailed argumentation. In B9 we are anticipating a rate of convergence
of T−2/5 for m̂θ, which is consistent with second-order smoothness on the data
distribution. Assumption B10 is used for a variety of arguments; it can be weak-
ened in some cases, but again at some cost. It is consistent with the GARCH
case where ψj(θ)= θj−1 and ∂kψj(θ)/∂θk = (j − 1) · · · (j − k)θj−k−1.

The assumption we made in Section 2.1 about the fixed truncation c can
also be weakened to allow c = c(T)→ ∞ as T → ∞, and we discuss this issue
below.

4.2. Properties of m̂θ and θ̂

We establish the properties of m̂θ for all θ ∈ Θ under the weak form as-
sumption. Specifically, we do not require that (3) holds, but define mθ as the
minimizer of (5) over Mc .

Define the functions βjθ(y), j = 1�2, as solutions to the integral equations
β
j
θ = β

∗�j
θ (y) + Hθβ

j
θ, in which (with ∇2 = (∂2/∂x2) + 2(∂2/∂x∂y) + ∂2/∂y2)

β∗�1
θ (y)= ∂2

∂y2m
∗
θ(y) and

β∗�2
θ (y)=

±∞∑
j=±1

ψ∗
j (θ)

{
E(mθ(yt+j)|yt = y)p

′′
0(y)

p0(y)

−
∫

[∇2p0�j(y�x)]mθ(x)

p0(y)
dx

}
�
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Then define µθ(y)= −∑±∞
j=±1ψ

∗
j (θ)E[mθ(yt+j)|yt = y] and

ωθ(y)= ν0(K)

p0(y)
{var[η1

θ�t +η2
θ�t] +µ2

θ(y)} and

bθ(y)= 1
2
µ2(K)[β1

θ(y)+β2
θ(y)]�

where ηjθ�t , j = 1�2, were defined in (24). We prove the following theorem in
the Appendix.

THEOREM 1: Suppose that B1–B10 hold. Then for each θ ∈Θ and y ∈ [−c� c],
√
Th[m̂θ(y)−mθ(y)− h2bθ(y)] �⇒N(0�ωθ(y))�(26)

and m̂θ(y) and m̂θ(y
′) are asymptotically independent when y �= y ′. Furthermore,

sup
θ∈Θ�|y|≤c

|m̂θ(y)−mθ(y)| = op(T−1/4)�(27)

sup
θ∈Θ�τT≤t≤T

|σ̂2
t (θ)− σ2

t (θ)| = op(T−1/4)�(28)

sup
θ∈Θ�τT≤t≤T

∣∣∣∣∂σ̂2
t

∂θ
(θ)− ∂σ2

t

∂θ
(θ)

∣∣∣∣ = op(T−1/4)�(29)

Both the bias and the variance in this result are quite complicated even
though a local linear smoother has been used in estimating gj .

From Theorem 1 we obtain the properties of θ̂ by an application of the as-
ymptotic theory for semiparametric profiled estimators; see Severini and Wong
(1992) and Newey (1994). This requires a uniform expansion for m̂θ(y) and for
the derivatives (with respect to θ) of m̂θ(y).

THEOREM 2: Suppose that B1–B10 hold except that in B2 we require ρ > 4.
Then

√
T(θ̂− θ0)=Op(1).

In Theorem 2 we require stronger moment conditions for the root-T consis-
tency of θ̂ than for the

√
Th consistency of m̂θ(y). By using the quasi-likelihood

criterion these moment conditions can be reduced to ρ > 2. These results can
be applied to get the asymptotic distribution of m̂= m̂θ̂. Define

ω(y)= ν0(K)
∑∞

j=1ψ
2
j (θ0)E[(y2

t − σ2
t )

2|yt−j = y]
p0(y)[∑∞

j=1ψ
2
j (θ0)]2

�(30)

b(y)= µ2(K)

{
1
2
m′′(y)+ (I −Hθ)

−1

[
p′

0

p0

∂

∂y
(Hθm)

]
(y)

}
�



SEMIPARAMETRIC ARCH(∞) MODELS 789

THEOREM 3: Suppose that B1–B10 hold and that θ̂ is an arbitrary estimate
( possibly different from the above definition) with

√
T(θ̂−θ0)=Op(1). Then for

y ∈ [−c� c],
√
Th[m̂θ̂(y)− m̂θ0(y)] = op(1)(31)

and m̂θ̂(y) and m̂θ̂(y
′) are asymptotically independent when y �= y ′. Under the

additional assumption of B11 we get that
√
Th[m̂θ̂(y)−mθ0(y)− h2b(y)] �⇒N(0�ω(y))�(32)

The asymptotic variance has contributions from the estimation of m∗ and
from the estimation of Hθ which combine to give a nice simple formula. The
bias of m̂ is rather complicated and it contains a term that depends on the
density p0 of yt . We now introduce a modification of m̂ that has a simpler bias
expansion. For θ ∈ Θ the modified estimate m̂mod

θ is defined as any (approxi-
mate) solution of m̂mod

θ = m̂∗
θ + Ĥmod

θ m̂mod
θ , where the operator Ĥmod is defined

by use of modified kernel density estimates

Ĥmod
θ (y�x)= −

±τT∑
j=±1

ψ∗
j (θ)

p̂mod
0�j (y�x)

p̂mod
0 (y)p̂0(x)

�

p̂mod
0�j (y�x)= p̂0�j(x� y)

+ p̂ ′
0(x)

p̂0(x)

1
T − |j|

∑
t

(yt − y)Kh(yt − y)Kh(yt+j − x)�

p̂mod
0 (x)= p̂0(x)+ p̂ ′

0(x)

p̂0(x)

1
T

T∑
t=1

(yt − y)Kh(yt − y)�

In the definition of the modified kernel density estimates p̂ ′
0 could be re-

placed by another estimate of the derivative of p0 that is uniformly consistent
on [−c� c], e.g., T−1

∑T

t=1(yt − y)Kh(yt − y)/[h2µ2(K)]. The asymptotic distri-
bution of the modified estimate is stated in the next theorem.

THEOREM 4: Suppose that B1–B11 hold and that θ̂ is an estimate as in
Theorem 3. Then for y ∈ [−c� c], √

Th[m̂mod
θ̂
(y) − mθ0(y) − h2bmod(y)] �⇒

N(0�ω(y)), where ω(y) is defined as in Theorem 3 and where bmod(y) =
µ2(K)m

′′(y)/2.

This bias has a particularly appealing form since it is the bias that would re-
sult werem(·) a one-dimensional regression function and the estimator a local
linear kernel smoother. Hence, this estimator is design adaptive (Fan (1992)).
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4.3. Properties of m̃ and θ̃

We now assume that θ̂ is consistent and so we can confine ourselves to
working in a small neighborhood of θ0, and our results will be stated only for
such θ. We shall now assume that (4) holds, so that the variables ηt = y2

t − σ2
t

form a martingale difference sequence with respect to Ft−1. Let εt = yt/σt
and ut = (y2

t − σ2
t )/σ

2
t = ε2

t − 1, which are also both martingale difference se-
quences by assumption.

Define

ωeff(y)= 1
p0(y)

ν0(K)
∑∞

j=1ψ
2
j (θ0)E(σ

−4
t u

2
t |yt−j = y)

[∑∞
j=1ψ

2
j (θ0)E(σ

−4
t |yt−j = y)]2

�

Note that ωeff(y) can exist even when the fourth moments of yt do not exist.

THEOREM 5: Suppose that B1–B11 hold. Then, for some bounded continuous
function beff(y) we have

√
Th[m̃θ̂(y)−mθ̂(y)− h2beff(y)] �⇒N(0�ωeff(y)).

The next theorem gives the asymptotic distribution of θ̃. Define the “least
favorable” process σ2

t (θ)= µ+ ∑∞
j=1ψj(θ)mθ(yt−j), where mθ(·) was defined

below (18). Define also

J = E
(
σ−4
t

∂σ2
t

∂θ

∂σ2
t

∂θ� (θ0)

)
and I = var

[
σ−2
t ut

∂σ2
t

∂θ
(θ0)

]
�

THEOREM 6: Suppose that B1–B11 hold. Then
√
T(θ̃− θ0)�⇒N(0�J −1 ×

IJ −1).

The result permits inference robust to higher-order moment variation and
distributional shape. Consistent standard errors can be obtained by the for-
mula

Ĵ = 1
T

T∑
t=1

σ̂−4
t

∂σ̂2
t

∂θ

∂σ̂2
t

∂θ� (θ̂) and Î = 1
T

T∑
t=1

σ̂−4
t

∂σ̂2
t

∂θ

∂σ̂2
t

∂θ� (θ̂)û
2
t �

where hats denote estimated quantities. We show in the next section that when
the rescaled errors are Gaussian, the semiparametric efficiency bound for θ
is 2J −1, and that our estimator achieves this bound.

4.4. Semiparametric Efficiency

We next investigate the semiparametric efficiency question, confining our
attention to the strong form model where εt is i.i.d. and in fact standard
normal. Our approach to this is heuristic, but is founded on the work of
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Bickel, Klaassen, Ritov, and Wellner (1993) and Newey (1990) for i.i.d. data.
There has been some previous work on semiparametric efficiency in related
semiparametric ARCH models. Engle and González-Rivera (1991) consid-
ered a semiparametric model with a standard GARCH(1�1) specification for
the conditional variance, but allowed the error distribution to be of unknown
functional form. They suggested a semiparametric estimator of the variance
parameters based on splines. Linton (1993) examined the Engle and González-
Rivera (1991) model and proved that a kernel version of their procedure was
semiparametrically efficient and even adaptive in the ARCH(p) model when
the error distribution was symmetric about zero. Drost and Klaassen (1997)
extended this work to consider GARCH structures and asymmetric distribu-
tions: they compute the semiparametric efficiency bound for a general class
of models.

We will represent our semiparametric model by Pθ�m = {Pθ�m}, where Pθ�m is
the probability distribution of the process with parameters θ�m(·). Now sup-
pose thatm is a known function but θ is unknown, in which case we have a spe-
cific parametric model, denoted Pθ = {Pθ}, where Pθ ⊂ Pθ�m. The log-likelihood
function is proportional to �T (θ)= 1

2

∑T

t=1 log s2
t (θ)+ y2

t /s
2
t (θ), where s2

t (θ) =∑∞
j=1ψj(θ)m(yt−j). The score function with respect to θ is

∂�T (θ)

∂θ
= −1

2

T∑
t=1

ut(θ)
∂ log s2

t (θ)

∂θ

= −1
2

T∑
t=1

ut(θ)
1

s2
t (θ)

∞∑
j=1

ψ̇j(θ)m(yt−j)�

where ut(θ)= (y2
t /s

2
t (θ)− 1) and ψ̇j(θ)= ∂ψj(θ)/∂θ. The Cramer–Rao lower

bound in the model Pθ is then I−1
θθ = 2(E[[ ∂ logσ2

t

∂θ

∂ logσ2
t

∂θ� ]])−1, since E(u2
t )= 2.

Suppose that we parameterize m by a scalar η and write mη, so that we
have a parametric model Pθ�η = {Pθ�η}, where Pθ�η ⊂ Pθ�m. For simplicity we
just assume temporarily that θ is also a scalar. The score with respect to η is

∂�T (θ�η)

∂η
= −1

2

T∑
t=1

ut(θ�η)
∂ logσ2

t (θ�η)

∂η

= −1
2

T∑
t=1

ut(θ�η)
1

σ2
t (θ�η)

∞∑
j=1

ψj(θ)
∂mη(yt−j)

∂η
�

The efficient score function ∂�∗
T (θ�η)/∂θ is the projection of ∂�T (θ�η)/∂θ

onto the orthocomplement of span[∂�T (θ�η)/∂η] in Pθ�η, where span[·] de-
notes the linear subspace generated by the given element. It follows that
∂�∗

T (θ�η)/∂θ is a linear combination of ∂�T (θ�η)/∂θ and ∂�T (θ�η)/∂η
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and has variance (called the efficient information) less than the variance
of ∂�T (θ�η)/∂θ; this reflects the cost of estimating the nuisance parameter.

Now consider the semiparametric model Pθ�m. We compute the efficient
score functions for all such parameterizations of m, and find the worst such
case. Because of the definition of the process σ2

t , the set of all possible score
functions with respect to parameters of m at the true parameters θ0 is

Sm =
{

T∑
t=1

ut
1
σ2
t

∞∑
j=1

ψj(θ0)g(yt−j) :g measurable

}
�

To find the efficient score function in the semiparametric model, we find the
projection of ∂�T (θ0�m)/∂θ onto the orthocomplement of Sm. We seek a func-
tion g0 that minimizes

E

[{
∂ log s2

t

∂θ
− 1
s2
t

∞∑
j=1

ψj(θ0)g(yt−j)

}2]
(33)

over all measurable g. This minimization problem is similar to that which
mθ0 solves. We show that g0 satisfies the linear integral equation (see the Ap-
pendix for details)

g0 = g∗ +Hθ0g0�(34)

where the operator Hθ was defined below (18), while

g∗(y)=
∞∑
j=1

ψj(θ0)E

[
1
s4
t

∂s2
t

∂θ

∣∣∣yt−j = y]/ ∞∑
j=1

ψ2
j (θ0)E[s−4

t |yt−j = y]�

Note that the integral equation (34) is similar to (18) except that the intercept
function g∗ is different from m∗

θ0
; it has solution g0 = (I − Hθ0)

−1g∗. The im-
plied predictor of ∂ log s2

t /∂θ in (33) is s−2
t

∑∞
j=1ψj(θ0)g0(yt−j), which we denote

by Em(∂ log s2
t /∂θ). The efficient score function in the semiparametric model is

thus

∂�∗
T (θ0�m)

∂θ
= 1

2

T∑
t=1

ut

[
∂ log s2

t

∂θ
−Em

(
∂ log s2

t

∂θ

)]

= 1
2

T∑
t=1

ut
1
s2
t

∞∑
j=1

[
ψ̇j(θ0)(I −Hθ0)

−1m∗
θ0

−ψj(θ0)(I −Hθ0)
−1g∗](yt−j)
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= 1
2

T∑
t=1

ut
1
s2
t

∞∑
j=1

[
(I −Hθ0)

−1

× {ψ̇j(θ0)m
∗
θ0

−ψj(θ0)g
∗}](yt−j)�

By construction ∂�∗
T (θ0�m)/∂θ is orthogonal to any element of Sm. The semi-

parametric efficiency information bound is I∗
θθ = var[∂�∗

T (θ0�m)/∂θ]. It fol-
lows that any regular estimator of θ in this semiparametric model has as-
ymptotic variance not less than I∗−1

θθ . This bound is clearly larger than in
the parametric submodel where m is known. It can be easily checked that
∂ logσ2

t /∂θ = ∂ log s2
t /∂θ − Em(∂ log s2

t /∂θ) from which it follows that our es-
timator achieves the bound.

An alternative justification for our claims comes from working with the least
favorable parametric submodel of Pθ�m, which is {Pθ�η :mη =m0 + ηg0�η ∈ R�
θ ∈ R

p}, where g0 is defined in (34). For this parametric model the asymptotic
(efficient) information for θ is precisely I∗

θθ. Since our estimator, which does
not use this parametric structure, has the asymptotic variance I∗−1

θθ , it must be
semiparametrically efficient.

We have taken a constructive approach to finding the information bound
and we acknowledge that more work is needed to make this rigorous. Perhaps
this could be done along the lines of Drost and Klaassen (1997).

4.5. Nonparametric Efficiency

Here, we discuss the issue about efficiency of the nonparametric estimators.
Our discussion is confined to a special case of the strong model. In this case,

ωeff(y)= 1
p0(y)

(κ4 + 2)ν0(K)∑∞
j=1ψ

2
j (θ0)E(σ

−4
j |y0 = y)�

where κ4 is the excess kurtosis of εt .
Our discussion is heuristic and is confined to the comparison of asymptotic

variances. This type of analysis has been carried out before in many separa-
ble nonparametric models; see Linton (2000). The general idea is to set out a
standard of efficiency against which to measure a given procedure along with
a strategy for achieving efficiency. Horowitz and Mammen (2002) apply this in
generalized additive models. In our model, there are some novel features due
to the presence of the infinite number of lags.

Horowitz, Klemelä, and Mammen (2002) establish the minimax superiority
of a local linear backfitting estimator in an additive nonparametric regression
model.
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We first compare the asymptotic variance of m̂θ̂ and m̂mod
θ̂

with the variance
of an infeasible estimator that is based on certain least squares criteria. Define
for each j = 1�2� � � � �

Sj(λ)= 1
Th

∑
t

K

(
y − yt−j
h

)
[y2
t − σ2

t;j(λ)]2�(35)

where σ2
t;j(λ) = ∑τT

k=1�k �=j ψk(θ)m(yt−k) + ψj(θ)λ, and let m̃j(y) = λ̃j =
arg maxλ Sj(λ). This least squares estimator is infeasible since it requires
knowledge of m at {yt−k�k �= j} points. We suppose without loss of general-
ity that ψj(θ) > 0 for each j. It can then be shown that

√
Th[m̃j(y)−m(y)− h2bj(y)]

�⇒N

(
0�
(κ4 + 2)ν0(K)E((y

2
t − σ2

t )
2|yt−j = y)

ψ2
j (θ)p0(y)

)
for all j = 1�2� � � � with some bounded continuous bias functions bj(·). Further-
more, m̃j(y)� m̃k(y) with j �= k are asymptotically independent. Now define
a class of estimators {∑j wjm̃j :

∑
j wj = 1}, each of which will satisfy a similar

central limit theorem. The optimal (according to variance) linear combination
of these least squares estimators satisfies

√
Th[m̃opt(y)−m(y)− h2b(y)](36)

�⇒N

(
0�

ν0(K)

p0(y)
∑∞

j=1ψ
2
j (θ)[E((y2

t − σ2
t )

2|yt−j = y)]−1

)
with some bias function b(y). See Xiao, Linton, Carroll, and Mammen (2003).
This is the best that one could do by this strategy; the question is, does our
estimator achieve the same efficiency?

Define sj(y) = E(σ4
t u

2
t |yt−j = y). By the Cauchy–Schwarz inequality,

1 = ∑∞
j=1 αj = ∑∞

j=1α
1/2
j s

1/2
j (y)α

1/2
j s

−1/2
j (y) ≤ ∑∞

j=1 αjsj(y)
∑∞

j=1 αjs
−1
j (y), where

αj = ψ2
j (θ)/

∑∞
j=1ψ

2
j (θ), which implies that

∑∞
j=1ψ

2
j (θ)sj(y)/(

∑∞
j=1ψ

2
j (θ))

2 ≥
1/

∑∞
j=1ψ

2
j (θ)s

−1
j (y) with equality only when sj(y) does not depend on j.

So our estimator with variance (30) would achieve the asymptotic efficiency
bound (36) in the case of constant conditional variances sj(y). It is generally
inefficient when sj(y) are not constant. Because our estimator is motivated by
an unweighted least squares criterion, it could not be expected that it corrects
for heteroscedasticity. We next turn to the likelihood criterion, which takes
account of the heteroscedasticity in a natural way.

Define analogously to (35) the (infeasible) local likelihoods

�j(λ)= 1
Th

∑
t

K

(
y − yt−j
h

)[
logσ2

t;j(λ)+ y2
t

σ2
t;j(λ)

]
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and let m̃lik
j (y)= λ̃j = arg maxλ �j(λ). It can be shown that

√
Th[m̃lik

j (y)−m(y)] �⇒N

(
0�

(κ4 + 2)ν0(K)

ψ2
j (θ)p0(y)E(σ

−4
t |yt−j = y)

)
for each j, and again m̃lik

j (y)� m̃
lik
k (y) with j �= k are asymptotically indepen-

dent. As before this suggests that any single m̃lik
j (y) is inefficient and can

be improved on by taking linear combinations. It can be shown that the op-
timal linear combination of m̃lik

j (y) has asymptotic variance (κ4 + 2)ν0(K)/

(p0(y
∑

j ψ
2
j (θ)E(σ

−4
t |yt−j = y)). This is precisely the variance achieved by our

estimator m̃θ̂(y). In other words, our likelihood-based estimator m̃θ̂(y) ap-
pears to be as efficient as it can be, at least under Gaussianity.

5. MODELING THE TAILS

In this section we discuss how to select c and µt . A simple method is just to
set c at some quantile of the empirical distribution of the data and let µt = 0.
This works well when c is taken pretty large and when the tails are not so influ-
ential. This is the sort of trimming that one finds in much work in econometrics.
It may, however, be preferable in some cases to allow for a more sophisticated
tail model. We propose below some more refined methods and then give theo-
retical results about one of them.

5.1. Estimation Method

We consider fits of the news impact curve that are of the following form.
For |y| ≤ c the fit is a nonparametric smoother m̂ and for the tails |y| > c
it is chosen as a parametric fit µ(y; ξ̂). Here µ(y;ξ) is a parametric model
depending on a vector of unknown parameters ξ. We also write µc(y;ξ) for
the function that is equal to µ(y;ξ) for |y|> c and vanishes for |y| ≤ c. Then
we have the estimate of the volatility,

σ̂2
t = σ2

t (θ̂� ξ̂� m̂)�

where σ2
t (θ�ξ�m) = ∑τ

j=1ψj(θ)[m(yt−j) + µc(yt−j;ξ)] with parametric esti-
mates θ̂ and ξ̂ and a smoothing estimate m̂ that vanishes for |y| ≥ c. This
generalizes our approach where we have chosen µ(y;ξ)≡ 0. Parametric spec-
ifications include µ(y;ξ)= ξ1 + ξ2y

2, which effectively imposes that the news
impact curve is quadratic in the tails (as y → ±∞). The Engle and Ng (1993)
procedure assumed a linear tail (indeed, they assumed piecewise linear every-
where).

The estimation strategy for this case is pretty much the same as in Sec-
tion 3. For given θ and ξ one can estimate mθ�ψ on [−c� c] by putting now
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ỹ2
t = y2

t −µt(θ�ξ). To estimate θ and ξ one maximizes the profiled least squares
criterion or the profiled likelihood with respect to this larger parameter vector.
In practice one has to choose c. One could treat c as an unknown parameter
and try to estimate it or one can select it on a pragmatic basis by setting it to a
high empirical quantile.

The resulting estimate m̂(y)+ µc(y; ξ̂) of the news impact curve is discon-
tinuous at the point c. This can be repaired by calculating the estimates for
a continuum (i.e., for a large number) of values of c and by taking an average
of these estimates. Another possibility would be to calculate the estimate for
two values of c and to smoothly change from the first estimate to the second
one when going to ±∞. Some heuristics that support the second modification
of our estimate will be given below.

We also consider a slightly different approach to explicit trimming based on
variable bandwidths. In this method one computes the standard estimators of
Section 3.2, but uses a variable bandwidth hT(y) in the local polynomial esti-
mators of gj(·). If hT(y)→ ∞ as |y| → c, then the local polynomial estimates
of gj and hence m∗ become global polynomials for all y with |y| ≥ c. Likewise
the estimated operator H becomes proportional to the identity operator in the
tails. Therefore, we can expect the estimated m to be polynomial in the tails.
This method therefore achieves a similar objective to the explicit trimming ap-
proach we described above, but it has a nice advantage: provided h−1

T (y) is
continuous in y , the resulting estimator of m will also be continuous. We use
this method in the simulations below.

5.2. Asymptotic Properties

In this section we discuss the properties of the trimming-based estimators.
We focus on the case that c→ ∞. The strategy is to analyze the corresponding
population problem for given c and then to let c→ ∞. We will discuss this for
the weak form specification of our ARCH(∞) model.

We still suppose that yt is a stationary process. Define for fixed θ the func-
tion mθ�∞ as minimizer of E[{y2

t − ∑∞
j=1ψj(θ)m(yt−j)}2]. The best fit in the

trimmed model, with fixed c, is given by mθ�c(y) + µc(y;ξθ�c)� where m =
mθ�c(y) and ξ= ξθ�c minimize E[{y2

t −∑∞
j=1ψj(θ)[m(yt−j)+µc(yt−j;ξ)]}2] over

all functions m with support [−c� c] and over all parameters ξ. As above it can
be checked that for fixed θ the best fit mθ�c is uniquely determined by the inte-
gral equations

mθ�c(y)=m∗
θ(y)+

∫
|x|≥c

Hθ(y�x)µ
c(y;ξθ�c)p0(x)dx

+
∫ c

−c
Hθ(y�x)mθ�c(x)p0(x)dx

for |y| ≤ c, if c <∞, and mθ�∞(y)=m∗
θ(y)+

∫ ∞
−∞ Hθ(y�x)mθ�∞(x)p0(x)dx for

all y . The model bias, caused by trimming, is equal to mθ�∞(y)−mθ�c(y). The
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bias will depend on the choice of c and on how well mθ�∞ is approximated by
µc(y;ξθ�c) in the tails. The following theorem gives an estimate for the bias.
For the theorem we need the following assumptions that are slightly stronger
than Assumptions A1–A3.

C1: It holds that

sup
j �=0

∫ ∞

−∞

∫ ∞

−∞

p0�j(y�x)
2

p0(x)p0(y)
dxdy <∞�

sup
j �=0

∫ ∞

−∞

∫
|x|≥c

p0�j(y�x)
2

p0(x)p0(y)
dxdy → 0 for c→ ∞�

C2: There exist no θ ∈Θ and no functionm with
∫ ∞

−∞m
2(x)p0(x)dx= 1 such

that
∑∞

j=1ψj(θ)m(yt−j)= 0 with probability 1.
C3: It holds that supθ∈Θ

∑
j≥1ψj(θ) < ∞, infθ∈Θ

∑
j≥1ψj(θ)

2 > 0, and
supθ�θ∗ : ‖θ−θ∗‖→0

∑
j≥1 |ψj(θ)−ψj(θ∗)| → 0.

In particular, conditions C1 and C3 imply that supθ∈Θ
∫ ∞

−∞
∫ ∞

−∞ Hθ(y�x)
2 ×

p0(x)p0(y)dxdy <∞. Note that this is stronger than Assumption A1, where
the integral only runs over [−c� c].

THEOREM 7: Suppose that C1–C3 hold. Then for some constants C1�C2 > 0
(not depending on c) it holds that∫ c

−c
[mθ�c −mθ�∞](x)2p0(x)dx≤ C1∆θ(c)

2�(37)

|mθ�c(y)−mθ�∞(y)| ≤ C2ρθ(y)∆θ(c) for |y| ≤ c(38)

with ∆θ(c)2 = ∫
|x|≥c[mθ�∞(x) − µc(x;ξθ�c)]2p0(x)dx and ρθ(y)2 = ∫ ∞

−∞ Hθ(y�

x)2p0(x)dx.

Condition C1 can be checked for transformed Gaussian processes yt=G(xt),
where xt is a stationary Gaussian process with variance 1 and autocorrela-
tion function r(j). Then it holds with a constant C that ρθ(y)2 ≤ [(1 − δ)(1 +
δ)]−1/2 exp[δ(1 + δ)−1G−1(y)2] with δ= supj≥1 r(j)

2. Then
∫ ∞

−∞
∫ ∞

−∞ Hθ(y�x)
2 ×

p0(x)p0(y)dxdy = E[ρθ(yt)2] <∞. This discussion shows that C1 is fulfilled
also for heavy tailed processes. Condition C1 only puts a condition on the de-
pendence structure of the transformed process xt = G−1(yt). It requires that
the conditional correlation of xt and xs (given |xt | is larger than c) is bounded
away from 1 or does not converge to 1 too fast (for c→ ∞).

In this example it holds that ρθ(c)→ ∞ for c → ∞. Thus Theorem 7 does
not imply that mθ�c(c) approximates mθ�∞(c) if ∆θ(c) converges to zero too
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slowly. This suggests to use mθ�c(y) as an approximation of mθ�∞(y) only for
|y| � c. For fixed y , mθ�∞(y) can be always approximated by mθ�c(y) with
c→ ∞. This heuristics also supports the use of the second proposal of smooth
trimming that we had discussed above.

We conjecture that condition C1 also holds for (strong form) GARCH(1�1)
processes. This conjecture is supported by Theorem 2.3 of Mikosch and Stǎricǎ
(2000). This theorem gives expansions for tail probabilities of (yt� yt+j) and
of yt , and it suggests the approximations p0�j(y�x)≈ (x2 +y2)−κ−2f [(x� y)(x2 +
y2)−1/2] and p0(x) ≈ Cx−κ−1 for |x| and |y| large. Here, C is a constant
and f is a function on the sphere. The constant κ is determined by the
equation E(β + γε2

t )
κ/2 = 1. Plugging these approximations into the inte-

gral
∫ ∫

p2
0�j(x� y)p0(x)

−1p0(y)
−1 dxdy results in a finite integral. This suggests

that C1 holds. For ρ2
θ(c) we get an approximation that is of order c−2. It follows

that in this case ρ2
θ(c)→ 0 for c→ ∞.

We next provide results for a linear parametrization µ(y�ξ)= ξ�ν(y), where
ν is a vector of known functions. For doing so we need slightly stronger con-
ditions. In particular, smoothness conditions for the densities and regression
functions have to been stated for the whole real line.

C4: The trimming threshold c = cT converges to ∞ for T → ∞ with cT ≤ CTγ
for constants C�γ > 0.

C5: It holds that E|yt |2ρ <∞ for a constant ρ > 5/2.

Condition C5 is slightly stronger than B2. Note that in the following theorem
we show a faster uniform rate of convergence.

C6: The function m together with the densities p0 and p0�j are twice differen-
tiable on (−∞�∞). The functions p0 and p0�j and their derivatives are uniformly
bounded on (−∞�∞). For p0 it holds that p0(x)≥ C ′T−γ′ for |x| ≤ cT for some
positive constants C ′�γ′. The function m(x) and its derivatives are bounded for
|x| ≤ cT by C ′′Tγ

′′ for some positive constants C ′′�γ′′. Furthermore, for a constant
cw > 0 we have that σ2

t ≥ cw (a.s.).

This condition replaces the old condition B4.

C7: It holds that E|νj(x)|ρ <∞ for a constant ρ > 5/2. Furthermore it holds
that the minimal eigenvalue of the matrix

∫
|x|≥c ν(x)ν(x)

�p0(x)dx is larger than
C ′′′T−γ′′′ for C ′′′�γ′′′ > 0.

Conditions C4–C7 hold for the strong GARCH(1�1) process under some
conditions on the dynamic parameters and the moments of the innovation.
We now state our result that gives similar results as Theorem 1. We do not
consider asymptotic normality at a fixed point because now we are estimating
a function in a growing interval.
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THEOREM 8: Choose δ > 0 and suppose that C1–C7, B1, B3, and B5–B10
hold with γ� � � � � γ′′′ > 0 small enough (depending on δ). Then there exist esti-
mators m̂θ�c(·)� ξ̂θ�c such that supθ∈Θ�|y|≤cT |m̂θ�c(y)−mθ�c(y)| =OP(T−2/5+δ) and
supθ∈Θ ‖̂ξθ�c − ξθ�c‖ =OP(T−2/5+δ).

As above, we define θ0 as the parameter that minimizes E[{y2
t −

∑∞
j=1ψj(θ)×

mθ�∞(yt−j)}2]. Then θ0 and m0 =mθ0 minimize E[{y2
t − ∑∞

j=1ψj(θ)m(yt−j)}2].
From Theorems 7 and 8 we get the following result about the accuracy in esti-
mating the target function m0.

THEOREM 9: Make the assumptions of Theorem 8 and assume additionally
that ∆θ0(cT ) = O(T−2/5+δ). Put m̂(y) equal to mθ̂�cT (y) for |y| ≤ cT and equal
to ξT

θ̂�cT
ν(y) for |y| ≥ cT . Here θ̂ is an estimate with θ̂− θ0 = OP(T

−2/5+δ). Then
it holds that

∫ ∞
−∞[m̂(y)−m0(y)]2p0(y)dy = OP(T

−4/5+2δ) and m̂(y)−m0(y)=
OP(T

−2/5+δ) for a fixed y .

A possible candidate for the estimate θ̂ is the profile least squares estimate.

6. NUMERICAL RESULTS

6.1. Bandwidth Choice and Lag Truncation

One approach is to choose the bandwidth h to minimize the asymptotic
mean squared error of m̂ derived above. This requires estimation of the sec-
ond derivatives ofm and other quantities, so may not work well in practice. In-
stead we develop a rule of thumb bandwidth using the pointwise mean squared
error implied by Theorem 4 when the process is a strong GARCH(1�1),
although we will use this bandwidth more widely. In this case the bias
function is just bmod(y) = µ2(K)γ. In the variance term ω(y) we replace
E((y2

t − σ2
t )

2|yt−j = y) by the unconditional average m̂4 = T−1
∑T

t=1(y
2
t − σ̂2

t )
2,

where σ̂2
t are estimated from a preliminary GARCH(1�1) fit, as are γ̂ and θ̂.

It may be desirable to replace m̂4 by a more robust measure like the median
of (y2

t − σ̂2
t )

2. Then the pointwise mean squared error optimal bandwidth for
the least squares estimator can be approximated by

ĥROT(y)=
[
(1 − θ̂2)ν0(K)m̂4

4µ2
2(K)γ̂

2p̂0(y)

]1/5

T−1/5�(39)

For the likelihood-based estimator the same formula applies but with m̂4 re-
placed by m̂∗

4, where m̂∗
4 = 1/(T−1

∑T

t=1 σ̂
−4
t ) where σ̂−2

t is the GARCH volatil-
ity estimator. These bandwidths are defined on [−c� c]. This approach gives
moderate increase of bandwidth in the tails; one can magnify the increase in
bandwidth by the following method. Replace γ̂2 in (39) by γ̂2π(y), where π is
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a function that decreases to zero rapidly after some threshold c0. Specifically,
π(y) = 1 for all y with |y| ≤ c0 < c, while π(y)→ 0 as |y| → c. Note that as
|y| → c� the bandwidth increases to infinity and so the local polynomial esti-
mate of E(y2

t |yt−j = y) becomes a global polynomial; therefore this estimation
strategy forces m̂(y) to have the same polynomial shape in the tails.

For the truncation parameter τT , we have chosen τ to make
supθ∈Θ

∑∞
j=τ+1ψj(θ) < ε for some small prespecified tolerance level ε. One can

also use some formal model selection technique but at computational cost.

6.2. Simulated Data

We report the results of a small simulation experiment. There are several
papers that provide simulation evidence on the finite sample performance of
GARCH quasimaximum likelihood (and related) estimators (QMLE). A ma-
jor issue in these studies is the reliability of the results and their robustness
to alternative implementations. This is acknowledged in most of the studies
we examined: e.g., Lumsdaine (1995) and Fiorentini, Calzolari, and Pannatoni
(1996). Nonlinear estimators in nonconvex optimization problems can have
a variety of problems. To some extent this is a problem with the nature of
large scale simulations rather than with the estimator itself—when one runs
10,000 replications of a procedure one is restricted to a relatively crude im-
plementation, whereas for a single data set one can modify the procedure as
required for that particular sample. However, there are also studies that report
finding significantly different results for a given single data set using different
commercial software; see Brooks, Burke, and Persand (2001) and McCullough
and Renfro (1999).

The focus of our study is on the news impact curve m(·). In an earlier ver-
sion of this paper, Linton and Mammen (2003), we report results for a design
where θ was estimated along withm(y) by choosing θ from a grid of 100 points
on (0�1). The estimates of θ were quite well behaved even for relatively small
sample sizes. In parametric applications one often finds estimates of θ to be
strongly significant. The results we report here address the issue of how well
the nonparametric estimate of the news impact curve m performs in compari-
son with a parametric method in a situation that is favorable to the parametric
method. Specifically, we shall assume that θ is known in both procedures.

We consider two sets of experiments. In the first case (model 1) we gener-
ated data from (6), where yt = εtσt and εt is standard normal, with θ = 0�45,
γ = 0�35, α = 0�20. These are the parameter values chosen in Fiorentini
et al. (1996). In the second case (model 2) we consider yt� εt as above and
σ2
t = θσ2

t−1 + α+ γy2
t−1 + δy2

t−11(yt−1 < 0) with θ= 0�9, γ = 0�06, δ= 0�03 and
α as before. For model 1, E(|yt |8) <∞ and so both least squares and likelihood
estimates of the parameters are consistent and asymptotically normal, while
for model 2 we have E(|yt|4+ε) <∞ for some small ε > 0 but E(|yt |8) = ∞.
Although model 1 is far from the sort of model one encounters with daily stock
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return data, it is not a bad match for standardized monthly data. Model 2 is
more realistic for daily data and poses a challenge for the least squares meth-
ods because of the approximate violation of our regularity conditions. We con-
sider T ∈ {200�400�800}.

We investigate both least squares estimators m̂(y) and likelihood estima-
tors m̃(y). In each case the intercept functions were estimated with local
constant, local linear, and local quadratic smoothers with a Gaussian kernel.
We chose throughout n = 200 grid points equally spaced in quantile space.7
We estimate on the entire sample range of the data,8 but use the variable band-
width method (39) with the downweighting described directly afterward with
π(y) = exp(−(|y| − 2)2) for |y| > 2. Although the estimates of m sometimes
take negative values, we do not trim them.

To compare the performance of the nonparametric estimators we need a
benchmark. Our benchmark is the asymptotic variance that would apply to a
GARCH maximum likelihood estimator (MLE) (assuming θ is known). This
avoids the tricky implementation issues associated with these estimators as
discussed above. It has to be noted that this sets a very high standard, since
it is an infeasible estimator. The GARCH MLE of the news impact curve is
m̂Lik(y)= α̂+ γ̂y2, where (̂α� γ̂) are the MLEs of (α�γ). The asymptotic vari-
ance of m̂Lik(y) is vLik(y)= (σαα + σγγy4 + 2σαγy2)/T , where σαα, σγγ , and σαγ
are the corresponding asymptotic variances and covariances of the parameter
estimates. We compute vLik(y) by simulation to three decimal place accuracy.

We present in Table I the bias and standard deviation of the local constant,
local linear, and local quadratic implementations of m̂(y) and m̃(y) along with
the (asymptotic) MLE at the 1%, 10%, 25%, 50%, 75%, 90%, and 99% quan-
tiles of the distribution of yt� We summarize the main findings for model 1 as
follows: 1. The results for all implementations seem to improve with sample
size, with some exceptions regarding the biases in the extreme tails. 2. The per-
formance is much better in the center of the news distribution, but this is also
true with the parametric estimator. 3. The MLE, m̂Lik(y), performs better ac-
cording to mean squared error. However, this advantage decreases relatively
with sample size, due to the large small sample component in the performance
of the nonparametric estimators.9 4. The local likelihood estimator m̃ gen-
erally performs much better than the least squares estimator m̂ according to
mean squared error, regardless of whether a local constant, local linear, or lo-
cal quadratic smoother is used, except in the tails where it can perform worse.
5. The local constant implementation generally works better in terms of mean
squared error than the local linear or local quadratic implementations of m̂.

7That is, the grid points tj�n are chosen to be the j/n sample quantile, where j = 0� � � � � n.
8This means that we take c to be the maximum value of yt and −c to be the minimum value

of yt .
9Note that the comparable results in Fiorentini et al. (1996) for an implementation of the MLE

show slightly worse performance due to small sample issues.
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TABLE I

FINDINGS FOR PARAMETER VALUES IN FIORENTINI ET AL. (1996), σ2
t = 0�2 + 0�45σ2

t−1 + 0�35y2
t−1

a

Quantile
n

1% 10% 25% 50% 75% 90% 99%

Bias Std Bias Std Bias Std Bias Std Bias Std Bias Std Bias Std
m̂

Quadratic 200 0�598 3�712 0�089 0�363 −0�086 0�210 −0�122 0�213 −0�079 0�212 0�039 0�307 0�462 2�054
400 0�619 2�524 0�062 0�243 −0�092 0�147 −0�124 0�142 −0�085 0�146 0�025 0�222 0�575 1�559
800 0�608 1�750 0�029 0�170 −0�091 0�100 −0�117 0�092 −0�090 0�100 0�013 0�168 0�540 1�100

Linear 200 −2�349 3�453 0�152 0�422 −0�013 0�138 −0�057 0�127 −0�012 0�133 0�105 0�357 −0�046 1�749
400 −1�396 2�213 0�127 0�267 −0�024 0�100 −0�063 0�084 −0�022 0�096 0�104 0�240 0�371 1�288
800 −0�398 1�435 0�088 0�168 −0�028 0�068 −0�057 0�054 −0�025 0�069 0�087 0�176 0�528 1�011

Constant 200 −3�332 2�955 −0�035 0�222 0�026 0�104 0�042 0�077 0�031 0�096 −0�035 0�194 −1�100 1�221
400 −2�804 2�004 −0�016 0�159 0�018 0�078 0�025 0�054 0�019 0�077 −0�017 0�149 −0�927 0�782
800 −2�218 1�325 −0�014 0�113 0�009 0�055 0�014 0�041 0�011 0�058 −0�005 0�118 −0�683 0�540

m̃
Quadratic 200 −0�746 20�000 −0�109 0�278 0�025 0�082 0�073 0�055 0�027 0�063 −0�096 0�186 −0�460 1�960

400 −0�445 3�159 −0�102 0�145 0�015 0�048 0�058 0�036 0�017 0�041 −0�091 0�103 −0�344 1�034
800 −0�441 3�143 −0�092 0�060 0�009 0�030 0�046 0�025 0�010 0�028 −0�083 0�058 −0�339 0�683

Linear 200 −0�562 12�504 −0�092 0�223 0�034 0�074 0�079 0�052 0�036 0�067 −0�081 0�200 −0�422 2�232
400 −0�404 3�527 −0�072 0�173 0�032 0�060 0�068 0�036 0�032 0�045 −0�066 0�107 −0�221 1�127
800 −0�047 1�765 −0�057 0�065 0�028 0�030 0�058 0�025 0�030 0�031 −0�046 0�065 −0�200 0�773

Constant 200 −1�022 10�612 −0�154 0�137 0�029 0�066 0�089 0�056 0�033 0�059 −0�130 0�112 −0�730 1�814
400 −0�951 3�040 −0�146 0�092 0�029 0�047 0�081 0�039 0�028 0�042 −0�130 0�073 −0�744 0�663
800 −0�921 1�508 −0�144 0�042 0�023 0�027 0�075 0�026 0�025 0�028 −0�127 0�042 −0�845 0�458

m̂Lik

MLE 200 0�534 0�095 0�036 0�048 0�036 0�096 0�539
400 0�378 0�067 0�025 0�035 0�025 0�068 0�381
800 0�267 0�047 0�018 0�024 0�018 0�047 0�267

aThe quantiles are of the distribution of yt . Bias and std denote bias and standard deviation, respectively. MLE results are taken from the simulated asymptotic distribution,
hence there is no bias.
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For m̃, the local quadratic method seems to work best in the center of the
distribution, while the local linear method works better in the tails. The local
constant method tends to do better in the small sample sizes.

The poor performance in the tails can perhaps be explained by the fact that
the population moments of m̂ and m̃ are not guaranteed to exist; robust esti-
mates of the scale of m̂ and m̃ give dramatically smaller numbers out in the tail.
For example, the local quadratic likelihood estimator at the 1% quantile has
for n= 200 a standard deviation of 20.00 across simulated samples, but the ro-
bust scale estimate of interquartile range/1.35 is only 0.497. The median bias is
also somewhat smaller than the mean bias, where this is very large in absolute
value. This suggests that the poor performance is driven by a few “rogue” data
sets that perhaps require the special treatment that could be given to a unique
data set but not across simulations. In Figure 1 we show the q–q plot of the dis-
tribution of the centered estimators m̃ for the 0�01 and 0.50 quantiles. Clearly,
in the tails convergence to the normal distribution is slow in comparison with
the median.

In the interests of space we report briefly here on our results for model 2,
where σ2

t = 0�2 + 0�90σ2
t−1 + 0�06y2

t−1 + 0�03y2
t−11(yt−1 < 0). The least squares

methods then exhibit poor mean squared performance relative to the bench-
mark—although the standard deviations decrease with sample size they do
so slowly and from a high level, while the biases remain large. By contrast
the likelihood methods generally perform reasonably well. At the median, the
benchmark MLE has asymptotic standard deviations of 0.126, 0.089, and 0.063
for sample sizes 200, 400, and 800. By contrast, the local quadratic likelihood
method has standard deviations 0.268, 0.192, and 0.145 with biases 0.118, 0.065,
and 0.038. At the 1% quantile, the benchmark MLE has asymptotic standard
deviations of 1.737, 1.228, and 0.868, whereas the local constant likelihood
method has standard deviations 6.474, 3.761, and 2.727 with biases 2.303, 1.200,
and 0.390. The performance of all estimators is better in an absolute sense in
the right tail, where the news impact curve is smaller, than in the left tail.

6.3. Investigation of the News Impact Curve in S&P500 Index Returns:
1955–2002

We next provide a study of the news impact curve on various stock return
series. The purpose here is to discover the relationship between past return
shocks and conditional volatility. We investigate a sample of daily returns on
the S&P500 from 1955 to 2002, a total of 11,893 observations, a sample of
weekly returns with 2464 observations, and a monthly sample with 570 obser-
vations. In an earlier version of this paper we concentrated on the daily data,
while here we give more results for the weekly estimation. Table II gives the un-
conditional cumulants: the fourth cumulant is quite large for the daily data and
suggests that the fourth moment may not exist, whereas the fourth cumulants
and “Hill plots” for the weekly data point to much lighter tails.
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(a)(i) (a)(ii) (a)(iii)

(b)(i) (b)(ii) (b)(iii)

FIGURE 1.—The q–q plots of local constant m̃ from model 1. Panels (a) show results for
y quantile equal to 0.01, while (b) show results for y quantile equal to 0�50: (i) corresponds to
n= 200, (ii) n= 400, (iii) n= 800.

In Figure 2 we show nonparametric estimates of the first four conditional
cumulants, i.e., E(yt|yt−k), var(yt |yt−k), skew(yt |yt−k), and kurt(yt |yt−k) for the
weekly data. These are computed using local linear smoothers and a rule
of thumb bandwidth from Fan and Gijbels (1996). We show the curves for
k= 1�2� � � � �10.
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TABLE II

CUMULANTS BY FREQUENCYa

Daily Weekly Monthly

Mean (×100) 0�029 0�141 0�606
Std (×100) 0�038 0�200 0�903
Skewness −1�546 −0�375 −0�589
Excess kurtosis 43�334 6�521 5�588
Minimum −25�422 −6�577 −5�984
Maximum 9�623 6�534 3�450

aDescriptive statistics for the returns on the S&P500 index for the period 1955–2002 for
three different data frequencies. Minimum and maximum are measured in standard deviations
and from the mean.

(a) (b)

(c) (d)

FIGURE 2.—Conditional cumulants of weekly S&P500 returns for lags k= 1� � � � �10: (a) mean;
(b) variance; (c) skewness; (d) kurtosis.



806 O. LINTON AND E. MAMMEN

There does not appear to be much common structure in the conditional
mean. The conditional variances are significantly different from constants and
appear to have similar asymmetric U shapes. The conditional skewness and
kurtosis are large in absolute value and have a variety of different shapes, with
no common pattern, although the skewness is mostly negative and the kurto-
sis is mostly positive. Given the heavy tails in the data, these curves may not
be significant relative to the sampling variability. Similar patterns are observed
in the daily and monthly data. Although there is no necessary relationship be-
tween these marginal curves and the corresponding joint cumulants E(yt |Ft−1),
var(yt |Ft−1), skew(yt |Ft−1), and kurt(yt |Ft−1), this is suggestive of a common
structure similar to what is imposed in our model.

Following Engle and Ng (1993) we fitted regressions on seasonal dum-
mies, but, unlike them, found little significant effects. In Table III we report
the results of estimating the Glosten, Jegannathan, and Runkle (1993) model
(which we call GJR) parametric fits on these standardized series. All parame-
ters appear significant and there is quite strong evidence of asymmetry at all
frequencies.

We next applied our methods. We fitted an AR(2) process to the data and
then worked with the standardized residual series. We computed our estima-
tors using τ = 50 for the daily data and τ = 25 for the weekly and monthly
data, where the dynamic coefficients were ψj(θ)= θj−1 with θ ∈ (0�1). We es-
timated the function m on the entire range of the data using local constant,
local linear, and local quadratic smoothers with variable bandwidth selected

TABLE III

PARAMETRIC ESTIMATIONa

Daily Weekly Monthly

ρ1 0�138788 0�007065 0�14661
(0�009524) (0�022000) (0�045131)

ρ2 −0�01906 0�051815 −0�018694
(0�009449) (0�022044) (0�045083)

α(×1�000) 0�0000721 0�00130 0�862000
(0�0000064) (0�000242) (0�249000)

θ 0�920489 0�850348 0�442481
(0�002243) (0�015580) (0�176365)

γ 0�034018 0�047885 −0�076662
(0�002613) (0�013504) (0�042047)

δ 0�078782 0�140013 0�266916
(0�003302) (0�020349) (0�094669)

aStandard errors are given in parentheses. These estimates are for the raw data series and
refer to the AR(2)–GJR–GARCH(1�1) model

yt = c + ρ1yt−1 + ρ2yt−2 + εtσt �

σ2
t = α+ θσ2

t−1 + γy2
t−1 + δy2

t−11(yt−1 < 0)�
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FIGURE 3.—The bandwidth hT (y) used in the computation of m̂θ(y) for the weekly S&P500
returns data.

by the rule of thumb (39) with the tail modification. Specifically, we chose
π(y) = exp(−(|y| − 3)2) for |y| > 3. In Figure 3 we plot the bandwidth used
for the computation of m̂θ for weekly data as a function of y . For compari-
son, the Silverman rule of thumb bandwidth is 0.224, which is smaller than our
bandwidth ever is.

In Figure 4 we show our two semiparametric news impact curve estimates,
local quadratic m̂θ and m̃θ� along with the parametric alternative m̂GJR for
the three data frequencies using the GJR dynamic parameters, denoted θ̂GJR,
which are taken from Table III. Our graphs show the curves on the interval de-
fined by the 0.01–0.99 quantiles along with the standard errors for the three
estimates. The main conclusions are the following: 1. There is evidence of
asymmetry for daily, weekly, and monthly frequencies. 2. The least squares
estimators m̂θ show the greatest growth on the negative side, while typically
likelihood estimator m̃θ is a bit closer to the parametric curve. 3. The min-
ima of the curves in all cases occur on the positive side for each frequency.
4. The monthly m̂GJR is monotonic decreasing on this range, which is unex-
pected.10 5. The daily standard errors obey the anticipated ordering: the largest

10We have recomputed the parametric estimates using Eviews, Gauss, and Matlab, but in all
cases find qualitatively similar results.
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(a) (a)

(b) (b)

(c) (c)

FIGURE 4.—Estimated news impact curves for (a) daily, (b) weekly, and (c) monthly S&P500
returns along with standard errors in right panel. Solid line is m̂GJR; dashed line is m̂θ̂GJR

; dotted
line is m̃θ̂GJR

.

are for m̂θ and the smallest are for m̂GJR. Both semiparametric standard errors
increase rapidly when |y|> 2. The weekly standard errors follow a similar pat-
tern except that the standard errors for m̃θ are larger than those for m̂θ when
y <−2�5. 6. The magnitudes of the standard errors are such that there are sig-
nificant differences between the news impact curves at various points. 7. The
monthly standard errors seem a bit erratic: the parametric ones are too large
and those for m̃θ seem way too small when y > 0. 8. The tail part of the estima-
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FIGURE 5.—S&P500 weekly data. Negative of log-likelihood as a function of θ.

tion, which is not shown in the graphics, reveals quite substantial differences
between m̂GJR, m̂θ, and m̃θ. This is especially so in the daily data where there
is a single isolated observation at −25 standard deviations (the 1987 crash)
and this forces big differences in the tail functions. Engle and Ng (1993) found
similar results.

We next estimated the full semiparametric model on the weekly data. We
took the dynamic coefficients to beψj(θ)= θj−1, where θ was selected by a grid
search on (0�1) with width 0�001; we computed m̂θ and m̃θ as described above.
In Figure 5 we report the negative likelihood function on the range [0�85�0�95].
The global minimum is at θ̂ = 0�899� which is slightly larger than the value
estimated in the GJR QMLE. The likelihood is a bit flat near the minimum
and, consequently, the standard error of θ̃ is quite large at 0�036, more than
twice the standard error of the parametric estimator. The news impact curves
are similar in shapes to those reported above and are omitted for brevity.

Finally, we looked at some diagnostics based on the standardized residuals
ε̂t = yt/σ̂t and ε̃t = yt/σ̃t from the full semiparametrically estimated model,
weekly data. The conditional variances of these series show much less evi-
dence of systematic shapes; the skewnesses and kurtosises are smaller in ab-
solute value. We report in Figure 6 the correlogram for the squared residuals
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(a)

(b)

FIGURE 6.—Residual diagnostics of estimated semiparametric model for weekly S&P500 data.
The estimated ACF along with 95% Bartlett intervals is shown (a) for ε̂2

t and (b) for ε̃2
t .

ε̂2
t and ε̃2

t along with the Bartlett interval ±1�96/
√
T .11 There is very little evi-

dence of autocorrelation in either series.
Our application has confirmed some of the findings of Engle and Ng (1993),

namely the asymmetric news impact curve, on the S&P500 data set. We ac-
knowledge that we are not able to give a definitive statement of the shape of
the news impact curve out in the tails, but our asymptotic theory better reflects
this uncertainty than the theory for parametric models, which is overly precise.
Thus we are able to provide a better idea of what we know we do not know.

7. CONCLUSIONS AND EXTENSIONS

Although we have relied on the least squares criterion to obtain consistency,
in practice one can avoid least squares estimations altogether and just apply an
iterated version of the likelihood-based method. We expect that the distribu-

11It should be noted that these confidence intervals do not take account of the additional
variation induced by the various estimations; taking account of this estimation error would widen
the confidence intervals considerably.
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tion theory for such a method is the same as the distribution of our two-step
version of this procedure. This is to be expected from results of Mammen,
Linton, and Nielsen (1999) and Linton (2000) in other contexts.

Other estimation methods can be used here like series expansion or splines.
However, although one can obtain the distribution theory for parameters θ
and rates for estimators of m in that case, the pointwise distribution theory
for the nonparametric part is elusive. Furthermore, such methods may be in-
efficient in the sense of Section 4.4. One might want to combine the series
expansion method with a likelihood iteration, an approach taken in Horowitz
and Mammen (2002). However, one would still need either to apply our esti-
mation method and theory or to develop a theory for combining an increasing
number of Horowitz and Mammen (2002) estimators.

In the working paper version we discuss some extensions of our method to
allow a model for the mean and some transformation models like logarithmic
variance, and present some ideas about “integrated” versions of our model.
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APPENDIX A: PROOFS OF (8) AND (34)

In the sequel we take µt = 0 without loss of generality.

PROOF OF (8): It is convenient to break the joint optimization problem
down into two separate problems: first, for each θ ∈ Θ, let mθ be the func-
tion that minimizes (5) with respect to m ∈ M; second, let θ∗ be the pa-
rameter that minimizes the profiled criterion E[y2

t − ∑∞
j=1ψj(θ)mθ(yt−j)]2

with respect to θ ∈ Θ. It follows that θ0 = θ∗ and m0 = mθ0 . We next find
the first-order conditions for this sequential population optimization prob-
lem. We write m = m0 + ε · f for any function f , differentiate with re-
spect to ε, and, setting ε = 0, we obtain the first-order condition E[{y2

t −∑∞
j=1ψj(θ)m0(yt−j)}{∑∞

l=1ψl(θ)f (yt−l)}] = 0, which can be rewritten as

∞∑
j=1

ψj(θ)E[y2
0f (y−j)] −

∞∑
j=1

∞∑
l=1�j �=l

ψj(θ)ψl(θ)E[m0(y−j)f (y−l)](40)

=
∞∑
j=1

ψ2
j (θ)E[m0(y−j)f (y−j)]
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for all f . Taking f (·)= δy(·), where δy(·) is the Dirac delta function, we have

E[y2
0f (y−j)] =

∫
E[y2

0 |y−j = y ′]f (y ′)p0(y
′)dy ′

=
∫
E[y2

0 |y−j = y ′]δy(y ′)p0(y
′)dy ′

= E[y2
0 |y−j = y]p0(y)�

while E[m0(y−j)f (y−j)] = ∫
m0(y

′)δy(y ′)p0(y
′)dy ′ = m0(y)p0(y). Finally,

E[m0(y−j)f (y−l)] = E[E[m0(y−j)|y−l]f (y−l)] = ∫
E[m0(y−j)|y−l = y ′]δy(y ′) ×

p0(y
′)dy ′ = E[m0(y−j)|y−l = y]p0(y). The next step is to change the variables

in the double sum. Note that E[m0(y−j)|y−l = y] = E[m0(y0)|yj−l = y] by sta-
tionarity. Let t = j − l. Then for any function c(·) defined on the integers,

∞∑
j=1

∞∑
l=1�j �=l

ψj(θ)ψl(θ)c(j − l)=
∞∑
t=±1

∞∑
l=1

ψt+l(θ)ψl(θ)c(t)

=
∞∑
t=±1

( ∞∑
l=1

ψt+l(θ)ψl(θ)

)
c(t)�

Therefore, dividing through by p0(y) and
∑∞

j=1ψ
2
j (θ), (40) can be written∑∞

j=1ψ
†
j (θ)E(y

2
0 |y−j = y)−∑±∞

j=±1ψ
∗
t (θ)E(m0(y0)|yj = y)=m0(y), which is the

stated answer. Q.E.D.

PROOF OF (34): We write g= g0 + ε · f for any function f , differentiate with
respect to ε, and, setting ε= 0, we obtain the first-order condition

E

[{
1
σ2
t

∂σ2
t

∂θ
− 1
σ2
t

∞∑
j=1

ψjg0(yt−j)

}
1
σ2
t

∞∑
l=1

ψlf (yt−l)

]
= 0�

which can be rewritten

0 =
∞∑
l=1

ψlE

[
σ−4
t

∂σ2
t

∂θ

∣∣∣yt−l = y] − g0(y)

∞∑
j=1

ψ2
jE[σ−4

t |yt−j = y]

−
∞∑
j=1

∞∑
l=1�j �=l

ψjψlE[σ−4
t g0(yt−j)|yt−l = y]�

Now use the law of iterated expectations to write E[σ−4
t g0(yt−j)|yt−l = y] =

E[E[σ−4
t |yt−j� yt−l]g0(yt−j)|yt−l = y]. Then

E[σ−4
t g0(yt−j)|yt−l = y] =

∫
qj�l(x� y)

p0�j−l(x� y)
p0(y)p0(x)

g0(x)p0(x)dx�
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where qj�l(y�x)=E[σ−4
t |yt−j = x� yt−l = y]. The result follows. Q.E.D.

APPENDIX B: PROOFS OF THEOREMS

PROOF OF THEOREM 1: We first outline the approach to obtaining the as-
ymptotic properties of m̂θ(·) for any θ ∈Θ. We give some high level Assump-
tions A4–A6 under which we have an expansion for m̂θ − mθ in terms of
m̂∗
θ −m∗

θ and Ĥθ −Hθ. Both terms will contribute a bias and a stochastic term
to the expansion. We then verify the Assumptions A4–A6 and verify the central
limit theorem.

ASSUMPTION A4: Suppose that for a sequence δT → 0, supθ∈Θ�‖m‖2=1�|x|≤c |Ĥθ×
m(x)−Hθm(x)| = op(δT ).

In particular, Assumption A4 gives that supθ∈Θ�‖m‖2=1 ‖[Ĥθ − Hθ]m‖2 =
op(δT ). We now show by virtue of Assumption A4 that (I − Ĥθ) is invertible
for all θ ∈Θ, with probability tending to 1, and it holds that (see also (14))

sup
θ∈Θ�‖m‖2=1�|y|≤c

∣∣[(I − Ĥθ)
−1 − (I −Hθ)

−1]m(y)∣∣ = op(δT )�(41)

In particular, supθ∈Θ�‖m‖2=1 ‖[(I−Ĥθ)
−1 −(I−Hθ)

−1]m‖2 = op(δT ). For a proof
of claim (41) note that for m ∈Mc ,

m= (I − Ĥθ)
−1(I −Hθ)

−1
∞∑
j=0

[(Ĥθ −Hθ)(I −Hθ)
−1]jm

because of

∞∑
j=0

[(Ĥθ −Hθ)(I −Hθ)
−1]j = [I − (Ĥθ −Hθ)(I −Hθ)

−1]−1

= [(I − Ĥθ)(I −Hθ)
−1]−1�

This gives

(I − Ĥθ)
−1m− (I −Hθ)

−1m=
∞∑
j=0

[(Ĥθ −Hθ)(I −Hθ)
−1]jm�

We suppose that m̂∗
θ(y) has an asymptotic expansion where the components

have certain properties.
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ASSUMPTION A5: Suppose that with δT as in Assumption A4, m̂∗
θ(y) −

m∗
θ(y)= m̂∗�B

θ (y)+ m̂∗�C
θ (y)+ m̂∗�D

θ (y), where m̂∗�B
θ � m̂

∗�C
θ , and m̂∗�D

θ satisfy

sup
θ∈Θ�|y|≤c

|m̂∗�B(y)| =Op(T−2/5) with m̂∗�B deterministic�(42)

sup
θ∈Θ�|y|≤c

|m̂∗�C
θ (y)| =Op(T−2/5δ−1

T )�(43)

sup
θ∈Θ�|y|≤c

|Hθ(I −Hθ)
−1m̂∗�C

θ (y)| = op(T−2/5)�(44)

sup
θ∈Θ�|y|≤c

|m̂∗�D
θ (y)| = op(T−2/5)�(45)

Here, m̂∗�B
θ is the bias term, m̂∗�C

θ is the stochastic term, and m̂∗�D
θ is the re-

mainder term. For local linear estimates of gj(y) it follows that under standard
smoothness conditions, (42), (43), and (45) hold. The argument is complicated
by the fact that m̂∗

θ depends on a large number of gj(y)’s, although it effectively
behaves like a single smoother. The intuition behind (44) is based on the fact
that an integral operator applies averaging to a local smoother and transforms
it into a global average, thereby reducing its variance.

Define now for j = B�C�D the terms m̂j
θ as solutions to the integral equa-

tions m̂j
θ = m̂∗�j

θ + Ĥθ m̂
j
θ and m̂A

θ implicitly from writing the solution mθ + m̂A
θ

to the integral equation

(mθ + m̂A
θ )=m∗

θ + Ĥθ(mθ + m̂A
θ )�(46)

The existence and uniqueness of m̂j
θ follows from the invertibility of the op-

erator I − Ĥθ (at least with probability tending to 1). It now follows that
m̂θ =mθ + m̂A

θ + m̂B
θ + m̂C

θ + m̂D
θ by linearity of the operator (I − Ĥθ)

−1. Note
that m̂j

θ = (I − Ĥθ)
−1m̂∗�j

θ for j = B�C�D, while mθ + m̂A
θ = (I − Ĥθ)

−1m∗
θ. De-

fine also mB
θ as the solution to the equation

mB
θ = m̂∗�B

θ +Hθm
B
θ �(47)

We now claim that under Assumptions A1–A5,

sup
θ∈Θ�|y|≤c

|m̂B
θ (y)−mB

θ (y)| = op(T−2/5)�(48)

sup
θ∈Θ�|y|≤c

|m̂C
θ (y)− m̂∗�C

θ (y)| = op(T−2/5)�(49)

sup
θ∈Θ�|y|≤c

|m̂D
θ (y)| = op(T−2/5)�(50)
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Here, claims (48) and (50) immediately follow from (14) and (41). For (49)
note that because of (43)–(44), (41), and Assumption A4, supθ∈Θ�|y|≤c |Ĥθ(I −
Ĥθ)

−1m̂∗�C
θ (y)| = op(T−2/5). So we arrive at the expansion of m̂θ:

sup
θ∈Θ�|y|≤c

∣∣m̂θ(y)−mθ(y)− m̂A
θ (y)−mB

θ (y)− m̂∗�C
θ (y)

∣∣ = op(T−2/5)�

This gives an approximation to m̂θ(y)−mθ(y) in terms of the expansion of m̂∗
θ,

the population operator Hθ, and the quantity m̂A
θ (y). This latter quantity de-

pends on the random operator Ĥθ.
Next we approximate the quantity m̂A

θ (y) by simpler terms. By subtracting
mθ = m∗

θ + Hθmθ from (46) we get m̂A
θ = (Ĥθ − Hθ)mθ + Ĥθm̂

A
θ . We next

write Ĥθ as a sum of terms with convenient properties.

ASSUMPTION A6: Suppose that for δT as in Assumption A4, (Ĥθ − Hθ) ×
mθ(y) = m̂∗�E

θ (y) + m̂∗�F
θ (y) + m̂∗�G

θ (y), where m̂∗�E
θ � m̂∗F

θ , and m̂∗�G
θ satisfy

supθ∈Θ�|y|≤c |m̂∗�E(y)| =Op(T−2/5) with m̂∗�E deterministic, supθ∈Θ�|y|≤c |m̂∗�F
θ (y)| =

Op(T
−2/5δ−1

T ), supθ∈Θ�|y|≤c |Hθ(I − Hθ)
−1m̂∗�F

θ (y)| = op(T
−2/5), and

supθ∈Θ�|y|≤c |m̂∗�G
θ (y)| = op(T−2/5).

Again, m̂∗�E
θ is a bias term, m̂∗F

θ is a stochastic term, and m̂∗�G
θ is a remainder

term. For kernel density estimates of Ĥθ under standard smoothness condi-
tions, the expansion in Assumption A6 follows from similar arguments to those
given for Assumption A5. Define for j = E�F�G the terms m̂j

θ as the unique
solutions to the equations m̂j

θ = m̂∗�j
θ +Ĥθm̂

j
θ. It now follows that m̂A

θ can be de-
composed into m̂A

θ = m̂E
θ + m̂F

θ + m̂G
θ . Define mE

θ as the solution to the second
kind linear integral equation

mE
θ = m̂∗�E

θ +Hθm
E
θ �(51)

As above we get that

sup
θ∈Θ�|y|≤c

|m̂E
θ (y)−mE

θ (y)| = op(T−2/5)�

sup
θ∈Θ�|y|≤c

|m̂F
θ (y)− m̂∗�F

θ (y)| = op(T−2/5)� and

sup
θ∈Θ�|y|≤c

|m̂G
θ (y)| = op(T−2/5)�

We summarize our discussion in the following proposition.

PROPOSITION 1: Suppose that Assumptions A1–A6 hold for some estimators
m̂∗
θ and Ĥθ. Define m̂θ as any solution of m̂θ = m̂∗

θ + Ĥθm̂θ. Then the following
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expansion holds for m̂θ:

sup
θ∈Θ�|y|≤c

∣∣m̂θ(y)−mθ(y)−mB
θ (y)−mE

θ (y)− m̂∗�C
θ (y)− m̂∗�F

θ (y)
∣∣(52)

= op(T−2/5)�

The terms mB
θ and mE

θ have been defined in (47) and (51), respectively.

Equation (52) gives a uniform expansion for m̂θ(y)−mθ(y) in terms of a de-
terministic expressionmB

θ (y)+mE
θ (y) and a random variable m̂∗�C

θ (y)+m̂∗�F
θ (y)

that is explicitly defined. We have hitherto just made high level assumptions
on m̂∗

θ and the operator Ĥθ in Assumptions A4–A6, so our result applies to
any smoothing method that satisfies these conditions. It remains to prove that
Assumptions A4–A6 hold under our primitive conditions B1–B7 and that a
central limit theorem (and uniform convergence) applies to m̂∗�C

θ (y)+ m̂∗�F
θ (y).

PROOF OF HIGH LEVEL CONDITIONS A1, A3–A6, AND CLT: We first define
the concept of near epoch dependence (NED) for stationary processes, which
we will use in the sequel.

DEFINITION: The stationary process {xt} is said to be stable (NED) in
L2-norm on the stationary α-mixing process {zt} if there exist measurable func-
tions gm such that, as m→ ∞, υ(m)=E[|xt − gm(zt−1� � � � � zt−m)|2] → 0.

This definition provides a sufficient condition for the more general NED
definition in say Andrews (1995). The process σ2

t (θ) = ∑∞
j=1ψj(θ)m(yt−j) is

stable in L2-norm on the process {m(yt)} (which is α-mixing) and the sta-
ble numbers satisfy υ(m) ≤ exp(−cm) for some constant c > 0. Likewise, the
process η1

θ�t is geometrically stable on {y2
t } and η2

θ�t is geometrically stable
on {mθ(yt)}. We use this property below.

Assumptions A1 and A3 follow immediately from our conditions on the pa-
rameter space and density functions. We assumed Assumptions A2 in B7.

We verify Assumptions A4–A6 with the choice δT = T−3/10+ξ with ξ > 0
small enough. This rate is arbitrarily close to the rate of convergence of two-
dimensional nonparametric density or regression estimators. We will verify
Assumptions A5 and A6 with

m̂∗�B
θ (y)= h2

2
µ2(K)×β1

θ(y)� m̂
∗�C
θ (y)

= 1
Tp0(y)

T−τT∑
t=1

Kh(yt − y)η1
θ�t� m̂

∗�E
θ (y)

= h2

2
µ2(K)×β2

θ(y)�
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m̂∗�F
θ (y)= 1

Tp0(y)

T−τT∑
t=1

Kh(yt − y)η2
θ�t

+ 1
T

T−τT∑
t=1

µθ(y)

p0(y)
[Kh(yt − y)−EKh(yt − y)]�

where η1
θ�t =

∑∞
j=1ψ

†
j (θ)ηj�t and η2

θ�t = −∑±∞
j=±1ψ

2
j (θ)ζj�t(θ), while ηj�t = y2

t+j −
E(y2

t+j|yt) and ζj�t(θ)=mθ(yt+j)−E[mθ(yt+j)|yt].
PROOF OF ASSUMPTION A4: It suffices to show that

sup
x|�|y|≤c�1≤j≤τT

|p̂0�j(x� y)−p0�j(x� y)| = op(δT )�(53)

sup
|x|≤c

|p̂0(x)−p0(x)| = op(δT )�(54)

Note that by assumption B4 the density p0 is bounded from below on |x| ≤ c.
For the proof of (53) we make use of an exponential inequality. Using Theo-
rem 1.3 in Bosq (1998) one gets

Pr
(∣∣T 3/10−ξ[p̂0�j(x� y)−Ep̂0�j(x� y)]

∣∣ ≥ C)
≤ Pr

(∣∣∣∣∣T 3/10
T−j∑
t=1

Kh(yt − x)Kh(yt+j − y)

−EKh(yt − x)Kh(yt+j − y)
∣∣∣∣∣ ≥ T

2
Tξ

)

≤ 4 exp
(

− T 2ξ

32v2(q)
q

)
+ 22(1 + 8T−ξb)1/2qα

([
T

2q

]
− j

)
�

where [x] denotes the largest integer smaller or equal to x� and where
q = Tβ with 7

10 < β < 1, j2 ≤ T 1−β, b = CT 7/10 for a constant C , v2(q) =
8(q2/T 2)σ2(q) + b

4T
ξ, and σ2(q) = E[∑[T/2q]+1

t=1 Kh(yt − x)Kh(yt+j − y) −
EKh(yt − x)Kh(yt+j − y)]2. The variance σ2(q) can be bounded by use of
Corollary 1.1. in Bosq (1998). This gives σ2(q) ≤ C ′T 2−β+(2/5)γ for 0 < γ < 1
with a constant C ′ depending on γ. This gives with constants C1�C2� � � � > 0 for
|x|� |y| ≤ c, 1 ≤ j ≤ τT ,

Pr
(∣∣T 3/10[p̂0�j(x� y)−Ep̂0�j(x� y)]

∣∣ ≥ Tξ)
≤ C1 exp(−C2T

C3)+C4T
C5α(TC6)�

Define z = (x� y) and let Vj(z) = p̂0�j(z) − Ep̂0�j(z). Let B(z1� εT )� � � � �
B(zQ� εT ) be a cover of {|x| ≤ c� |y| ≤ c}, where B(zq� ε) is a ball centered at zq
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of radius ε, while Q(T) is a sufficiently large integer and Q(T) = 2c2/εT . By
the triangle inequality,

Pr
[

sup
|x|≤c�|y|≤c

1≤j≤τ

|Vj(z)| ≥ 2cδT

]

≤ Pr
[

max
1≤j≤τ
1≤q≤Q

|Vj(zq)|> cδT
]

+ Pr
[

max
1≤j≤τ
1≤q≤Q

sup
z∈B(zq�εT )

|Vj(zq)− Vj(z)|> cδT
]

for any constant c. By the Bonferroni and exponential inequalities,

Pr
[

max
1≤j≤τ
1≤q≤Q

|Vj(zq)|> cδT
]

≤
τ∑
j=1

Q∑
q=1

Pr
[|Vj(zq)|> cδT ]

≤ Qτ[C1 exp(−C2T
C3)+C4T

C5α(TC6)]
= o(1)�

provided s0 in B1 is chosen large enough. By the Lipschitz continuity of K,
|Kh(yt − x)−Kh(yt − xq)| ≤K|x− xq|/h, where K is finite, and so T 3/10−ξ ×
|Vj(zq)− Vj(z)| ≤ T 3/10−ξ(1/h2)[c1|x− xq| + c2|y − yq|] ≤ cεTT 7/10−ξ for some
constants c1� c2. This bound is independent of j and uniform over z� so
that provided εTT

7/10−ξ → 0, this term is o(1). This requires that Q(T)/
T 7/10−ξ → ∞.

We have given the detailed proof of (53) because similar arguments are used
in the sequel. Equation (54) follows by the same type of argument. Q.E.D.

PROOF OF ASSUMPTION A5: Claim (42) immediately follows from assump-
tion B4. For the proof of (45) we use the usual variance + bias + remainder
term decomposition of the local linear estimates ĝj as in Masry (1996). Write
M(y)= p0(y)diag(1�µ2(K)) and

MTj(y)= 1
Th

T∑
t=1

K

(
y − yt−j
h

)[ 1 (
y−yt−j
h
)

(
y−yt−j
h
) (

y−yt−j
h
)2

]
�

Then ĝj(y)− gj(y)= B̂jy + V̂jy , where B̂jy = e′
1M

−1
Tj (y)BTj(y), and BTj(y) is a

vector BTj(y)= [BTj�0(y)�BTj�1(y)]�, where

BTj�l(y)= 1
Th

T∑
t=1

(
y − yt−j
h

)l

K

(
y − yt−j
h

)
∆tj(y)�
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where ∆tj(y)= gj(yt−j)− g′
j(y)(yt−j − y)= g′′

j (y
∗
t�j)(yt−j − y)2/2 for some inter-

mediate point y∗
t�j . The variance effect is V̂jy = e′

1M
−1
Tj (y)UTj(y). The stochastic

term UTj(y) is UTj(y)= [UTj�0(y)�UTj�1(y)]�, where

UTj�l(y)= 1
Th

T∑
t=1

(
y − yt−j
h

)l

K

(
y − yt−j
h

)
ηj�t−j�

We have m̂∗
θ(y) − m∗

θ(y) = ∑τ

j=1ψ
†
j (θ)[̂gj(y) − gj(y)] − ∑∞

j=τ+1ψ
†
j (θ)gj(y),

where supθ∈Θ sup|y|≤c |
∑∞

j=τ+1ψ
†
j (θ)gj(y)| ≤ c′ ∑∞

j=τ+1ψ
j−1/ infθ∈Θ

∑∞
j=1ψ

2
j (θ)

for some finite constant c′, and
∑∞

j=τ+1ψ
j−1 ≤ ψτ/(1 − ψ) = o(T−1/2). There-

fore,

m̂∗
θ(y)−m∗

θ(y)=
τ∑
j=1

ψ†
j (θ)V̂jy +

τ∑
j=1

ψ†
j (θ)B̂jy + op(T−1/2)�

We then use the fact that sup|y|≤c�1≤j≤τT ‖MT�j(y)−M(y)‖ = op(1), which fol-
lows by the same reasoning as for (53) and (54). Defining Vjy and Bjy as
V̂jy and B̂jy with MTj(y) replaced by M(y), we have

m̂∗
θ(y)−m∗

θ(y)=
τ∑
j=1

ψ†
j (θ)Vjy +

τ∑
j=1

ψ†
j (θ)Bjy

+RT1(y�θ)+RT2(y�θ)+ op(T−1/2)�

whereRT1(y�θ)= ∑τ

j=1ψ
†
j (θ)[V̂jy −Vjy] andRT2(y�θ)= ∑τ

j=1ψ
†
j (θ)[B̂jy −Bjy].

We have

τ∑
j=1

ψ†
j (θ)Vjy =

τ∑
j=1

ψ†
j (θ)

T∑
t=τT+1

Kh(y − yt−j)ηj�t−j
Tp0(y)

=
τ∑
j=1

ψ†
j (θ)

T−τT∑
s=1

Kh(y − ys)ηj�s
Tp0(y)

=
T−τT∑
s=1

Kh(y − ys)∑τ

j=1ψ
†
j (θ)ηj�s

p0(y)T

=
T−τT∑
t=1

Kh(yt − y)η1
θ�t

Tp0(y)
+

T−τT∑
t=1

Kh(yt − y)
∞∑

j=τ+1

ψ†
j (θ)ηj�t

Tp0(y)

by changing variable t �→ t − j = s and interchanging summation.
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We show that

sup
|y|≤c�θ∈Θ

|RT1(y�θ)| = op(T−2/5)�(55)

sup
|y|≤c�θ∈Θ

|RT2(y�θ)| = op(T−2/5)�(56)

sup
|y|≤c�θ∈Θ

∣∣∣∣∣ 1
Tp0(y)

T−τT∑
t=1

Kh(yt − y)
∞∑

j=τ+1

ψ†
j (θ)ηj�t

∣∣∣∣∣ = op(T−2/5)�(57)

It follows that

m̂∗
θ(y)−m∗

θ(y)

= 1
Tp0(y)

T−τT∑
t=1

Kh(yt − y)η1
θ�t +

τ∑
j=1

ψ†
j (θ)Bjy + op(T−2/5)�

We establish next (57). Define Tn = T−1
∑T−τT

t=1 Kh(yt − y)∑∞
j=τ+1ψ

†
j (θ)ηj�t/

p0(y). First note that E(Tn)= 0 and

var(Tn)= 1
T 2h2p2

0(y)

T−τT∑
t=1

T−τT∑
s=1

∞∑
j=τ+1

∞∑
l=τ+1

ψ†
j (θ)ψ

†
l (θ)E[KtKsηj�tηl�s]

≤ C 1
Th2(1−1/ρ)p2

0(y)

×
∞∑

j=τ+1

∞∑
l=τ+1

ψ†
j (θ)ψ

†
l (θ)

∞∑
s=1

α(j − (s+ l))1−1/2ρ

≤ C ′ 1
Th2(1−1/ρ)

ψ2(τ+1) = o(T−1h−1)

by Davydov’s inequality, the mixing condition B1, and the decay condi-
tions B10. Here, Kt = K((yt − y)/h) and C�C ′ are generic finite constants.
This establishes the pointwise rate of Tn. The uniformity of the bound in (57)
can be achieved by application of the exponential inequality in Theorem 1.3
of Bosq (1998) used also in the proof of (53). The proofs of (55) and (56) are
similar.

For the proof of (43) we apply this exponential inequality to bound

Pr

(∣∣∣∣∣T 2/5
T∑
t=1

Kh(yt − y) η̃θ�t
p0(y)

∣∣∣∣∣ ≥ T

2
T 3/10+ξ

)
�
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where η̃θ�t = ∑τT
j=1ψ

†
j (θ)[min{y2

t+j� T
1/ρ}−E(min{y2

t+j� T
1/ρ}|yt)]. The truncated

random variables η̃θ�t can be replaced by ηθ�t using the fact that 1 − Pr(y2
t ≤

T 1/ρ for 1 ≤ t ≤ T)≤ T Pr(y2
t > T

1/ρ)≤E[y2ρ
t 1(y2

t > T
1/ρ)] → 0.

It remains to check (44). Define the operator Lθ(x� y) by Hθ(I − Hθ)
−1 ×

m(x) = ∫ c

−cLθ(x� y)m(y)p0(y)dy . The Lθ(x� y) can be constructed by use of
the eigenfunctions {eθ�j}∞

j=1 of Hθ. Denote as above the corresponding eigen-
values by λθ�j . Then

Hθ(x� y)=
∞∑
j=1

λθ�jeθ�j(x)eθ�j(y) and

Lθ(x� y)=
∞∑
j=1

λθ�j

1 − λθ�j eθ�j(x)eθ�j(y)�

Note that for a constant 0< γ < 1 we have supθ∈Θ�j≥1 λθ�j < γ. This shows that∫ c

−c
L2
θ(x� y)p0(y)p0(x)dxdy

=
∞∑
j=1

λ2
θ�j

(1 − λθ�j)2
≤ 1
(1 − γ)2

∞∑
j=1

λ2
θ�j <∞�

Furthermore, it can be checked that Lθ(x� y) is continuous in θ�x� y . This fol-
lows from Assumption A3 and the continuity of Hθ(x� y).

Therefore, we write Hθ(I − Hθ)
−1m̂∗�C

θ (x) = 1
T

∑T

t=1 νθ(yt� x)η
1
θ�t with

νθ(z�x)= ∫ c

−cLθ(x� y)(1/p0(y))Kh(z − y)dy . The function νθ(z�x) is contin-
uous in θ�z�x. Using this fact, claim (44) can be easily checked, e.g., again
by application of the exponential inequality in Theorem 1.3 of Bosq (1998).

Q.E.D.

PROOF OF ASSUMPTION A6: Write∫
Ĥθ(y�x)mθ(x)p̂0(x)dx−

∫
Hθ(y�x)mθ(x)p0(x)dx

= −
±τT∑
j=±1

ψ∗
j (θ)

∫ [
p̂0�j(y�x)

p̂0(y)
− p0�j(y�x)

p0(y)

]
mθ(x)dx

= −
±τT∑
j=±1

ψ∗
j (θ)

∫ [
p̂0�j(y�x)−p0�j(y�x)

p0(y)

]
mθ(x)dx

+
±τT∑
j=±1

ψ∗
j (θ)(p̂0(y)−p0(y))

∫ [
p0�j(y�x)

p2
0(y)

]
mθ(x)dx

+ op(T−2/5)�
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Using this expansion one can show that m̂∗�G
θ (y)= (Ĥθ−Hθ)mθ(y)−m̂∗�E

θ (y)−
m̂∗�F
θ (y) is of order op(T−2/5). The other conditions of Assumption A6 can be

checked as in the proof of Assumption A5. Q.E.D.

PROOF OF CLT FOR m̂∗�C
θ (y)+ m̂∗�F

θ (y): This follows by an application of a
central limit theorem for triangular arrays of NED processes along the lines of
Lu (2001). The argument is first to replace, for example, η1

θ�t by the logarithmic
truncation η1�τ

θ�t = ∑τ

j=1ψ
†
j (θ)ηj�t . Then divide the sum

∑T

t=1Kh(yt − y)η1�τ
θ�t into

the usual Bernstein large block/small blocks. Then apply Davydov’s inequal-
ity for random variables with finite p moments. Because of the exponential
decline of the stability numbers υ(m), the CLT follows. This concludes the
proof of (26). Q.E.D.

PROOFS OF (27) AND (28): The only additionality here is to show that
supθ∈Θ�|y|≤c |m̂∗�C

θ (y)+ m̂∗�F
θ (y)| = op(T

−1/4). This follows by applying the expo-
nential inequality again.

Finally,

sup
θ�1≤t

|σ̂2
t (θ)− σ2

t (θ)|

≤ sup
θ

∞∑
j=1

ψj(θ) sup
θ�|y|≤c

|m̂θ(y)−mθ(y)|

+ sup
θ

∞∑
j=τ+1

ψj(θ) sup
|y|≤c

mθ(y)+ τT

T

T∑
t=1

y2
t −E[y2

t ]

≤ 1
1 −ψ

[
sup
θ�|y|≤c

|m̂θ(y)−mθ(y)| +ψτ+1 sup
|y|≤c

mθ(y)
]
+Op(τTT−1/2)

= op(T−1/4)

by the summability conditions on ψj(θ), the boundedness of mθ(y) on [−c� c],
and the uniform convergence result (27). Q.E.D.

PROOF OF THEOREM 2: Consistency. We apply some general results for
semiparametric estimators. Write ST (θ) = T−1

∑T

t=1{y2
t − σ2

t (θ)}2, where
σ2
t (θ) = ∑∞

j=1ψj(θ)mθ(yt−j), and let S(θ) = EST(θ). We show that ST (θ) −
S(θ) = op(1) by applying a law of large numbers for near epoch depen-
dent functions of mixing processes. Let m(y) = supθ∈Θmθ(y) and

◦
m�(y) =

supθ∈Θ |∂mθ(y)/∂θ�|, which are bounded continuous functions on [−c� c].
It follows that supθ∈Θ σ

2
t (θ) ≤ C

∑∞
j=1ψ

j−1m(yt−j) and supθ∈Θ |∂σ2
t (θ)/∂θ�| ≤

C
∑∞

j=1ψ
j−1(m(yt−j)+ ◦

m�(y)), which are both bounded processes. Therefore,
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the law of large numbers can be made uniform over θ ∈ Θ. In conclusion we
have

sup
θ∈Θ

|ST (θ)− S(θ)| = op(1)�(58)

Then, letting ηt(θ)= y2
t − σ2

t (θ)� we have for each θ ∈Θ,

|ŜT (θ)− ST (θ)| ≤ 2
T

T∑
t=1

|ηt(θ)| max
1≤t≤T

|σ̂2
t (θ)− σ2

t (θ)|

+
[

max
1≤t≤T

|σ̂2
t (θ)− σ2

t (θ)|
]2 + 1

T

τT∑
t=1

η2
t (θ)

= op(1)

because of (28). In fact, this order is uniform in θ and we have

sup
θ∈Θ

|ŜT (θ)− ST (θ)| p−→0�(59)

Therefore, by (58) and (59) we have supθ∈Θ |ŜT (θ)−S(θ)| = op(1). By assump-
tion B7, S(θ) is uniquely minimized at θ = θ0, which then implies consistency
of θ̂.

Root-N Consistency. Consider the derivatives

∂ŜT (θ)

∂θ
= − 2

T

T∑
t=1

η̂t(θ)
∂σ̂2

t (θ)

∂θ
and

∂2ŜT (θ)

∂θ∂θ� = 2
T

T∑
t=1

∂σ̂2
t (θ)

∂θ

∂σ̂2
t (θ)

∂θ� − η̂t(θ)∂
2σ̂2

t (θ)

∂θ∂θ� �

where η̂t(θ)= (y2
t − σ̂2

t (θ)). We have shown that θ̂→p θ0, where θ0 is an inte-
rior point of Θ. We make a Taylor expansion about θ0,

op(1)= √
T
∂ŜT (θ̂)

∂θ
= √

T
∂ŜT (θ0)

∂θ
+ ∂2ŜT (θ)

∂θ∂θ�
√
T(θ̂− θ0)�

where θ is an intermediate value. We then show that for all sequences εT → 0,
we have for a constant C > 0,

inf
‖θ−θ0‖≤εT

λmin

(
∂2ŜT (θ)

∂θ∂θ�

)
≥ C + op(1)�(60)

√
T
∂ŜT (θ0)

∂θ
=Op(1)�(61)
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This implies the
√
T consistency.

To establish the results (60) and (61) we use some expansions given in
Lemma 1.

PROOF OF (60): By straightforward but tedious calculation we show that

sup
‖θ−θ0‖≤εT �1≤t≤T

∥∥∥∥∂2ŜT (θ)

∂θ∂θ� − ∂2ST (θ)

∂θ∂θ�

∥∥∥∥ = op(1)�

Specifically, it suffices to show that

sup
‖θ−θ0‖≤εT �1≤t≤T

∥∥∥∥∂jσ̂2
t (θ)

∂θj
− ∂jσ2

t (θ)

∂θj

∥∥∥∥ = op(1)�

j = 0�1�2. For j = 0�1 this follows from (28) and (29). For j = 2 this follows by
similar arguments using Lemma 1. Note also that by B4 for a constant c > 0,
inf‖θ−θ0‖≤εT �1≤t≤T σ2

t (θ) > c. Furthermore,

sup
‖θ−θ0‖≤εT

∥∥∥∥∂2ST (θ)

∂θ∂θ� −E
[
∂σ2

t (θ0)

∂θ

∂σ2
t (θ0)

∂θ�

]∥∥∥∥ = op(1)

by standard arguments. Therefore, by the triangle inequality,

sup
‖θ−θ0‖≤εT

∥∥∥∥∂2ŜT (θ)

∂θ∂θ� −E
[
∂σ2

t (θ0)

∂θ

∂σ2
t (θ0)

∂θ�

]∥∥∥∥ = op(1)�
Q.E.D.

PROOF OF (61): Write

∂ŜT (θ0)

∂θ
= − 2

T

T∑
t=1

[
y2
t − σ2

t (θ0)− [σ̂2
t (θ0)− σ2

t (θ0)]
]

×
[
∂σ2

t (θ0)

∂θ
+ ∂σ̂2

t (θ0)

∂θ
− ∂σ2

t (θ0)

∂θ

]
and let with ηt = ηt(θ0),

√
TET(θ0)=ET1 +ET2,

ET1 = − 1√
T

T∑
t=1

ηt
∂σ2

t (θ0)

∂θ
�

ET2 = 1√
T

T∑
t=1

[σ̂2
t (θ0)− σ2

t (θ0)]∂σ
2
t (θ0)

∂θ

− 1√
T

T∑
t=1

ηt

[
∂σ̂2

t (θ0)

∂θ
− ∂σ2

t (θ0)

∂θ

]
�
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Then ∣∣∣∣√T ∂ŜT (θ0)

∂θ
− √

TET(θ0)

∣∣∣∣
≤

∣∣∣∣∣ 1√
T

T∑
t=1

[σ̂2
t (θ)− σ2

t (θ0)]
[
∂σ̂2

t (θ0)

∂θ
− ∂σ2

t (θ0)

∂θ

]∣∣∣∣∣
≤ √

T max
1≤t≤T

|σ̂2
t (θ0)− σ2

t (θ0)| × max
1≤t≤T

∥∥∥∥∂σ̂2
t (θ0)

∂θ
− ∂σ2

t (θ0)

∂θ

∥∥∥∥ = op(1)

by (28) and (29).
The term ET1 is asymptotically normal with mean zero and finite variance

by the central limit theorem for (geometric) NED processes over an α-mixing
base. Note that E[ηt(∂σ2

t (θ0)/∂θ)] = 0 by definition of θ0.
For the treatment of ET2 we now use that

ET2 = h2

√
T

T∑
t=1

{
τT∑
j=1

ψj(θ0)b
0(yt−j)

∂σ2
t

∂θ
(θ0)+ηt

τT∑
j=1

ψ′
j(θ0)b

0(yt−j)

}
(62)

+ h2

√
T

T∑
t=1

{
ηt

τT∑
j=1

ψj(θ0)b
1(yt−j)

}

+ 1√
T

T∑
t=1

{
τT∑
j=1

ψj(θ0)s
0(yt−j)

∂σ2
t

∂θ
(θ0)

}

+ 1√
T

T∑
t=1

{
ηt

τT∑
j=1

ψ′
j(θ0)s

0(yt−j)

}

+ 1√
T

T∑
t=1

{
ηt

τT∑
j=1

ψj(θ0)s
1(yt−j)

}
+ oP(1)�

where bθ(y) = h−2[mB
θ (y) + mE

θ (y)], sθ(y) = (I − Hθ)
−1(m∗�C

θ + m∗�F
θ )(y),

bj(y) = ∂j/(∂θ)jbθ0(y), and sj(y) = ∂j/(∂θ)jsθ0(y). By tedious calculations it
can be shown that the last three terms on the right-hand side of (62) are of
order oP(1). For this purpose one has to plug in the definitions of s0 and s1

as local weighted sums of mixing mean zero variables. For the first two terms
on the right-hand side of (62) note that b0 and b1 are deterministic functions.
Furthermore, we will show that

E

[ ∞∑
j=1

ψj(θ0)b
0(yt−j)

∂σ2
t

∂θ
(θ0)+ηtψ′

j(θ0)b
0(yt−j)

]
= 0�(63)
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E

[
ηt

∞∑
j=1

ψj(θ0)b
1(yt−j)

]
= 0�(64)

Note that in (63) and (64) we have replaced the upper index of the sum by ∞.
Thus, with (63) and (64) we see that the first two terms on the right-hand
side of (62) are sums of variables with mean geometrically tending to zero.
The sums are multiplied by factors h2T−1/2. By using mixing properties it can
be shown that these sums are of order OP(h2) = op(1). It remains to check
(63) and (64). By definition for each function g, E[{y2

t − ∑∞
j=1ψj(θ)δg(yt−j)}2]

is minimized for δ= 0. By taking derivatives with respect to δ we get that

E

{
[y2
t − σ2

t (θ)]
∞∑
j=1

ψj(θ)g(yt−j)

}
= 0�(65)

With g = b0 and θ0 this gives (64). For the proof of (63) we now take the dif-
ference of (65) for θ and θ0. This gives

E[y2
t − σ2

t (θ0)]
∞∑
j=1

[ψj(θ)−ψj(θ0)]g(yt−j)

−E[σ2
t (θ)− σ2

t (θ0)]
∞∑
j=1

ψj(θ)g(yt−j)= 0�

Taking derivatives with respect to θ gives E[ut ∑∞
j=1ψ

′
j(θ0)g(yt−j) − ∂σ2

t /

∂θ(θ0)
∑∞

j=1ψj(θ0)g(yt−j)] = 0. With g= b0 this gives (63). Q.E.D.

PROOFS OF THEOREMS 3 AND 4: We only give a proof of Theorem 3. The-
orem 4 follows along the same lines. For a proof of (31) one shows that for
C > 0, sup‖θ−θ0‖≤CT−1/2 |m̂θ(y)− m̂θ0(y)| = oP[(Th)−1/2]. This claim follows by
using appropriate bounds on Ĥθ − Ĥθ0 and m̂∗

θ − m̂∗
θ0

.
Because of (31), for a proof of (32) it suffices to show

√
Th[m̂θ0(y)−mθ0(y)− h2b(y)] �⇒N(0�ω(y))�(66)

So it remains to show (66). Put p̂1
0(y) = T−1

∑T

t=1(yt − y)Kh(yt − y) and
p̂2

0(y) = T−1
∑T

t=1(yt − y)2Kh(yt − y). Then, by using similar arguments as in
the proof of Theorem 1, we have for γ > 0, sup|y|≤c |p̂1

0(y)− h2µ2(K)p
′
0(y)| =
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Op(h
1/2T−1/2+γ + h3) and sup|y|≤c |p̂2

0(y) − h2µ2(K)p0(y)| = Op(h
3/2
T−1/2+γ +

h3). Furthermore, sup|y|≤c |p̂0(y)−p0(y)| =Op(h2 + h−1/2T−1/2+γ).
These results can be applied to show that uniformly in |y| ≤ c and j ≤ τT ,

ĝj(y)= 1
T

T∑
t=1

Kh(yt−j − y)σ2
t ut

p0(y)(y)

+ 1
T

T∑
t=1

Kh(yt−j − y)
p0(y)

∞∑
�=1

ψ�(θ0)m(yt−�)

+ p̂1
0(y)

2

p̂0(y)2p̂2
0(y)

1
T

T∑
t=1

Kh(yt−j − y)
∞∑
�=1

ψ�(θ0)m(yt−�)

− p̂1
0(y)

2

p̂0(y)p̂
2
0(y)

1
T

T∑
t=1

(yt−j − y)Kh(yt−j − y)
∞∑
�=1

ψ�(θ0)m(yt−�)

+ op(T−1/2)

= 1
T

T∑
t=1

Kh(yt−j − y)
p0(y)

σ2
t ut

+ 1
T

T∑
t=1

Kh(yt−j − y)
p̂0(y)

∞∑
�=1

ψ�(θ0)m(yt−�)

+ h2

{
µ2(K)

p′
0(y)

2

p0(y)3

∞∑
�=1���=j

ψ�(θ0)

∫
m(u)pj��(y�u)du

−µ2(K)
p′

0(y)

p0(y)2

∞∑
�=1���=j

ψ�(θ0)

∫
m(u)

∂

∂y
pj��(y�u)du

−µ2(K)ψj(θ)
p′

0(y)m
′(y)

p0(y)

}
+ op(T−1/2)�

By plugging this into

m̂∗
θ0
(y)− (I − Ĥθ0)m0(y)

=
τT∑
j=1

ψ†
j (θ0)ĝj(y)−m0(y)−

∑
0<|j|<τT

ψ∗
j (θ0)

∫
p̂0�j(y�x)

p̂0(y)
m0(x)dx�
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we get m̂∗
θ0
(y)− (I− Ĥθ0)m0(y)= S1 +S2 +S3 +S4 −m0(y)+op(T−1/2), where

S1 = 1
T

T∑
t=1

∞∑
j=1

ψ†
j (θ0)Kh(yt−j − y)σ2

t ut

p0(y)
�

S2 = 1
T

T∑
t=1

∞∑
j=1

∞∑
�=1

ψ†
j (θ0)ψ�(θ0)

Kh(yt−j − y)m0(yt−�)
p̂0(y)

�

S3 = h2µ2(K)
p1

0(y)

p0(y)

[
∂

∂y
(Hθ0m0(y)−m0(y))

]
�

S4 = −
∑
j �=0

ψ∗
j (θ0)

∫
p̂0�j(y�x)

p̂0(y)
m(x)dx�

We have

S2 + S4 −m0(y)

= 1
T

T∑
t=1

j=1∑
τT

ψj(θ0)ψ
†
j (θ0)

Kh(yt−j − y)
p̂0(y)

[m0(yt−j)−m0(y)]

+ 1
T

T∑
t=1

τT∑
j �=0

ψ∗
j (θ0)

Kh(yt−j − y)
p̂0(y)

m0(yt−j)

−
τT∑
j �=0

∫
ψ∗
j (θ0)

p̂0�j(y�x)

p̂0(y)
m0(x)dx

= h2µ2(K)

[
p′

0(y)m
′
0(y)

p0(y)
+ m′′

0(y)

2

]

+
∑
j �=0

ψ∗
j (θ0)

1
T

T∑
t=1

Kh(yt − y)
p̂0(y)

×
{
m0(yt+j)−

∫
Kh(yt+j − x)m0(x)dx

}
+ op(T−1/2)

= h2µ2(K)

[
p′

0(y)m
′
0(y)

p0(y)
+ 1

2
m′′

0(y)

+ 1
2

∑
j �=0

ψ∗
j (θ0)

p0(y)

∫
m′′

0(u)p0�j(y�u)du

]
+ op(T−1/2)
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= h2µ2(K)

[
p′

0(y)

p0(y)
m′

0(y)+ 1
2
m′′

0(y)− 1
2
Hθ0m

′′
0(y)

]
+ op(T−1/2)�

Therefore we get uniformly in |y| ≤ c,
m̂θ0(y)−mθ0(y)

= (I − Ĥθ0)
−1[m̂∗

θ0
(y)− (I − Ĥθ0)mθ0(y)]

= (I −Hθ0)
−1[m̂∗

θ0
(y)− (I − Ĥθ0)mθ0(y)] + op(T−1/2)

= 1
T

T∑
t=1

(I −Hθ0)
−1

[
τT∑
j=1

ψ†
j (θ0)

Kh(yt−j − y)
p0(y)

]
σ2
t ut

+ h2µ2(K)(I −Hθ0)
−1

×
{
p′

0(y)

p0(y)

[
∂

∂y
Hθ0m0(y)−m′

0(y)+Hθ0m
′
0(y)

]
+ m′′

0(y)

2
− Hθ0m

′′
0(y)

2

}
+ op(T−1/2)

= 1
T

T∑
t=1

K∗
t σ

2
t ut

+ h2µ2(K)

{
m′′

0(y)

2
+ (I −Hθ0)

−1

[
p′

0(y)

p0(y)
(Hθ0m0)

]
(y)

}
+ op(T−1/2)

with K∗
t = ∑τT

j=1ψ
†
j (θ0)Kh(yt−j − y)/p0(y). From this stochastic expansion we

immediately get an expansion for the asymptotic bias. For the calculation of
the asymptotic variance note that

hEK∗2
t = h

1
p2

0(y)

{∑
j �=�
ψ†
j (θ0)ψ

†
�(θ0)E

{
Kh(yt−j − y)Kh(yt−� − y)

×E[σ4
t u

2
t |yt−j� yt−�]

}}

+
∞∑
j=1

ψ†
j (θ0)

2E
{
K2
h(yt−j − y)E[σ4

t u
2
t |yt−j = y]

}
= 1
p0(y)

ν0(K)

∞∑
j=1

ψ†
j (θ0)

2E(σ4
t u

2
t |yt−j = y)+ o(1)
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= 1
p0(y)

[ ∞∑
l=1

ψl(θ0)
2

]−1

ν0(K)

∞∑
j=1

ψj(θ0)
2E[σ4

t u
2
t |yt−j = y]

+ o(1)� Q.E.D.

PROOFS OF THEOREMS 5 AND 6: The proof makes use of similar arguments
as in Theorems 1–4. For this reason we only give a short outline. We first dis-
cuss m̃θ0 . Below we will show that θ̃−θ0 =OP(T−1/2). This can be used to show
that sup|y|≤c |m̃θ0(y)− m̃θ̃(y)| = oP(T−2/5). Thus, up to first order the asymptot-
ics of both estimates coincide. We compare m̃θ0 with the following theoretical
estimate m̃θ. This estimate is defined by the integral equation m̃θ = m̃∗

θ+H̃θm̃θ,
where

m̃∗
θ(y)=

∑τT
j=1ψj(θ)g̃

a
j (y)∑τT

j=1ψ
2
j (θ)g̃

b
j (y)

�

H̃θ(x� y)= −∑τT
j=1

∑τT
l=1�l �=j ψj(θ)ψl(θ)g̃

c
l�j(x� y)

p̂0�l−j (x�y)
p̂0(y)p̂0(y)∑τT

j=1ψ
2
j (θ)g̃

b
j (y)

�

Here g̃aj is the local linear smooth of σ−4
t y

2
t on yt−j , g̃bj is the local linear fit

of σ−4
t on yt−j , and g̃cl�j is the bivariate local linear fit of σ−4

t on (yt−l� yt−j). Note
that g̃aj � g̃

b
j � g̃

c
l�j are defined as ĝaj � ĝ

b
j � ĝ

c
l�j , but with σ̂2

t replaced by σ2
t . Further-

more, m̃θ is defined as m̃θ but with ĝaj � ĝ
b
j � ĝ

c
l�j replaced by g̃aj � g̃

b
j � g̃

c
l�j .

By tedious calculations one can verify for a constant C > 0 that there ex-
ists a bounded function b such that uniformly for |y| ≤ c, ‖θ − θ0‖ ≤ CT−1/2,
m̃θ(y)− m̃θ(y)− h2b(y)= oP(T

−1/2). The bias term b is caused by bias terms
of σ̂2

t − σ2
t . So up to bias terms the asymptotics of m̃θ(y) and m̃θ(y) coincide.

The estimate m̃θ0(y) can be treated as m̂θ0(y) in the proof of Theo-
rem 3. As the stochastic term of m̃θ0(y) we get T−1

∑T

t=1Kt(y)σ
−4
t (y

2
t −

σ2
t ) = T−1

∑T

t=1Kt(y)σ
−2
t ut , where Kt(y) = ∑τT

j=1ψj(θ0)Kh(yt−j − y)/p0(y) ×∑τT
j=1ψ

2
j (θ0)E[σ−4

t |yt−j = y]. Asymptotic normality of this term can be shown by
use of central limit theorems as in the proof of Theorem 1. For the calculation
of the asymptotic variance it can be easily checked that

hE[Kt(y)
2σ−4

t u
2
t ] = 1

p0(y)

ν0(K)
∑∞

j=1ψ
2
j (θ0)E(σ

−4
j u

2
j |y0 = y)

[∑∞
j=1ψ

2
j (θ0)E(σ

−4
j |y0 = y)]2

+ o(1)�
from which the result follows. In the special case of homokurtosis, the numer-
ator simplifies as stated.
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Use of the above arguments gives the statement of Theorem 5. For the proof
of Theorem 6 one shows

∂̃l

∂θ
(θ0)= − 1

T

T∑
t=1

σ−2
t ut

∂σ2
t

∂θ
(θ0)+ oP(T−1/2)�(67)

∂2̃l

∂θ2
(θ)= −E

[
σ−4
t

∂σ2
t

∂θ

∂σ2
t

∂θ� (θ0)

]
+ oP(1)(68)

uniformly for |θ − θ0| < CT−1/2 for all C > 0. This shows that for cT → ∞
slowly enough, there exists a unique local minimizer θ̃ of l̃(θ) in a cTT−1/2

neighborhood of θ0 with

θ̃= θ0 −
{
E

[
σ−4
t

∂σ2
t

∂θ

∂σ2
t

∂θ� (θ0)

]}−1

T−1
T∑
t=1

σ−2
t ut

∂σ2
t

∂θ
(θ0)+ oP(T−1/2)�

This expansion can be used to show the desired asymptotic normal limit for θ̃.
It remains to show (67) and (68). This can be done by using similar arguments
as for the proof of (60) and (61). Q.E.D.

PROOF OF THEOREM 7: For 0< c ≤ ∞ we define the operator Hθ�cm(y)=∫ c

−cHθ(y�x)m(x)p0(x)dx. We write ‖m‖∞�2 for the L2(p0)-norm ‖m‖2
∞�2 =∫ ∞

−∞m(x)
2p0(x)dx. For a linear operator A :L2(p0) → L2(p0) we write

‖A‖∞�2 = sup‖m‖∞�2≤1 ‖Am‖∞�2. We have added the subindex ∞ to indicate
that integration now runs from −∞ to ∞. For Hilbert–Schmidt operators
A :L2(p0) → L2(p0) we denote the maximal eigenvalue by λmax(A). Using
the same arguments as in Section 2.1 we get from C2 that for 0 < c ≤ ∞,
θ ∈Θ, λmax(Hθ�c) < 1. With the help of C1 and C3 we conclude that there exist
constants c∗ > 0 and 0 < γ∗ < 1 with λmax(Hθ�c) < γ∗ for c∗ ≤ c ≤ ∞, θ ∈ Θ.
This implies that ‖(I − Hθ�c)

−1‖∞�2 ≤ (1 − γ∗)−1. By definition we have, with
δθ(y)= µc(y;ξθ�c)−mθ�∞(y),

mθ�c(y)−mθ�∞(y)=Hθ�c(mθ�c −mθ�∞)(y)+ (Hθ�∞ −Hθ�c)δθ(y)�(69)

This implies ‖mθ�c −mθ�∞‖∞�2 ≤ ‖(I − Hθ�c)
−1‖∞�2‖Hθ�∞ − Hθ�c‖∞�2∆(c). This

shows claim (37). For the proof of claim (38) note that we get from (69) that
mθ�c −mθ�∞ = [I +Hθ�c +H2

θ�c(I −Hθ�c)
−1][Hθ�∞ −Hθ�c]δθ. Q.E.D.

PROOFS OF THEOREMS 8 AND 9: We first define explicitly the estima-
tors m̂θ�c� ξ̂θ�c . To do this we obtain a population characterization of mθ�c� ξθ�c .
Write νc for the function vector that vanishes on [−c� c] and is equal to ν
outside of [−c� c]. The functions are then elements of a linear subspace L2

of L2(p0). This subspace consists of all functions m of L2(p0) that fulfill
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m(y) = ξ�ν(y) for |y| ≥ c for some parameter ξ. We also write m= (mc�ξ)
for elements of L2. As above we now consider the target function (mθ�c� ξθ�c)
that minimizes E[{y2

t − ∑∞
j=1ψj(θ)[mc(yt−j) + ξ�νc(yt−j)]}2] over all ele-

ments (mc�ξ) of L2. This tuple is uniquely determined by the linear op-
erator equation (mθ�c� ξθ�c) = (m∗

θ�c� ξ
∗
θ�c) + H∗

θ�c(mθ�c� ξθ�c). Here for |y| ≤ c
the function m∗

θ�c(y) is defined as m∗
θ(y). The parameter ξ∗

θ�c is given by
ξ∗
θ�c = E[y2

t

∑∞
k=1ψ

†
k(θ)ν(yt−k)]. The operator H∗

θ�c is defined by H∗
θ�c(mc�ξ)=

(mH
c �ξ

H) with

mH
c (y)=

∫
|x|≤c

Hθ(y�x)mc(x)p0(x)

+
∫

|x|>c
Hθ(y�x)ξ

�ν(x)p0(x)dx for |y| ≤ c�

ξH =
[∫

|x|≥c
ν(x)ν(x)�p0(x)dx

]−1

×
[∫

|x|≥c�|y|≥c
ν(x)ν(y)�ξHθ(y�x)p0(x)p0(y)dxdy

+
∫

|x|≥c�|y|≤c
ν(x)Hθ(x� y)mc(x)p0(x)p0(y)dxdy

]
�

Estimates of (mθ�c� ξθ�c) are given by the solution (m̂θ�c� ξ̂θ�c) of the linear equa-
tion

(m̂θ�c� ξ̂θ�c)= (m̂∗
θ�c� ξ̂

∗
θ�c)+ Ĥ∗

θ�c(m̂θ�c� ξ̂θ�c)�(70)

Here m̂∗
θ�c is defined as in Section 2.1. The parameter ξ∗ can be estimated by

ξ̂∗ = ∑τT
k=1ψ

†
k(θ)(T − k)−1

∑T

t=k+1 y
2
t ν(yt−k). The operator Ĥ∗

θ�c is defined by
Ĥ∗
θ�c(mc�ξ)= (mĤ

c � ξ
Ĥ) with

mĤ
c (y)=

∫
|x|≤c

Ĥθ(y�x)mc(x)p0(x)+ ξ�ν̂H(y) for |y| ≤ c�

ξĤ = Â−1
ν

[
B̂νξ+

∫
|y|≤c

ν̂H(y)mc(y)p0(y)dy

]
�

Here Âν = T−1
∑T

t=1 ν
c(yt)ν

c(yt)
� and B̂ν = ∑

1<|l|≤τT ψ
∗
l (θ)(T − l)−1 ×∑T

t=l+1 ν(yt)ν(yt−l)
�. The function ν̂H(y) is defined as ν̂H(y)= ∑

1<|l|≤τT ψ
∗
l (θ)×

r̂l(y), where r̂l(y) is a local linear fit of the conditional expectation E[ν(yt+l)|
yt = y]. Equation (70) can be solved by first eliminating the unknown ξ̂θ�c . Then
one has a linear integral equation with unknown m̂θ�c . The integral equation
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can be solved by the numerical methods discussed above. The random opera-
tor Ĥ∗

θ�c can be discussed as the operator Ĥθ in the proof of Theorem 1. This
leads to quite analogous results for the estimates ξ̂θ�c and m̂θ�c . The proofs of
Theorems 8 and 9 follow now directly along the lines of Theorem 1. Q.E.D.

APPENDIX C: ADDITIONAL LEMMA

LEMMA 1: We have for j = 0�1�2,

sup
|y|≤c�θ∈Θ

∣∣∣∣ ∂j∂θj [m̂θ(y)−mB
θ (y)−mE

θ (y)− (I −Hθ)
−1(m̂∗�C

θ + m̂∗�F
θ )(y)

]∣∣∣∣
= op(T−1/2)�

PROOF OF LEMMA 1: For j = 0 the claim follows along the lines of the proof
of Theorem 1. Note that in the expansions of the theorem, (m̂∗�C

θ + m̂∗�F
θ )(y) is

now replaced by (I − Hθ)
−1(m̂∗�C

θ + m̂∗�F
θ )(y). The difference of these terms

is of order OP(T−1/2). For the proof for j = 1 we make use of the inte-
gral equation for m̂1

θ = ∂
∂θ
m̂θ, m̂1

θ = ∂
∂θ
m̂∗
θ + [ ∂

∂θ
Ĥθ]m̂θ + Ĥθm̂

1
θ. Thus with

m̂∗�1
θ = ∂

∂θ
m̂∗
θ + [ ∂

∂θ
Ĥθ]m̂θ, the derivative m̂1

θ fulfills m̂1
θ = m̂∗�1

θ + Ĥθm̂
1
θ. This is

an integral equation with the same integral kernel Ĥθ but with another inter-
cept. An expansion for the solution can be achieved by the same approach as
for m̂. Similarly, one proceeds for j = 2. These arguments use condition B10.

Q.E.D.
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