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BOOTSTRAP METHODS FOR MARKOV PROCESSES

By Joel L. Horowitz1

The block bootstrap is the best known bootstrap method for time-series data when the
analyst does not have a parametric model that reduces the data generation process to sim-
ple random sampling. However, the errors made by the block bootstrap converge to zero
only slightly faster than those made by first-order asymptotic approximations. This paper
describes a bootstrap procedure for data that are generated by a Markov process or a
process that can be approximated by a Markov process with sufficient accuracy. The pro-
cedure is based on estimating the Markov transition density nonparametrically. Bootstrap
samples are obtained by sampling the process implied by the estimated transition density.
Conditions are given under which the errors made by the Markov bootstrap converge to
zero more rapidly than those made by the block bootstrap.
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1� introduction

This paper describes a bootstrap procedure for data that are generated by
a (possibly higher-order) Markov process. The procedure is also applicable to
non-Markov processes, such as finite-order MA processes, that can be approxi-
mated with sufficient accuracy by Markov processes. Under suitable conditions,
the procedure is more accurate than the block bootstrap, which is the leading
nonparametric method for implementing the bootstrap with time-series data.
The bootstrap is a method for estimating the distribution of an estimator or

test statistic by resampling one’s data or a model estimated from the data. Under
conditions that hold in a wide variety of econometric applications, the boot-
strap provides approximations to distributions of statistics, coverage probabilities
of confidence intervals, and rejection probabilities of tests that are more accu-
rate than the approximations of first-order asymptotic distribution theory. Monte
Carlo experiments have shown that the bootstrap can spectacularly reduce the
difference between the true and nominal probabilities that a test rejects a correct
null hypothesis (hereinafter the error in the rejection probability or ERP). See
Horowitz (1994, 1997, 2001) for examples. Similarly, the bootstrap can greatly
reduce the difference between the true and nominal coverage probabilities of a
confidence interval (the error in the coverage probability or ECP).
The methods that are available for implementing the bootstrap and the

improvements in accuracy that it achieves relative to first-order asymptotic
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1049



1050 joel l. horowitz

approximations depend on whether the data are a random sample from a distri-
bution or a time series. If the data are a random sample, then the bootstrap can
be implemented by sampling the data randomly with replacement or by sampling
a parametric model of the distribution of the data. The distribution of a statistic
is estimated by its empirical distribution under sampling from the data or para-
metric model (bootstrap sampling). To summarize important properties of the
bootstrap when the data are a random sample, let n be the sample size and Tn

be a statistic that is asymptotically distributed as N�0�1� (e.g., a t statistic for
testing a hypothesis about a slope parameter in a linear regression model). Then
the following results hold under regularity conditions that are satisfied by a wide
variety of econometric models. See Hall (1992) for details.
1. The error in the bootstrap estimate of the one-sided probability P�Tn ≤ z�

is Op�n
−1�, whereas the error made by first order asymptotic approximations is

O�n−1/2�.
2. The error in the bootstrap estimate of the symmetrical probability

P��Tn� ≤ z� is Op�n
−3/2�, whereas the error made by first-order approximations

is O�n−1�.
3. When the critical value of a one-sided hypothesis test is obtained by using

the bootstrap, the ERP of the test is O�n−1�, whereas it is O�n−1/2� when the
critical value is obtained from first-order approximations. The same result applies
to the ECP of a one-sided confidence interval. In some cases, the bootstrap can
reduce the ERP of a one-sided test to O�n−3/2� (Hall (1992, p. 178); Davidson
and MacKinnon (1999)).
4. When the critical value of a symmetrical hypothesis test is obtained by using

the bootstrap, the ERP of the test is O�n−2�, whereas it is O�n−1� when the
critical value is obtained from first-order approximations. The same result applies
to the ECP of a symmetrical confidence interval.
The practical consequence of these results is that the ERP’s of tests and ECP’s

of confidence intervals based on the bootstrap are often substantially smaller than
ERP’s and ECP’s based on first-order asymptotic approximations. These benefits
are available with samples of the sizes encountered in applications (Horowitz
(1994, 1997, 2001)).
The situation is more complicated when the data are a time series. To obtain

asymptotic refinements, bootstrap sampling must be carried out in a way that
suitably captures the dependence structure of the data generation process (DGP).
If a parametric model is available that reduces the DGP to independent random
sampling (e.g., an ARMA model), then the results summarized above continue to
hold under appropriate regularity conditions. See, for example, Andrews (1999)
and Bose (1988, 1990). If a parametric model is not available, then the best
known method for generating bootstrap samples consists of dividing the data into
blocks and sampling the blocks randomly with replacement. This is called the
block bootstrap. The blocks, whose lengths increase with increasing size of the
estimation data set, may be nonoverlapping (Carlstein (1986), Hall (1985)) or
overlapping (Hall (1985), Künsch (1989)). Regardless of the method that is used,
blocking distorts the dependence structure of the data and, thereby, increases
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the error made by the bootstrap. The main results are that under regularity
conditions and when the block length is chosen optimally:
1. The errors in the bootstrap estimates of one-sided and symmetrical proba-

bilities are almost surely Op�n
−3/4� and Op�n

−6/5�, respectively (Hall, Horowitz,
and Jing (1995)).
2. The ECP’s (ERP’s) of one-sided and symmetrical confidence intervals

(tests) are O�n−3/4� and O�n−5/4�, respectively (Zvingelis (2001)).
Thus, the errors made by the block bootstrap converge to zero at rates that

are slower than those of the bootstrap based on data that are a random sample.
Monte Carlo results have confirmed this disappointing performance of the block
bootstrap (Hall and Horowitz (1996)).
The relatively poor performance of the block bootstrap has led to a search for

other ways to implement the bootstrap with dependent data. Bühlmann (1997,
1998), Choi and Hall (2000), Kreiss (1992), and Paparoditis (1996) have proposed
a sieve bootstrap for linear processes (that is, AR, vector AR, or invertible MA
processes of possibly infinite order). In the sieve bootstrap, the DGP is approx-
imated by an AR(p) model in which p increases with increasing sample size.
Bootstrap samples are generated by the estimated AR(p) model. Choi and Hall
(2000) have shown that the ECP of a one-sided confidence interval based on the
sieve bootstrap is O�n−1+�� for any � > 0, which is only slightly larger than the
ECP of O�n−1� that is available when the data are a random sample. This result
is encouraging, but its practical utility is limited. If a process has a finite-order
ARMA representation, then the ARMA model can be used to reduce the DGP
to random sampling from some distribution. Standard methods can be used to
implement the bootstrap, and the sieve bootstrap is not needed. Sieve methods
have not been developed for nonlinear processes such as nonlinear autoregres-
sive, ARCH, and GARCH processes.
The bootstrap procedure described in this paper applies to a linear or non-

linear DGP that is a (possibly higher-order) Markov process or can be approxi-
mated by one with sufficient accuracy. The procedure is based on estimating the
Markov transition density nonparametrically. Bootstrap samples are obtained by
sampling the process implied by the estimated transition density. This procedure
will be called the Markov conditional bootstrap (MCB). Conditions are given
under which:
1. The errors in the MCB estimates of one-sided and symmetrical probabilities

are almost surely O�n−1+�� and O�n−3/2+��, respectively, for any � > 0.
2. The ERP’s (ECP’s) of one sided and symmetrical tests (confidence inter-

vals) based on the MCB are O�n−1+�� and O�n−3/2+��, respectively, for any �> 0.
Thus, under the conditions that are given here, the errors made by the MCB

converge to zero more rapidly than those made by the block bootstrap. Moreover
for one-sided probabilities, symmetrical probabilities, and one-sided confidence
intervals and tests, the errors made by the MCB converge only slightly less rapidly
than those made by the bootstrap for data that are sampled randomly from a
distribution.
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The conditions required to obtain these results are stronger than those
required to obtain asymptotic refinements with the block bootstrap. If the
required conditions are not satisfied, then the errors made by the MCB may con-
verge more slowly than those made by the block bootstrap. Moreover, as will be
explained in Section 3.2, the MCB suffers from a form of the curse of dimension-
ality of nonparametric estimation. A large data set (e.g., high-frequency financial
data) is likely to be needed to obtain good performance if the DGP is a high-
dimension vector process or a high-order Markov process. Thus, the MCB is not
a replacement for the block bootstrap. The MCB is, however, an attractive alter-
native to the block bootstrap when the conditions needed for good performance
of the MCB are satisfied.
There have been several previous investigations of the MCB. Rajarshi (1990)

gave conditions under which the MCB consistently estimates the asymptotic dis-
tribution of a statistic. Datta and McCormick (1995) gave conditions under which
the error in the MCB estimator of the distribution function of a normalized sam-
ple average is almost surely o�n−1/2�. Hansen (1999) proposed using an empirical
likelihood estimator of the Markov transition probability but did not prove that
the resulting version of the MCB is consistent or provides asymptotic refinements.
Chan and Tong (1998) proposed using the MCB in a test for multimodality in
the distribution of dependent data. Paparoditis and Politis (2001, 2002) proposed
estimating the Markov transition probability by resampling the data in a suit-
able way. No previous authors have evaluated the ERP or ECP of the MCB or
compared its accuracy to that of the block bootstrap. Thus, the results presented
here go well beyond those of previous investigators.
The MCB is described informally in Section 2 of this paper. Section 3 presents

regularity conditions and formal results for data that are generated by a Markov
process. Section 4 extends the MCB to generalized method of moments (GMM)
estimators and approximate Markov processes. Section 5 presents the results of a
Monte Carlo investigation of the numerical performance of the MCB. Section 6
presents concluding comments. The proofs of theorems are in the Appendix.

2� informal description of the method

This section describes the MCB procedure for data that are generated by a
Markov process and provides an informal summary of the main results of the
paper. For any integer j , let Xj ∈�d �d≥ 1� be a continuously distributed random
variable. Let �Xj � j = 1�2� � � � � n	 be a realization of a strictly stationary, qth
order Markov process. Thus,

P�Xj ≤ xj �Xj−1 = xj−1�Xj−2 = xj−2� � � � �

= P�Xj ≤ xj �Xj−1 = xj−1� � � � �Xj−q = xj−q�

almost surely for d-vectors xj� xj−1� xj−2� � � � and some finite integer q ≥ 1. It
is assumed that q is known. Cheng and Tong (1992) show how to estimate q.
In addition, for technical reasons that are discussed further in Section 3.1, it is
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assumed that Xj has bounded support and that cov(Xj�Xj+k� = 0 if k > M for
some M <�. Define 
= E�X1� and m= n−1∑n

j=1Xj .

2�1� Statement of the Problem

The problem addressed in the remainder of this section and in Section 3 is to
carry out inference based on a Studentized statistic, Tn, whose form is

Tn = n1/2�H�m�−H�
��/sn�(2.1)

where H is a sufficiently smooth, scalar-valued function, s2n is a consistent esti-
mator of the variance of the asymptotic distribution of n1/2�H�m�−H�
��, and
Tn → dN�0�1� as n→�. The objects of interest are (i) the probabilities P�Tn ≤ t�
and P��Tn� ≤ t� for any finite, scalar t, (ii) the probability that a test based on Tn

rejects the correct hypothesis H0 � H�E�X��=H�
�, and (iii) the coverage prob-
abilities of confidence intervals for H�
� that are based on Tn. To avoid repet-
itive arguments, only probabilities and symmetrical hypothesis tests are treated
explicitly. An 
-level symmetrical test based on Tn rejects H0 if �Tn�> zn
, where
zn
 is the 
-level critical value. Arguments similar to those made in this section
and Section 4 can be used to obtain the results stated in the introduction for
one-sided tests and for confidence intervals based on the MCB.
The focus on statistics of the form (2.1) with a continuously distributed X

may appear to be restrictive, but this appearance is misleading. A wide variety
of statistics that are important in applications can be approximated with neg-
ligible error by statistics of the form (2.1). In particular, as will be explained
in Section 4.1, t statistics for testing hypotheses about parameters estimated by
GMM can be approximated this way.2

2�2� The MCB Procedure

Consider the problem of estimating P�Tn ≤ z�� P��Tn� ≤ z�, or zn
. For any
integer j > q, define Yj = �X ′

j−1� � � � �X
′
j−q�

′. Let py denote the probability density
function of Yq+1 ≡ �X ′

q� � � � �X
′
1�

′. Let f denote the probability density function
of Xj conditional on Yj . If f and p were known, then P�Tn ≤ z� and P��Tn� ≤ z�
could be estimated as follows:
1. Draw Ỹq+1 ≡ �X̃ ′

q� � � � X̃
′
1�

′ from the distribution whose density is py . Draw
X̃q+1 from the distribution whose density is f �·�Ỹq+1�. Set Ỹq+2 = �X̃ ′

q+1� � � � � X̃
′
2�

′.

2 Statistics with asymptotic chi-square distributions are not treated explicitly in this paper. However,
the arguments made here can be extended to show that asymptotic chi-square statistics based on
GMM estimators behave like symmetrical statistics. See, for example, the discussion of the GMM
test of overidentifying restrictions in Hall and Horowitz (1996) and Andrews (1999). Under regularity
conditions similar to those of Sections 3 and 4, the results stated here for symmetrical probabilities
and tests apply to asymptotic chi-square statistics based on GMM estimators. Andrews (1999) defines
a class of “minimum � estimators” that is closely related to GMM estimators. The results here also
apply to t tests based on minimum � estimators.
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2. Having obtained Ỹj ≡ �X̃ ′
j−1� � � � � X̃

′
j−q�

′ for any j ≥ q+ 2, draw X̃j from
the distribution whose density is f �·�Ỹj�. Set Ỹj+1 = �X̃ ′

j � � � � � X̃
′
j−q+1�

′.
3. Repeat step 2 until a simulated data series �X̃j � j = 1� � � � � n	 has been

obtained. Compute 
 as (say)
∫
x1py�xq� � � � � x1�dxq · · ·dx1. Then compute a sim-

ulated test statistic T̃n by substituting the simulated data into (2.1).
4. Estimate P�Tn ≤ z� �P��Tn� ≤ z�� from the empirical distribution of T̃n��T̃n��

that is obtained by repeating steps 1–3 many times. Estimate zn
 by the 1−

quantile of the empirical distribution of �T̃n�.

This procedure cannot be implemented in an application because f and py are
unknown. The MCB replaces f and py with kernel nonparametric estimators. To
obtain the estimators, let Kf be a kernel function (in the sense of nonparametric
density estimation) of a d�q + 1�-dimensional argument. Let Kp be a kernel
function of a dq-dimensional argument. Let �hn � n = 1�2� � � � 	 be a sequence
of positive constants (bandwidths) such that hn → 0 as n →�. Conditions that
Kf �Kp, and �hn	 must satisfy are given in Section 3. For x ∈ �d� y ∈ �dq , and
z= �x� y�, define

pnz�x� y�=
1

�n−q�h
d�q+1�
n

n∑
j=q+1

Kf

(
x−Xj

hn

�
y−Yj

hn

)

and

pny�y�=
1

�n−q�h
dq
n

n∑
j=q+1

Kp

(
y−Yj

hn

)
�

The estimators of py and f , respectively, are pny and

fn�x � y�= pnz�x� y�/pny�y��(2.2)

The MCB estimates P�Tn ≤ z�� P��Tn� ≤ z�, and zn
 by repeatedly sampling the
Markov process generated by the transition density fn�x � y�. However, fn�x � y�
is an inaccurate estimator of f �x � y� in regions where py�y� is close to zero. To
obtain the asymptotic refinements described in Section 1, it is necessary to avoid
such regions. Here, this is done by truncating the MCB sample. To carry out the
truncation, let Cn = �y � pny�y� ≥ �n	, where �n > 0 for each n = 1�2� � � � � and
�n → 0 as n→� at a rate that is specified in Section 3.1. Having obtained real-
izations X̂1� � � � � X̂j−1 �j ≥ q+1� from the Markov process induced by fn�x � y�,
the MCB retains a realization of X̂j only if �X̂j� � � � � X̂j−q+1� ∈ Cn. Thus, MCB
proceeds as follows:
MCB 1. Draw Ŷq+1 ≡ �X̂ ′

q� � � � � X̂
′
1�

′ from the distribution whose density is
pny . Retain Ŷq+1 if Ŷq+1 ∈ Cn. Otherwise, discard the current Ŷq+1 and draw a
new one. Continue this process until a Ŷq+1 ∈ Cn is obtained.

MCB 2. Having obtained Ŷj ≡ �X̂ ′
j−1� � � � � X̂

′
j−q�

′ for any j ≥ q + 1, draw
X̂j from the distribution whose density is fn�·�Ŷj�. Retain X̂j and set
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Ŷj+1 = �X̂ ′
j � � � � � X̂

′
j−q+1�

′ if �X̂j� � � � � X̂j−q+1� ∈ Cn. Otherwise, discard the cur-
rent X̂j and draw a new one. Continue this process until an X̂j is obtained for
which �X̂j� � � � � X̂j−q+1� ∈ Cn.
MCB 3. Repeat step 2 until a bootstrap data series �X̂j � j = 1� � � � � n	 has

been obtained. Compute the bootstrap test statistic T̂n ≡ n1/2�H�m̂�−H�
̂��/ŝn,
where m̂= n−1∑n

j=1 X̂j , 
̂ is the mean of X relative to the distribution induced
by the sampling procedure of steps MCB 1 and MCB 2 (bootstrap sampling), and
ŝ2n is an estimator of the variance of the asymptotic distribution of n1/2�H�m̂�−
H�
̂�� under bootstrap sampling.
MCB 4. Estimate P�Tn ≤ z� �P��Tn� ≤ z�� from the empirical distribution of

T̂n ��T̂n�� that is obtained by repeating steps 1–3 many times. Estimate zn
 by the
1−
 quantile of the empirical distribution of �T̂n�. Denote this estimator by ẑn
.
A symmetrical test of H0 based on Tn and the bootstrap critical value ẑn


rejects at the nominal 
 level if �Tn� ≥ ẑn
.

2�3� Properties of the MCB

This section presents an informal summary of the main results of the paper
and of the arguments that lead to them. The results are stated formally in
Section 3. Let 	·	 denote the Euclidean norm. Let P̂ denote the probability mea-
sure induced by the MCB sampling procedure (steps MCB 1–MCB 2) conditional
on the data �Xj � j = l� � � � � n	. Let any � > 0 be given.
The main results are that under regularity conditions stated in Section 3.1:

sup
z

�̂P�T̂n ≤ z�−P�Tn ≤ z�� =O�n−1+��(2.3)

almost surely,

sup
z

�̂P��T̂n� ≤ z�−P��Tn� ≤ z�� =O�n−3/2+��(2.4)

almost surely, and

P��Tn�> ẑn
�= 
+O�n−3/2+���(2.5)

These results may be contrasted with the analogous ones for the block boot-
strap. The block bootstrap with optimal block lengths yields Op�n

−3/4��Op�n
−6/5�,

and Op�n
−5/4� for the right-hand sides of (2.3)–(2.5), respectively (Hall, Horowitz,

and Jing (1995), Zvingelis (2001)). Therefore, the MCB is more accurate than
the block bootstrap under the regularity conditions of Section 3.1.
These results are obtained by carrying out Edgeworth expansions of P�Tn ≤ z�

and P̂�T̂n ≤ z�. Additional notation is needed to describe the expansions. Let
� ≡ �Xj� j = 1� � � � � n	 denote the data. Let � and �, respectively, denote the
standard normal distribution function and density. The jth cumulant of Tn �j ≤ 4�
has the form n−1/2�j +o�n−1/2� if j is odd and I�j = 2�+n−1�j +o�n−1� if j is
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even, where �j is a constant (Hall (1992 p. 46)). Define �= ��1� � � � � �4�
′. Condi-

tional on � , the jth cumulant of T̂n almost surely has the form n−1/2�̂j +o�n−1/2�
if j is odd and I�j = 2�+n−1�̂j +o�n−1� if j is even. The quantities �̂j depend
on �. They are nonstochastic relative to bootstrap sampling but are random vari-
ables relative to the stochastic process that generates �. Define �̂= ��̂1� � � � � �̂4�

′.
Under the regularity conditions of Section 3.1, P�Tn ≤ z� has the Edgeworth

expansion

P�Tn ≤ z�=��z�+
2∑

j=1

n−j/2�j�z�����z�+O�n−3/2�(2.6)

uniformly over z, where �j�z��� is a polynomial function of z for each �, a
continuously differentiable function of the components of � for each z, an even
function of z if j = 1, and an odd function of z if j = 2. Moreover, P��Tn� ≤ z�
has the expansion

P��Tn� ≤ z�= 2��z�−1+2n−1�2�z�����z�+O�n−3/2�(2.7)

uniformly over z. Conditional on �, the bootstrap probabilities P̂ �T̂n ≤ z� and
P̂ ��T̂n� ≤ z� have the expansions

P̂�T̂n ≤ z�=��z�+
2∑

j=1

n−j/2�j�z� �̂���z�+O�n−3/2�(2.8)

and

P̂��T̂n� ≤ z�= 2��z�−1+2n−1�2�z� �̂���z�+O�n−3/2�(2.9)

uniformly over z almost surely. Therefore,

�̂P�T̂n ≤ z�−P�Tn ≤ z�� =O�n−1/2	�̂−�	�+O�n−1�(2.10)

and

�̂P��T̂n� ≤ z�−P��Tn� ≤ z�� =O�n−1	�̂−�	�+O�n−3/2�(2.11)

almost surely uniformly over z. Under the regularity conditions of Section 3.1,

	�̂−�	 =O�n−1/2+��(2.12)

almost surely for any � > 0. Results (2.3)–(2.4) follow by substituting (2.12) into
(2.10)–(2.11).
To obtain (2.5), observe that P��Tn� ≤ zn
� = P̂��T̂n� ≤ ẑn
� = 1−
. It follows

from (2.7) and (2.10) that

2��zn
�−1+2n−1�2�zn
�����zn
�= 1−
+O�n−3/2�(2.13)
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and

2��ẑn
�−1+2n−1�2�ẑn
� �̂���ẑn
�= 1−
+O�n−3/2�(2.14)

almost surely. Let v
 denote the 1−
/2 quantile of the N(0,1) distribution. Then
Cornish-Fisher inversions of (2.13) and (2.14) (e.g., Hall (1992, p. 88–89)) give

zn
 = v
−n−1�2�v
���+O�n−3/2�(2.15)

and

ẑn
 = v
−n−1�2�v
� �̂�+O�n−3/2�(2.16)

almost surely. Therefore,

P��Tn� ≤ ẑn
�= P��Tn� ≤ zn
+n−1��2�v
� �̂�−�2�v
����+O�n−3/2�	(2.17)

= P��Tn� ≤ zn
+O�n−1	�̂−�	�+O�n−3/2���(2.18)

Result (2.5) follows by applying (2.12) to the right-hand side of (2.18).

3� main results

This section presents theorems that formalize results (2.3)–(2.5).

3�1� Assumptions

Results (2.3)–(2.5) are established under assumptions that are stated in this
section. The proof of the validity of the Edgeworth expansions (2.6)–(2.9) relies
on a theorem of Götze and Hipp (1983) and requires certain restrictive assump-
tions. See Assumption 4 below. It is likely that the expansions are valid under
weaker assumptions, but proving this conjecture is beyond the scope of this paper.
The results of this section hold under weaker assumptions if the Edgeworth
expansions remain valid.
The following additional notation is used. Let pz denote the probability density

function of Zq+1 ≡ �X ′
q+1�Y

′
q+1�

′. Let Ê denote the expectation with respect to
the distribution induced by bootstrap sampling (steps MCB 1 and MCB 2 of
Section 2.2). Define �̃ = Ê�n�m̂− 
̂��m̂− 
̂�′� and s̃2n = �H�
̂�′�̃�H�
̂�. For
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reasons that are explained later in this section, it is assumed that E�X1 −
�×
�X1+j −
�′ = 0 if j >M for some integer M <�. Define

�n = �n−M�−1
n−M∑
i=1

{
�Xi −m��Xi −m�′ +

M∑
j=1

��Xi −m��Xi+j −m�′

+ �Xi+j −m��Xi −m�′�
}
�

�̂n = �n−M�−1
n−M∑
i=1

{
�X̂i − m̂��X̂i − m̂�′ +

M∑
j=1

[
�X̂i − m̂��X̂i+j − m̂�′

+ �X̂i+j − m̂��X̂i − m̂�′
]}

�


�n = Ê
{
�X̂1− 
̂��X̂1− 
̂�′ +

M∑
j=1

��X̂1− 
̂��X̂1+j − 
̂�′

+ �X̂1+j − 
̂��X̂1− 
̂�′�
}
�

and �2
n = �H�
̂�′ 
�n�H�
̂�/s̃2n. Note that �2

n can be evaluated in an application
because the bootstrap DGP is known. For any � > 0, define, C̃� = �xq ∈ �d �

py�xq� � � � � x1� ≥ � for some xq−1� � � � � x1}. Let ��C̃�� denote the measurable
subsets of C̃�. Let Pk���A� denote the k-step transition probability from a point
� ∈ C̃� to a set A⊂ B�C̃��.

Assumption 1: �Xj � j = 1�2� � � � � n�Xj ∈ �d	 is a realization of a strictly sta-
tionary, qth order Markov process that is geometrically strongly mixing (GSM).3

Assumption 2: (i) The distribution of Zq+1 is absolutely continuous with respect
to Lebesgue measure. (ii) For t ∈ �d and each k such that 0< k ≤ q,

lim
	t	→�

supE�E�exp��t′Xj��Xj ′� �j− j ′� ≤ k� j �= j ′��< 1�(3.1)

(iii) The functions py� pz, and f are bounded. (iv) For some �≥ 2, py and pz are
everywhere at least � times continuously differentiable with respect to any mixture of
their arguments.

Assumption 3: (i) H is three times continuously differentiable in a neighbor-
hood of 
. (ii) The gradient of H is nonzero in a neighborhood of 
.

Assumption 4: (i) Xj has bounded support. (ii) For all sufficiently small �> 0,
some � > 0, and some integer k > 0,

sup
���∈C̃��A⊂��C̃��

�Pk���A�−P���A��< 1−��

3 GSM means that the process is strongly mixing with a mixing parameter that is an exponentially
decreasing function of the lag length.
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(iii) For some M < �, E�X1 − 
��X1+j − 
�′ = 0 if j > M . (iv) The sam-
ple and bootstrap variance estimators are s2n = �H�m�′�n�H�m�, and ŝ2n =
�2

n�H�m̂�′�̂n�H�m̂�. (v) For �n as in Assumption 6, P�py�Yq+1� < �n�Yq = yq�=
o��logn�−1� as n→� uniformly over yq such that py�yq�≥ �n.

Let K be a bounded, continuous function whose support is [−1�1] and that is
symmetrical about 0. For each integer j = 0� � � � � �, let K satisfy

∫ 1

−1
vjK�v�dv =



1 if j = 0�
0 if 1≤ j < ��

BK (nonzero) if j = ��

For any integer J > 0, let W�j� �j = 1� � � � � J � denote the jth component of the
vector W ∈ �J .

Assumption 5: Let vf ∈ �d�q+1� and vp ∈ �dq . Kf and Kp have the forms

Kf �vf �=
d�q+1�∏
j=1

K
(
v
�j�
f

)
� Kp�vp�=

dq∏
j=1

K�v�j�
p ��

Assumption 6: (i) Let � = 1/�2�+d�q+1��. Then hn = chn
−� for some finite

constant ch > 0. (ii) �n ∝ �logn�2h�
n.

Assumptions 2(i), 2(ii), and 4 are used to insure the validity of the Edgeworth
expansions (2.6)–(2.9). Condition (3.1) is a dependent-data version of the Cramér
condition. See Götze and Hipp (1983). Assumptions 2(iii) and 2(iv) insure suffi-
ciently rapid convergence of 	�̂−�	.

Assumptions 4(i)–4(ii) are used to show that the bootstrap DGP is GSM. The
GSM property is used to prove the validity of the Edgeworth expansions (2.8)–
(2.9). The results of this paper hold when Xj has unbounded support if the
expansions (2.8)–(2.9) are valid and py�y� decreases at an exponentially fast rate
as 	y	 →�.4 Assumption 4(iii) is used to insure the validity of the Edgeworth
expansions (2.6)–(2.9). It is needed because the known conditions for the validity
of these expansions apply to statistics that are functions of sample moments.
Under 4(iii)–4(iv), sn and Tn are functions of sample moments of Xj . This is not
the case if Tn is Studentized with a kernel-type variance estimator (e.g., Andrews
(1991), Andrews and Monahan (1992), Newey and West (1987, 1994)). However,
under Assumption 1, the smoothing parameter of a kernel variance estimator
can be chosen so that the estimator is n1/2−�-consistent for any � > 0. Therefore,

4 If Y has finitely many moments and the required Edgeworth expansions are valid, then the errors
made by the MCB increase as the number of moments of Y decreases. If Y has too few moments,
then the errors made by the MCB decrease more slowly than the errors made by the block bootstrap.
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if the required Edgeworth expansions are valid, the results established here hold
when Tn is Studentized with a kernel variance estimator.5

The quantity �2
n in ŝ2n is a correction factor analogous to that used by

Hall and Horowitz (1996) and Andrews (1999, 2002). It is needed because
�H�m̂�′�̂n�H�m̂� is a biased estimator of the variance of the asymptotic distri-
bution of n1/2�H�m̂�−H�
̂��. The bias converges to zero too slowly to enable
the MCB to achieve the asymptotic refinements described in Section 2.3. The
correction factor removes the bias without distorting higher-order terms of the
Edgeworth expansion of the CDF of P̂�T̂n ≤ z�.

Assumption 4(v) restricts the tail thickness of the transition density function.6

Assumption 5 specifies convenient forms for Kf and Kp, which may be higher-
order kernels. Higher-order kernels are used to insure sufficiently rapid conver-
gence of 	�̂−�	.

3�2� Theorems

This section gives theorems that establish conditions under which results (2.3)–
(2.5) hold. The bootstrap is implemented by carrying out steps MCB 1–MCB 4.
Let �= �/�2�+d�q+1��.

Theorem 3.1: Let Assumptions 1–6 hold. Then for every � > 0.

sup
z

�̂P�T̂n ≤ z�−P�Tn ≤ z�� =O�n−1/2−�+��(3.2)

and

sup
z

�̂P��T̂n� ≤ z�−P��Tn� ≤ z�� =O�n−1−�+��(3.3)

almost surely.

Theorem 3.2: Let Assumptions 1–6 hold. For any 
 ∈ �0�1� let ẑn
 satisfy
P̂��T̂n�> ẑn
�= 
. Then for every � > 0

P��Tn�> ẑn
�= 
+O�n−1−�+���(3.4)

Theorems 3.1 and 3.2 imply that results (2.3)–(2.6) hold if � > �1− 2��d�q+
1�/�4��. With the block bootstrap, the right-hand sides of (3.2)–(3.4) are

5 Götze and Künsch (1996) have given conditions under which Tn with a kernel-type variance
estimator has an Edgeworth expansion up to O�n−1/2�. Analogous conditions are not yet known
for expansions through O�n−1�. A recent paper by Inoue and Shintani (2000) gives expansions for
statistics based on the block bootstrap for linear models with kernel-type variance estimators.

6 As an example of a sufficient condition for 4(v), let X be scalar with support [0, 1]. Then 4(v)
holds if there are finite constants c1 > 0� c2 > 0� � > 0, and � > 0 such that c1x�

q ≤ py�xq� � � � � x1�≤
c2x

�
q when xq < � and c1�1−xq�

� ≤ py�xq� � � � � x1�≤ c2�1−xq�
� when 1−xq < �. The generalization

to multivariate X is analytically straightforward though notationally cumbersome.
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Op�n
−3/4��Op�n

−6/5�, and O�n−5/4�, respectively. The errors made by the MCB
converge to zero more rapidly than do those of the block bootstrap if � is
sufficiently large. With the MCB, the right-hand side of (3.2) is o�n−3/4� if
� > d�q+1�/2, the right-hand side of (3.3) is o�n−6/5� if � > d�q+1�/3, and the
right-hand side of (3.4) is o�n−5/4� if � > d�q+1�/2. However, the errors of the
MCB converge more slowly than do those of the block bootstrap if the distribu-
tion of Z is not sufficiently smooth (� is too small). Moreover, the MCB suffers
from a form of the curse of dimensionality in nonparametric estimation. That is,
with a fixed value of �, the accuracy of the MCB decreases as d and q increase.
Thus, the MCB, like all nonparametric estimators, is likely to be most attractive
in applications where d and q are not large. It is possible that this problem can
be mitigated, though at the cost of imposing additional structure on the DGP,
through the use of dimension reduction methods. For example, many familiar
time series DGP’s can be represented as single-index models or nonparametric
additive models with a possibly unknown link function. However, investigation
of dimension reduction methods for the MCB is beyond the scope of this paper.

4� extensions

Section 4.1 extends the results of Section 3 to tests based on GMM estimators.
Section 4.2 presents the extension to approximate Markov processes.

4�1� Tests Based on GMM Estimators

This section gives conditions under which (3.2)–(3.4) hold for the t statistic
for testing a hypothesis about a parameter that is estimated by GMM. The main
task is to show that the probability distribution of the GMM t statistic can be
approximated with sufficient accuracy by the distribution of a statistic of the
form (2.1). Hall and Horowitz (1996) and Andrews (1999, 2002) use similar
approximations to show that the block bootstrap provides asymptotic refinements
for t tests based on GMM estimators.
Denote the sample by �Xj � j = 1� � � � � n	. In this section, some components of

Xj may be discrete, but there must be at least one continuous component. See
Assumption 9 below. Suppose that the GMM moment conditions depend on up
to  ≥ 0 lags of Xj . Define �j = �X ′

j � � � � �X
′
j− �

′ for some fixed integer  ≥ 0 and
j ≥  +1. Let � denote a random vector that is distributed as �1+ . Estimation
of the L! × 1 parameter ! is based on the moment condition EG��� !� = 0,
where G is a known LG × 1 function and LG ≥ L!. Let !0 denote the true but
unknown value of !. Assume that EG��i� !0�G��j � !0�

′ = 0 if �i− j� > MG for
some MG <�.7 As in Hall and Horowitz (1996) and Andrews (1999, 2002), two
forms of the GMM estimator are considered. One uses a fixed weight matrix,
and the other uses an estimator of the asymptotically optimal weight matrix.

7 This assumption is analogous to Assumption 4(iii) in Section 3.1 and is made for the same reason.
The discussion of Assumption 4(iii) applies to the current assumption.
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The results stated here can be extended to other forms such as the continuous
updating estimator. In the first form, the estimator of !�!n, solves

min
!∈"

Jn�!�≡
[
n−1

n∑
i=1+ 

G��i� !�

]
#

[
n−1

n∑
i=1+ 

G��i� !�

]
�(4.1)

where " is the parameter set and # is a LG×LG, positive-semidefinite, symmet-
rical matrix of constants. In the second form, !n solves

min
!∈"

Jn�!� !̃n�≡
[
n−1

n∑
i=1+ 

G��i� !�

]
#n�!̃�

[
n−1

n∑
i=1+ 

G��i� !�

]
�(4.2)

where !̃n solves (4.1),

#n�!�=
{
n−1

n∑
i=1+ 

[
G��i� !�G��i� !�

′ +
MG∑

j=1+ 

H��i��i+j � !�

]}−1

�

and H��i��i+j � !�=G��i� !�G��i+j � !�
′ +G��i+j � !�G��i� !�

′.8

To obtain the t statistic, let #0 = �E#n�!0�
−1�−1. Define the LG×L! matrices

D = E�$G��� !0�/$!� and

Dn = n−1
n∑

i=1+ 

$G��i� !n�/$!�

Define

% = �D′#D�−1D′##−1
0 #D�D′#D�−1(4.3)

if !n solves (4.1) and

% = �D′#0D�−1(4.4)

if !n solves (4.2). Let %n be the consistent estimator of % that is obtained by
replacing D and #0 in (4.3) and (4.4) by Dn and #n�!n�. In addition, let �%n�rr be
the (r� r) component of %n, and let !r and !nr be the rth components of ! and !n,
respectively. The t statistic for testing H0 � !r = !0 is tnr = n1/2�!nr −!0r /�%n�

1/2
rr .

To obtain the MCB version of tnr , let �X̂j � j = 1� � � � � n	 be a bootstrap sample
that is obtained by carrying out steps MCB 1 and MCB 2 but with the modi-
fied transition density estimator that is described in equations (4.5)–(4.7) below.
The modified estimator allows some components of Xj to be discrete. Define
�̂j = �X̂j� � � � � X̂j− �. Let �̂ denote a random vector that is distributed as �̂1+ .
Let Ê denote the expectation with respect to the distribution induced by boot-
strap sampling. Define Ĝ�•� !�=G�•� !�− ÊG��̂� !n�. The bootstrap version of

8 As in Section 3, #n is used instead of a kernel-type covariance matrix estimator to insure that the
test statistics of interest can be approximated with sufficient accuracy by smooth functions of sample
moments. This is not possible with a kernel covariance estimator.
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the moment condition EG��� !�= 0 is ÊĜ��̂� !�= 0. As in Hall and Horowitz
(1996) and Andrews (1999, 2002), the bootstrap version is recentered relative to
the population version because, except in special cases, there is no ! such that
ÊG��̂� !�= 0 when LG >L!. Brown, Newey, and May (2000) and Hansen (1999)
discuss an empirical likelihood approach to recentering. Recentering is unnec-
essary if LG = L!, but it simplifies the technical analysis and, therefore, is done
here.9

To form the bootstrap version of tnr , let !̂n denote the bootstrap estimator
of !. Let D̂n be the quantity that is obtained by replacing �i with �̂i and !n with
!̂n in the expression for Dn. Define 
Dn = Ê$G��̂1+ � !n�/$!,

#̂n�!�=
{
n−1

n∑
i=1+ 

[
Ĝ��̂i� !�G��̂i� !�

′ +
MG∑

j=1+ 

H��̂i� �̂i+j � !�

]}−1

�


#n�!�=
{
Ê
[
Ĝ��̂1+ � !n�Ĝ��̂1+ � !n�

′ +
MG∑

j=1+ 

H��̂1+ � �̂1+ +j � !n�

]}−1

�

and

#̃n�!�=
{
Ê
[
Ĝ��̂1+ � !n�Ĝ��̂1+ � !n�

′ +
�∑

j=1+ 

H��̂1+ � �̂1+ +j � !n�

]}−1

�

Define %̂n, by replacing G with Ĝ, �i with �̂i� !n with !̂n� Dn with D̂n, and #n�!n�

with #̂n�!̂n� in the formula for %n. Let #∗
n =# if !n solves (4.1) and #∗

n = #̂n�!n�
if !n solves (4.2). Define

%̃n = �
D′
n#

∗
n

Dn�

−1
D′
n#

∗
n

#−1

n #∗
n

Dn�
D′

n#
∗
n

Dn�

−1�

%̄n = �
D′
n#

∗
n

Dn�

−1
D′
n#

∗
n

#−1

n #∗
n

Dn�
D′

n#
∗
n

Dn�

−1�

and �2
nr = �%̄n�rr/�%̃n�rr , where �%̃n�rr and �%̄n�rr are the �r� r� components of %̃n

and %̄n, respectively. Let !̂nr denote the rth component of !̂n. Then the MCB
version of the t statistic is t̂nr = �nrn

1/2�!̂nr − !nr�/�%̂n�
1/2
rr . The quantity �nr is

a correction factor analogous to that used by Hall and Horowitz (1996) and
Andrews (1999, 2002).
Now let V ��j � !� �j = 1+  � � � � � n� be the vector containing the unique

components of G��j � !�� G��j � !�G��i+j � !� �0 ≤ i ≤ MG�, and the derivatives
through order 6 of G��j � !� and G��j � !�G��i+j � !�. Let S� denote the sup-
port of �X1� � � � �X1+ �. Define py� pz, and f as in Sections 2–3 but with count-
ing measure as the dominating measure for discrete components of Xj �j =
1� � � � � n�. The following new assumptions are used to derive the results of this
section. Assumptions 7–9 are similar to ones made by Hall and Horowitz (1996)
and Andrews (1999, 2002).

9 The formulae required when LG = L! depend on whether recentering is used. The formulae
given here apply only with recentering.



1064 joel l. horowitz

Assumption 7: !0 is an interior point of the compact parameter set " and is
the unique solution in " to the equation EG��� !�= 0.

Assumption 8: (i) There are finite constants CG and CV such that
	G��1+ � !�	 ≤ CG and 	V ��1+ � !�	 ≤ CV for all �1+ ∈ S� and ! ∈ ".
(ii) EG��1+ � !0�G��1+ +j � !0�

′ = 0 if j >MG for some MG <�. (iii)

E
{
G��1+ �!0�G��1+ +j �!�

′ +
MG∑
j=1

�G��1+ �!�G��1+ +j �!�
′

+G��1+ +j �!�G��1+ �!�
′�
}

exists for all ! ∈ ". Its smallest eigenvalue is bounded away from 0 uniformly over
! in an open sphere, N0, centered on !0. (iv) There is a bounded function CG�•�
such that

	G��1+ � !1�−G��1+ � !2�	 ≤ CG��1+ �	!1−!2	
for all �1+ ∈ S� and !1� !2 ∈ ". (v) G is 6-times continuously differentiable with
respect to the components of ! everywhere in N0. (vi) There is a bounded function
CV �•� such that

	V ��1+ � !1�−V ��1+ � !2�	 ≤ CV ��1+ �	!1−!2	
for all �1+ ∈ S� and !1� !2 ∈".

Assumption 9: (i) Xj �j = 1� � � � � n� can be partitioned (X�c�′
j �X

�d�′
j �′, where

X
�c�
j ∈�d for some d≥ 1, the distributions of X�c�

j and $G��� !0�/$! are absolutely
continuous with respect to Lebesgue measure, and the distribution of X�d�

j is discrete
with finitely many mass points. There need not be any discrete components of Xj ,
but there must be at least one continuous component. (ii) The functions py�pz,
and f are bounded. (iii) For some integer � > 2, py and pz are everywhere at least
� times continuously differentiable with respect to any mixture of their continuous
arguments.

Assumption 10: Assumptions 2 and 4 hold with V ��j � !0� in place of Xj .

As in Sections 2–3, �X̂j � j = 1� � � � � n	 in the MCB for GMM is a realization
of the stochastic process induced by a nonparametric estimator of the Markov
transition density. If Xj has no discrete components, then the density estima-
tor is (2.2) and MCB samples are generated by carrying out steps MCB 1 and
MCB 2 of Section 2.2. A modified transition density estimator is needed if Xj

has one or more discrete components. Let �Y
�c�′
j �Y

�d�′
j �′ be the partition of Yj

into continuous and discrete components. The modified density estimator is

f̄n�x�y�= ḡn�x� y�/p̄ny�y��(4.5)
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where

ḡn�x� y�=
1

�n−q�h
d�q+1�
n

n∑
j=q+1

Kf

(
x�c�−X

�c�
j

hn

�
y�c�−Y

�c�
j

hn

)
(4.6)

× I
(
x�d� =X

�d�
j

)
I
(
y�d� = Y

�d�
j

)
�

d = dim�X
�c�
j �, and

p̄ny�y�=
1

�n−q�h
dq
n

n∑
j=q+1

Kp

(
y�c�−Y

�c�
j

hn

)
I
(
y�d�−Y

�d�
j

)
�(4.7)

The result of this section is given by the following theorem.

Theorem 4.1: Let Assumptions 1, 4(i), 4(v), and 5–10 hold. For any 
∈ �0�1�
let ẑn
 satisty P̂��t̂nr �> ẑn
�= 
. Then (3.2)–(3.4) hold with tnr and t̂nr in place of
Tn and T̂n.

4�2� Approximate Markov Processes

This section extends the results of Section 3.2 to approximate Markov pro-
cesses. As in Sections 2–3, the objective is to carry out inference based on the
statistic Tn defined in (2.1). For an arbitrary random vector V , let p�xj �v� denote
the conditional probability density of Xj at Xj = xj and V = v. An approximate
Markov process is defined to be a stochastic process that satisfies the following
assumption.

Assumption AMP : (i) �Xj� j = 0�±1�±2� � � � �Xj ∈ �d	 is strictly stationary
and GSM. (ii) For some finite b > 0, integer q0 > 0, all finite j, and all q ≥ q0,

sup
xj � xj−1� � � �

�p�xj �xj−1� xj−2� � � � �−p�xj �xj−1� xj−2� � � � � xj−q��< e−bp�

Assumption AMP is satisfied, for example, by the MA(1) process Yj = Uj +
&Uj−1, where �&�< 1 and Uj is iid with mean zero and bounded support.10

The MCB for an approximate Markov process (hereinafter abbreviated
AMCB) is the same as the MCB except that the order q of the estimated Markov
process (2.2) increases at the rate �logn�2 as n → �. The estimated transition
density (2.2) is calculated as if the data were generated by a true Markov process
of order q ∝ �logn�2. The AMCB is implemented by carrying out steps MCB
1–MBC 4 with the resulting estimated transition density. Because q increases
very slowly as n→�, a large value of q is not necessarily required to obtain good
finite-sample performance with the AMCB. Section 5 provides an illustration.

10 As in Section 3, the assumption of bounded support can be relaxed at the cost of additional
technical complexity if the required Edgeworth expansions are valid.
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To formalize the properties of the AMCB, let �X�q�
j 	 be the Markov process

that is induced by the relation

P
(
X

�q�
j ≤ xj �X�q�

j−1 = xj−1� � � � �X
�q�
j−q = xj−q

)
(4.8)

= P�Xj ≤ xj �Xj = xj−1� � � � �Xj−q = xj−q��

Define Y
�q�
j = �X

�q�′
j−1 � � � � �X

�q�′
j−q�

′ and Z
�q�
q+1 ≡ �X

�q�′
q+1�Y

�q�′
q+1�

′. Let p
�q�
y and p

�q�
z ,

respectively, denote the probability density functions of Y �q�
q+1 and Z

�q�
q+1. Let f

�q�

denote the probability density function of X�q�
j conditional on Y

�q�
j . Let f denote

the probability density of Xj conditional on Xj−1�Xj−2� � � � . To accommodate a
Markov process whose order increases with increasing n, Assumptions 2, 5, and
6 are modified as follows. In these assumptions, q increases as n→� in such a
way that q/�logn�2 → c for some finite constant c > 0, and ��n	 is a sequence of
positive, even integers satisfying �n →� and d�q+1�/�n → 0 as n→�.

Assumption 2′: For some finite integer n0 and each n≥ n0: (i) The distribution
of Z�q�

q+1 is absolutely continuous with respect to Lebesgue measure. (ii) For t ∈ �d

and each k such that 0< k ≤ q

lim
	t	→�

supE
∣∣E[exp (�t′X�q�

j

)∣∣X�q�
j ′ � �j− j ′� ≤ k� j �= j ′

]∣∣< 1�(3.1)

(iii) The functions p
�q�
y �p

�q�
z � f �q�, and f are bounded. (iv) The functions p

�q�
y and

p
�q�
z , are everywhere �n times continuously differentiable with respect to any mixture

of their arguments.

For each positive integer, n, let Kn be a bounded, continuous function whose
support is �−1�1�, that is symmetrical about 0, and that satifies

∫ 1

−1
vjKn�v�dv =



1 if j = 0�
0 if 1≤ j < �n�

BK (nonzero) if j = �n�

Assumption 5′: Let vf ∈�d�q+1� and vp ∈�dq . For each finite integer n�Kf and
Kp have the forms

Kf �vf �=
d�q+1�∏
j=1

Kn�v
�j�
f �� Kp�vp�=

dq∏
j=1

Kn�v
j
p��

Assumption 6′: (i) Let �= 1/�2�n+d�q+1��. Then hn = chn
−� for some finite

constant ch > 0. (ii) �n ∝ �logn�2h�n
n .

The main difference between these assumptions and Assumptions 2, 5, and 6
of the MCB is the strengthened smoothness Assumption 2′(iv). The MCB for
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an order q Markov process provides asymptotic refinements whenever py and
pz have derivatives of fixed order � > d�q+1�, whereas the AMCB requires the
existence of derivatives of all orders as n→�.
The ability of the AMCB to provide asymptotic refinements is established by

the following theorem.

Theorem 4.2: Let Assumptions AMCB, 2′, 3, 4, 5′, and 6′ hold with
q/�logn�2 → c for some finite c > 0. For any 
 ∈ �0�1� let ẑn
 satisfy P̂��T̂n� >
ẑn
�= 
. Then for every � > 0

sup
z

�̂P�T̂n ≤ z�−P�Tn ≤ z�� =O�n−1+���

sup
z

�̂P��T̂n� ≤ z�−P��Tn� ≤ z�� =O�n−3/2+���

almost surely, and

P��Tn�> ẑn
�= 
+O�n−3/2+���

5� monte carlo experiments

This section describes four Monte Carlo experiments that illustrate the numer-
ical performance of the MCB. The number of experiments is small because the
computations are very lengthy.
Each experiment consists of testing the hypothesis H0 that the slope coefficient

is zero in the regression of Xj on Xj−1. The coefficient is estimated by ordinary
least squares (OLS), and acceptance or rejection of H0 is based on the OLS t
statistic. The experiments evaluate the empirical rejection probabilities of one-
sided and symmetrical t tests at the nominal 0.05 level. Results are reported
using critical values obtained from the MCB, the block bootstrap, and first-order
asymptotic distribution theory. Four DGP’s are used in the experiments. Two are
the ARCH(1) processes

Xj = Uj�1+0�3X2
j−1�

1/2�(5.1)

where �Uj	 is an iid sequence that has either the N�0�1� distribution or the
distribution with

P�Uj ≤ u�= 0�5�sin7��u/2�+1�I��u� ≤ 1��(5.2)

The other two DGP’s are the GARCH(1�1) processes

Xj = Ujh
1/2
j �(5.3)

where

hj = 1+0�4�hj−1+X2
j−1�(5.4)
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and �Uj	 is an iid sequence with either the N (0,1) distribution or the distri-
bution of (5.2). DGP (5.1) is a first-order Markov process. DGP (5.3)–(5.4) is
an approximate Markov process. In the experiments reported here, this DGP
is approximated by a Markov process of order q = 2. When Uj has the admit-
tedly somewhat artificial distribution (5.2), Xj has bounded support as required
by Assumption 4. When Uj ∼ N�0�1�� Xj has unbounded support and X2

j has
moments only through orders 8 and 4 for models (5.1) and (5.3)–(5.4), respec-
tively (He and Teräsvirta (1999)). Therefore, the experiments with Uj ∼N�0�1�
illustrate the performance of the MCB under conditions that are considerably
weaker than those of the formal theory.
The MCB was carried out using the 4th-order kernel

K�v�= �105/64��1−5v2+7v4−3v6�I��v� ≤ 1��(5.4)

Implementation of the MCB requires choosing the bandwidth parameter hn.
Preliminary experiments showed that the Monte Carlo results are not highly
sensitive to the choice of hn, so a simple method motivated by Silverman’s (1986)
rule-of-thumb is used. This consists of setting hn equal to the asymptotically
optimal bandwidth for estimating the �q+1�-variate normal density N�0�%2

nIq+1�,
where Iq+1 is the �q+1�×�q+1� identity matrix and %2

n is the estimated variance
of X1. Of course, there is no reason to believe that this hn is optimal in any sense
in the MCB setting. The preliminary experiments also indicated that the Monte
Carlo results are insensitive to the choice of trimming parameter, so trimming
was not carried out in the experiments reported here.
Implementation of the block bootstrap requires selecting the block length.

Data-based methods for selecting block lengths in hypothesis testing are not
available, so results are reported here for three block lengths, (2, 5, 10). The
experiments were carried out in GAUSS using GAUSS random number genera-
tors. The sample size is n= 50. There are 5000 Monte Carlo replications in each
experiment. MCB and block bootstrap critical values are based on 99 bootstrap
samples.11

The results of the experiments are shown in Table I. The differences between
the empirical and nominal rejection probabilities (ERP’s) with first-order asymp-
totic critical values tend to be large. The symmetrical and lower-tail tests reject
the null hypothesis too often. The upper-tail test does not reject the null hypoth-
esis often enough when the innovations have the distribution (5.2). The ERP’s
with block bootstrap critical values are sensitive to the block length. With some
block lengths, the ERP’s are small, but with others they are comparable to or
larger than the ERP’s with asymptotic critical values. With the MCB, the ERP’s
are smaller than they are with asymptotic critical values in 10 of the 12 experi-
ments. The MCB has relatively large ERP’s with the GARCH(1, 1) model and
normal innovations because this DGP lacks the higher-order moments needed
to obtain good accuracy with the bootstrap even with iid data.

11 Bootstrap samples were generated by applying the inverse-distribution method to a fine grid of
points. The computations are slow because the transition probability from each sampled grid point
to every other point must be estimated nonparametrically.
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TABLE I
Results of Monte Carlo Experiments

Empirical Rejection Probabilitya

Critical Block U ∼ as in (5.2) U ∼N�0�1�
Value Length ARCH(1) GARCH(1,1) ARCH(1) GARCH(1,1)

Symmetrical Tests

Asymptotic 0�089 0�063 0�092 0�099
Block Boot. 2 0�069 0�054 0�076 0�081

5 0�075 0�068 0�073 0�073
10 0�072 0�074 0�073 0�058

MCB 0�044 0�048 0�054 0�067

One-Sided Upper Tail Tests

Asymptotic 0�032 0�035 0�058 0�064
Block Boot. 2 0�049 0�042 0�067 0�110

5 0�085 0�052 0�085 0�091
10 0�087 0�074 0�092 0�056

MCB 0�038 0�050 0�064 0�073

One-Sided Lower-Tail Tests

Asymptotic 0�092 0�075 0�091 0�093
Block Boot. 2 0�067 0�055 0�069 0�092

5 0�078 0�058 0�085 0�084
10 0�082 0�059 0�088 0�062

MCB 0�046 0�040 0�055 0�068

aStandard errors of the empirical rejection probabilities are in the range 0.0025 to 0.0042, depending on the probability.

6� conclusions

The block bootstrap is the best known method for implementing the bootstrap
with time series data when one does not have a parametric model that reduces
the DGP to simple random sampling. However, the errors made by the block
bootstrap converge to zero only slightly faster than those made by first-order
asymptotic approximations. This paper has shown that the errors made by the
MCB converge to zero more rapidly than those made by the block bootstrap if the
DGP is a Markov or approximate Markov process and certain other conditions
are satisfied. These conditions are stronger than those required by the block
bootstrap. Therefore, the MCB is not a substitute for the block bootstrap, but the
MCB is an attractive alternative to the block bootstrap when the MCB’s stronger
regularity conditions are satisfied. Further research could usefully investigate the
possibility of developing bootstrap methods that are more accurate than the block
bootstrap but impose less a priori structure on the DGP than do the MCB or
the sieve bootstrap for linear processes.

Dept. of Economics, Northwestern University, 2001 Sheridan Road, Evanston, IL
60208-2600, U.S.A.; joel-horowitz@northwestern.edu: http://www.faculty.econ.northwestern.
edu/faculty/horowitz

Manuscript received May, 2001; final revision received July, 2002.
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MATHEMATICAL APPENDIX

This Appendix presents the proofs of the theorems stated in the text. To minimize the complexity
of the notation, the proofs are given only for d = 1. The proofs for d ≥ 2 are similar but require
notation that is more complex and lengthy.

A�1� Preliminary Lemmas

This section states lemmas that are used to prove Theorems 3.1 and 3.2. Lemmas 1–11 establish
properties of a truncated version of the DGP. Lemmas 12–14 establish properties of the bootstrap
DGP. The main result is Lemma 14, which establishes the rate of convergence of 	�̂−�	. This result is
used in Section A.2 to prove Theorems 3.1 and 3.2. See Section 2.3 for an informal outline. Assump-
tions 1–6 hold throughout. “Almost surely” is abbreviated “a.s.” Define C∗

nj = �xj � xj � � � � � xj−q+1 ∈
Cn	. A tilde over a probability density function (e.g., f̃ ) denotes the density of a truncated random
variable whose density function without truncation is f . Define fn�x�y� and pny�y� as in (2.2). The
transition density of the bootstrap DGP is

f̃n�xj �yj�=
fn�xj �yj�I�xj � � � � � xj−q+1 ∈ Cn�

'n�C
∗
nj �xj−1� � � � � xj−q�

�

where

'n�C
∗
nj �yt�=

∫
C∗
nj

fn�x�yj�dx�

The initial bootstrap observation is sampled from the distribution whose density is

p̃ny�xq� � � � � x1�=
pny�xq� � � � � x1�I�xq� � � � � x1 ∈ Cn�

'n�Cn�
�

where

'n�Cn�=
∫
Cn

pny�xq� � � � � x1�dxq · · ·dx1�

Conditional on the data �Xi� i = 1� � � � � n	, define

f̃ �xj �yj�=
f �xj �yj�I�xj ∈ C∗

nj �

'�C∗
nj �yj�

�

where

'�C∗
nj �yj�=

∫
C∗
nj

f �x�yj�dx

and

p̃y�xq� � � � � x1�=
py�xq� � � � � x1�I�xq� � � � � x1 ∈ Cn�

'�Cn�
�

where

'�Cn�=
∫
Cn

py�xq� � � � � x1�dxq · · ·dx1�
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Also define

p̃nz�xj � yj �=
pnz�xj � yj �I�yj+1 ∈ Cn�

'n�Cn�
�

p̃z�xj � yj �=
pz�xj � yj �I�yj+1 ∈ Cn�

'�Cn�
�

&ny = sup
y

�pny�y�−py�y���

and

&nz = sup
x�y

�pnz�x� y�−pz�x�y���

Lemma 1: For any c > 1�&nz =O��logn�ch�
n� a.s., and &ny = o�&nz� a.s.

Proof: This is a slightly modified version of Theorem 2.2 of Bosq (1996) and is proved the same
way as that theorem. Q.E.D.

Lemma 2: 'n�Cn�−'�Cn�=O�&ny�.

Proof: Cn is bounded uniformly over n because X has bounded support. Therefore,

'n�Cn�−'�Cn�=
∫
Cn

�pny�y�−py�y��dy =O�&ny�� Q.E.D.

Lemma 3: '�Cn�= 1−o��n� a.s.

Proof: Let V �2�n� denote volume of �y � py�y� < 2�n	. By Assumption 6(ii) and Lemma 1,
&ny = o��n�logn�c−2� a.s. for any c > 1. Therefore, &ny = o��n� a.s., and

1−'�Cn�=
∫
I�pny�y� < �n�py�y�dy

≤ 2�n

∫
I�py�y� < 2�n�dy = 2�nV �2�n� a�s�

V �2�n�→ 0 as n→�, because py is bounded away from 0 on compact subsets of the interior of its
support and py�y�→ 0 as y approaches a boundary of the support from the interior. Q.E.D.

Lemma 4:

sup
y� pny �y�≥�n

�py�y��'n�C
∗
nj �y�−'�C∗

nj �y��� =O�&nz� a.s.

Proof: Some algebra shows that py�y��'n�C
∗
nj �y�−'�C∗

nj �y��=An +Bn, where

An = �py�y�/pny�y��
∫
C∗
nj

�pnz�xj � � � � � xj−q�−pz�xj � � � � � xj−q��dxj �

y = �xj−1� � � � � xj−q�� and

Bn =−
∫
C∗
nj

pz�xj � � � � � xj−q�pny�y�
−1�pny�y�−py�y��dxj · · ·dxj−q+1�

An application of the delta method and boundedness of the support of X give An = O�&nz� and
Bn =O�&ny�. Q.E.D.
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Lemma 5:

sup
x�y

�p̃nz�x� y�−pz�x�y�� =O�&nz�

and

sup
x�y� pny �y�≥�n

�f̃n�x�y�− f̃ �x�y�� =O�&nz/�n��

Proof: These results follow from Lemmas 2 and 4 and the delta method. Q.E.D.

For integers j and k with j ≤k, let U ≡ �Xj�Xj+1� � � � �Xk	 be random variables that are generated
by the truncated Markov process whose transition density conditional on the original data is f̃ . Let
gy and gny denote the stationary densities of q consecutive realizations of the truncated DGP and the
bootstrap DGP, respectively. Let �rn	 be a sequence of strictly positive integers for which rn/ logn is
bounded as n→�. Define k = j+ rn and

�n = �xj � � � � � xk � pny�yj+q�≥ �n� � � � �pny�yk+1�≥ �n	�

where yj = �xj−1� � � � � xj−q�. Let 
�n denote the complement of �n. Define

(�u�=
k∏

i=j

u
�i
i �

where �i �i= j� � � � � k� is a nonnegative integer and 1≤∑k
i=j �i ≤ 4. Let Ẽ and E, respectively, denote

the expectation operator under sampling from the truncated Markov process (conditional on the data)
and the nontruncated process induced by f . Define r̃n =max�0� rn −q+1�. Let '∗�yj �='�C∗

nj �yj�.
A result will be called “uniform over �” if it holds for all �i �i = j� � � � � k� satisfying 1 ≤∑k

i=j �i ≤ 4.
Lemmas 6–13 establish the rate of convergence to zero of the difference between bootstrap and
population expectations of (�U�. The rate of convergence result is used in Lemma 14 to establish
the rate of convergence of 	�̂−�	.

Lemma 6: Conditional on the data, the support of Yj �j = 1�2� � � � � in the truncated Markov process
is Cn a.s.

Proof: The support of Y1 is Cn by construction, and the support of Yj �j ≥ 2� can be no larger
than Cn. For j ≥ 2, suppose that the support of Yj−1 is Cn but the support of Yj is a proper subset
of Cn. Then there is a measurable set B ⊂ Cn such that P�B� > 0 and P�B�y�= 0 for all y ∈ Cn. Let
V �B� denote the volume of B. Then by Lemma 1 and Assumption 6(ii),

P�B�=
∫
B
py�y�dy(A1)

=
∫
B
pny�y�dy+

∫
B
�py�y�−pny�y��dy

≥ ��n −&ny�V �B�≥ cB�nV �B� a.s.

for all sufficiently large n and some cB < �. Let 
Cn denote the complement of Cn. Let fy�·�yj−1�
denote the probability density of Yj conditional on Yj−1 = yj−1. Then for some constant MB < �,
Lemma 3 yields

P�B�=
∫

Cn

dy
∫
B
dxfy�x�y�py�y�+

∫
Cn

dy
∫
B
dxfy�x�y�py�y�

=
∫

Cn

dy
∫
B
dxfy�x�y�py�y�

≤MBV �B�
∫

Cn

py�y�dy = V �B�o��n��

This is a contradiction of (A1). Q.E.D.
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Lemma 7: Define

 n1 =
∫
�n

(�u�

[ k∏
i=j+q

f �xi�yi�

][1−∏k
i=j+q '

∗�yi�∏k
i=j+q '

∗�yi�

]
py�yj+q�dxj · · ·dxk�

Then conditional on the data,  n1 =O�rn�n� uniformly over � a.s. as n→�.

Proof: Let )n = sup�1−'∗�y� � y ∈ Cn	. Some algebra and Lemma 6 imply that

� n1� ≤ B�1−)n�
−r̃n

∫
�n

[ k∏
i=j+q

f �xi�y�
][

1−
k∏

i=j+q

'∗�yi�

]
py�yj+q�dxj � � � dxk�

for some constant B <�. Therefore, for some possibly different B <�,

� n1� ≤ B�1−)n�
−r̃n

∫
�n

[
1−

k∏
i=j+q

'∗�yi�

]
p�xj � � � � � xk�dxj · · ·dxk�

Let '̃∗�yj � = 1−'∗�yj �. Let w be a multi-index with r̃n components, each of which is 0 or 1. Let
�w� =∑

i wi . Then

k∏
i=j+q

'∗�yi�=
k∏

i=j+q

�1− '̃∗�yi��

= 1− ∑
w��w�≥1

k∏
i=j+q

'̃∗�yi�
wi �−1��w��

and

1−
k∏

i=j+q

'∗�yi�=−
k∑

i=j+q

'̃∗�yi�+
∑

w��w�≥2

k∏
i=j+q

'̃∗�yi�
wi �−1��w�

≡ −Cn1+Cn2�

But ∫
�n

Cn1p�xj � � � � � xk�dxj · · ·dxk ≤
∫
Cn1p�xj � � � � � xk�dxj · · ·dxk

= r̃nP�
Cn�=O�rn�n�

a.s. uniformly over �. Now each value of �w� generates r̃n!/��w�!�r̃n −�w�!�� terms in Cn2. Each term
of the integral of Cn2 is bounded by �nw

�w�−1
n a.s. Therefore,

∫
�n

Cn2p�xj � � � � � xk�dxj · · ·dxk ≤ �n

∑
�w�≥2

r̃n!w�w�−1
n

�w�!�rn −�w��!
= �n)

−1
n ��1+)n�

r̄n −1− r̃n)n�

≤ 0�5�nr̃
2
n)n +o�r2n)n� a.s.

uniformly over �. It follows that

� n1� ≤ B�1−)n�
r̄n �O�r̃n�n�+�nO�r2n)n��=O�rn�n� a�s�

uniformly over �. By Assumption 4(v), )n = o��logn�−1�, and the result follows. Q.E.D.
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Lemma 8: As n→� and conditional on the data,∫
Cn

�gy�y�−py�y��dy =O��n logn� a�s�(A2)

and ∫
Cn

�gny�y�−pny�y��dy =O��n logn� a�s�(A3)

Proof: Only (A2) is proved here. The proof of (A3) is similar. Let � denote the measurable
subsets of Cn. Let Gy and Py denote the probability measures associated with gy and py . Then∫

Cn

�gy�y�−py�y��dy = sup
�⊂�

�Gy�A�−Py�A��− inf
�⊂�

�Gy�A�−Py�A��

≤ 2 sup
�⊂�

�Gy�A�−Py�A���

Thus, it suffices to investigate the convergence of

sup
�⊂�

�Gy�A�−Py�A���

This is done here for the case q = 1. The argument for the case of q > 1 is similar but more complex
notationally. Let s be the integer part of b logn for some b > 0. The s-step transition probability from
a point sampled randomly from Py to a measurable set A is

P�s��A�=
∫
A
dxS

∫
dx1 · · ·dxs−1

[ s∏
i=2

f �xi�xi−1�

]
py�x1�

=
∫
A
dxS

∫
�n

dx1 · · ·dxs−1

[ s∏
i=2

f �xi�xi−1�

]
py�x1�

+
∫
A
dxs

∫

�n

dx1 · · ·dxs−1

[ s∏
i=2

f �xi�xi−1�

]
py�x1��

The s-step transition probability of the truncated process starting from the same initial density but
restricted to �nis

G�s��A�='�Cn�
−1

∫
A
dxs

∫
�n

dx1 · · ·dxs−1

[ s∏
i=2

f̃ �xi�xi−1�

]
py�x1��

Therefore, G�s��A�−P�s��A�= Sn1−Sn2, where

Sn1 =
∫
A
dxs

∫
�n

dx1 · · ·dxs−1

[∏
�Cn�

−1
s∏

i=2

f̃ �xi�xi−1�−
s∏

i=2

f �xi�xi−1�

]
py�x1�

and

Sn2 =
∫
A
dxs

∫

�n

dx1� � � dxs−1

[ s∏
i=2

f �xi�xi−1�

]
py�x1��

Arguments like those made in the proof of Lemma 7 show that Sn1 = O�s�n� a.s. uniformly over
A⊂�. In addition Sn2 ≤ cP� 
�n� for some constant c <�. But


�n ⊂
s−1⋃
i=1

�xi �∈ Cn	
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so

P� 
�n�≤
s−1∑
i=1

�1−'�Cn��=O�s�n� a�s�

It follows that

G�s��A�−P�s��A�=O�s�n� a�s�(A4)

uniformly over A ⊂�. Similar arguments show that the s step transition probabilities from a point
� ∈ Cn to A⊂� satisfy

G�s����A�−P�s����A�=O�s�n� a�s�(A5)

uniformly over A⊂� and � ∈ Cn. In addition,

sup
A⊂�

�Gy�A�−Py�A�� ≤ sup
A⊂�

�G�s��A�−P�s��A��(A6)

+ sup
A⊂�

�G�s��A�−Gy�A��+ sup
A⊂�

�P�s��A�−Py�A���

The first term on the right-hand side of (A6) is O�s�n� a.s. By a result of Nagaev (1961), it follows
from (A5) and Assumption 4(ii) that for some � < 1, the second term is a.s. O��s/k−1�, where k is as
in Assumption 4(ii) (Nagaev (1961)). The third term is O��s� for some � < 1 because �Xj	 is GSM
and, therefore, uniformly ergodic (Doukhan (1995, p. 21)). For b sufficiently large, the second two
terms are o��n�. Q.E.D.

Lemma 9: Define

 n2 =
∫
�n

(�u�

[ k∏
i=j+q

f̃ �xj �yj�

]
�gy�yj+q�−py�yj+q��dxj · · ·dxk�

Then conditional on the data,  n2 =O��n logn� a.s. uniformly over � as n→�.

Proof:

 n2 ≤ B
∫
Cn

�gy�y�−py�y��dy

for some constant B <�. The result now follows from Lemma 8. Q.E.D.

Lemma 10: Define

 n3 =
∫

An

(�u�

[ k∏
i=j+q

f �xi�yi�

]
py�yj+q�dxj · · ·dxk�

Then conditional on the data,  n3 =O�rn�n� a.s. uniformly over � as n→�.

Proof:  n3 ≤ BP� 
�n� for some constant B < �. The result now follows from arguments like
those used to prove Lemma 8. Q.E.D.

Lemma 11: Conditional on the data, Ẽ�(�U��−E�(�U��=O��n logn� a.s. uniformly over �.

Proof: Some algebra show that Ẽ�(�U��−E�(�U�� =  n1 +  n2 +  n3. Now combine Lemmas 7,
9, and 10. Q.E.D.

Lemma 12: The bootstrap process �X̂j	 is geometrically strongly mixing a.s.
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Proof: It follows from Lemma 5 and Assumption 4(ii) that

sup
�� �∈Cn�A⊂��Cn�

�̂Pm���A�− P̂m���A��< 1−� a.s.

for all sufficiently large n and some � > 0. The lemma follows from a result of Nagaev
(1961). Q.E.D.

Lemma 13: Let Ê denote expectation relative to P̂. Then conditional on the data, Ê�(�U��−
E�(�U��=O��n�logn�4� a.s. uniformly over �.

Proof: Ê�(�U��−E�(�U��= �Ê�(�U��− Ẽ�(�U��	+�Ẽ�(�U��−E�(�U��	, so

Ê�(�U��−E�(�U��= Ê�(�U��− Ẽ�(�U��+O��n logn� a.s.(A7)

uniformly over � by Lemma 11. Define *n = Ê�(�U��− Ẽ�(�U��. Then by (A3),

*n =
∫
�n

(�u�

{[ k∏
i=j+q

f̃n�xi�yi�

]
gny�yj+q�−

[ k∏
i=j+q

f̃ �xi�yi�

]
gy�yj+q�

}
dxj · · ·dxk +O��n logn�

a.s. Let w be a multi-index with r̃n components, each of which is 0 or 1. Let �w� =∑
i wi . Then

k∏
i=j+q

f̃n�xi�yi�=
∑
w

k∏
i=j+q

�f̃n�xi�yi�
1−w�f̃n�xi�yi�− f̃ �xi�yi��

wi 	

=
k∏

i=j+q

f̃ �xi�yi�+
k∑

l=j+q


 k∏

i=j+q
i �=l

f̃ �xi�yi�


 �f̃n�xl�yl�− f̃ �xl�yl��+Sn�

where

Sn =
∑
�w�≥2

k∏
i=j+q

�f̃ �xi�yi�
1−wi �f̃n�xi�yi��− f̃ �xi�yi��

wi 	�

Therefore,

*n =  n1+ n2 + n3+ n4�

where

 n1 =
∫
�n

(�u�

[ k∏
i=j+q

f̃ �xi�yi�

]
�gny�yj+q�−gy�yj+q��dxj · · ·dxk�

 n2 =
∫
�n

(�u�
k∑

l=j+q


 k∏

i=j+q
i �=l

f̃ �xi�yi�


 �f̃n�xl�yl�− f̃ �xl�yl��gy�yj+q�dxj · · ·dxk�

 n3 =
∫
�n

(�u�
k∑

l=j+q


 k∏

i=j+q
i �=l

f̃n�xi�yi�


 �f̃n�xl � yl�− f̃ �xl�yl���gny�yj+q�−gy�yj+q��dxj · · ·dxk�

and

 n4 =
∫
�n

(�u�Sngny�yj+q�dxj � � � � � dxk�
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It follows from Lemmas 5 and 8 that  n1 = O��n logn� and  n3 = O��n logn� a.s. uniformly over �.
Now consider  n2. A Taylor series approximation shows that

 n2 =
k∑

l=j+q+1

(
 
�1�
nl2 + 

�2�
nl2 + 

�3�
nl2

)
�

where

 
�1�
nl2 =

∫
�n

(�u�


 k∏

i=j+q
i �=l

f̃ �xi�yi�


 pnz�xl� yl�−pz�xl� yl�

py�yl�'�C∗
n �yl�

I�xl ∈ C∗
nl�gy�yj+q�dxj · · ·dxk�

 
�2�
nl2 =

∫
�n

(�u�


 k∏

i=j+q
i �=l

f̃ �xi�yi�


 f �xl�yl��pny�yl�−py�yl��

py�yl�'�C∗
n �yl�

I�xl ∈ C∗
nl�gy�yj+q�dxj · · ·dxk�

and

 
�3�
nl2 =

∫
�n

(�u�


 k∏

i=j+q
i �=l

f̃ �xi�yi�


[

f̃ �xl � yl�

py�yl�'�
C∗
n �yl�

O�&nz�+O�&ny�

]
gy�yj+q�dxj · · ·dxk�

For some constant B <�,

 
�1�
nl2 ≤ B&nz

∫ 
 k∏

i=j+q
i �=l

f̃ �xi�yi�


 1

py�yl�
gy�yj+q�dxj · · ·dxk

= B&nz

∫ [ l−1∏
i=j+q

f̃ �xi�yi�

]
1

py�yl�
gy�yj+q�dxj · · ·dxl−1

= B&nz

∫ [ l−1∏
i=j+q

f̃ �xi�yi�

]
1

py�yl�
pz�yj+q�dxj · · ·dxl−1+O��n logn�

a.s. uniformly over �, where the last line follows from Lemma 8. Some algebra shows that[ l−1∏
i=j+q

f̃ �xi�yi�

]
py�yj+q�

py�yl�
= f �xl−q−1�yl� · · · f �xj �yj+q+1�

[ l−1∏
i=j+q

I�yi+1 ∈ C∗
n� i+1�

'∗�yi�

]

≤ �1−)n�
l−j−q−2f �xl−q−1�y1� · · · f �xj �yj+q+1��

Therefore,  
�1�
nl2 ≤ O��n logn� a.s. uniformly over �. Similar arguments can be used to show that

 
�2�
n�2 = O��n logn� and  

�3�
nl2 = o��n logn� a.s. uniformly over �. Therefore,  n2 = O��n�logn�2� a.s.

uniformly over �. Now consider  n4. Given w, let �w be the smallest value of i such that wi = 1. Define

�n = sup
x�y�pny �y�≥�n

�f̃n�x�y�− f̃ �x�y���

Then

Sn ≤ B2

∑
�w�≥2

��w�−1
n

[ �w−1∏
i=1

f̃ �xi�yi�

][
f̃n
(
x�w

∣∣y�w

)− f̃n
(
x�w

∣∣y�w

)]
for some constant B2 <�. Therefore

 n4 ≤ B2

( ∑
�w�≥2

��w�−1
n

)∫
�n

[ �w−1∏
i=1

f̃ �xi�yi�

]∣∣f̃n(x�w

∣∣y�w

)− f̃
(
x�w

∣∣y�w

)∣∣gny�yj+q

)
dxj · · ·dxk�
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Arguments like those made for  n2 show that the integral is O��n�logn�2� a.s. Arguments like those
made in the proof of Lemma 7 show that the sum is O�r2n�n�. Therefore,  n4 = o�&nz�logn�4� a.s.
uniformly over �. The lemma follows by combining the rates of convergence of  n1�  n2�  n3, and
 n4. Q.E.D.

Lemma 14: Define �= �/�2�+d�q+1��. For any � > 0, 	�̂−�	 =O�n−�+�� a.s.

Proof: Under Assumptions 3–4, Tn is a smooth function of sample moments. Therefore, the jth
cumulant of Tn has the expansion

Kj = n−�j−2�/2�kj1+n−1kj2 +O�n−2��

with k11 = 0 and k21 = 1. The vector � of Section 2.3 can be written �= �k12�k22�k31�k41�. Then the
functions �1 and �2 in (2.6) are

�1�z���=−�k12 + �1/16�k31�z
2 −1��

and

�2�z���=−z��1/2��k22 +k2
12�+ �1/24��k41+4k12k31��z

2 −3�

+ �1/72�k2
31�z

4−10z2 +15���

See, e.g., Hall (1992). The parameters kij in these expressions are independent of n. Define
+j = E�X1 − 
��X1+j − 
� and +nj = n−1∑n−j

i=1 �Xi −m��Xi+j −m�. A Taylor series expansion of
Tn about m = 
 and +nj = +j �j = 0� � � � �M� shows that � is a continuous function of terms of
the form D�
�+�En�m−
�2, D�
�+�En2�m−
�3, D�
�+�En2�m−
�4, D�
�+�En�m−
��+nj −
+j�, D�
�+�, D�
�+�En2�m−
�3�+nj −+j�, D�
�+�En3/2�m−
��+nj −+j�

2, and D�
�+�En2�m−

�2�+nj − +j�

2, where D represents a differentiable function that may be different in different
terms, and + = �+0� � � � � +M�. Similar expansions applied to T̂n show that �̂ is a continuous func-
tion of the same terms but with Ê� m̂� 
̂, and +̂j = Ê�X̂1 − 
̂��X̂1+j − 
̂� in place of E�m�
,
and +j . Thus, it is necessary to show that the differences between the bootstrap and popula-
tion terms are o�n−�+�� a.s. This is done here for D�
̂� +̂�Ên�m̂− 
̂�2 −D�
�+�En�m−
�2 and
D�
̂� +̂�Ên2�m̂− 
̂�3−D�
�+�En2�m−
�3. The calculations for the remaining moments are similar
but much lengthier. Lemma 13 implies that D�
̂� +̂�−D�
�+�=O�n−�+�� a.s., so it suffices to show
that Ên�m̂− 
̂�2 −En�m−
�2 and Ên2�m̂− 
̂�3−En2�m−
�3 are O�n−�+��.

First consider Ên�m̂− 
̂�2 −En�m−
�2. Let �Jn	 be an increasing sequence of positive integers
such that Jn/ logn→ b for some finite constant b > 1/2. Then it follows from Lemma 12 that

Ên�m̂− 
̂�2 = +̂0+2
J�∑
j=2

�1− j/n�+̂j +o�n−1/2� a.s.

It further follows from Lemma 13 that Ên�m̂− 
̂�2 −En�m−
�2 = o�n−�+�� a.s. for any � > 0. Now
consider Ên3/2�m̂− 
̂�3−En3/2�m−
�3. Let Vi =Xi −
 and V̂i = X̂i − 
̂. Then

n2�m̂− 
̂�3 = 1
n

n∑
i�j�k=1

V̂iV̂j V̂k

= 1
n

n∑
i=1

V̂ 3
i +

1
n

n−1∑
i=1

n∑
j=i+1

�V̂ 2
i V̂j + V̂iV̂

2
j �+

6
n

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

V̂iV̂j V̂k�

Since the bootstrap DGP is stationary, some algebra shows that

Ên2�m̂− 
̂�3 = ÊV̂ 3
1 +

n−1∑
i=1

�1− i/n�Ê�V̂ 2
1 V̂1+i + V̂1V̂

2
1+i�

+6
n−2∑
i=1

n−i−1∑
j=1

�1− �i+ j�/n�ÊV̂1V̂1+iV̂1+i+j �
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Define Jn as before. By Lemma 12 and Billingsley’s inequality (Bosq (1996, inequality (1.11))),

Ên2�m̂− 
̂�3 = ÊV̂ 3
1 +

Jn∑
i=1

�1− i/n�Ê�V̂ 2
1 V̂1+i + V̂1V̂

2
1+i�

+6
Jn∑
i=1

min�n−i−1�Jn�∑
j=1

�1− �i+ j�/n�ÊV̂1V̂1+iV̂1+i+j +o�n−1/2� a�s�

A similar argument shows that

En2�m−
�3 = EV 3
1 +

Jn∑
i=1

�1− i/n�E�V 2
1 V1+i +V1V

2
1+i�

+6
Jn∑
i=1

min�n−i−1�Jn�∑
j=1

�1− �i+ j�/n�EV1V1+iV1+i+j +o�n1/2��

Now apply Lemma 13. Q.E.D.

A�2� Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1: Under Assumptions 3–4, Tn is a smooth function of sample moments.
Therefore, Theorem 2.8 of Götze and Hipp (1983) and arguments like those used to prove Theorem 2
of Bhattacharya and Ghosh (1978) establish expansions (2.6) and (2.7). Repetition of Götze’s and
Hipp’s proof shows that the expansions (2.8) and (2.9) are also valid. The theorem follows from
Lemma 14 and the fact that g1 and g2 in (2.6)–(2.9) are polynomial functions of the components of
� and �̂. Q.E.D.

Proof of Theorem 3.2: Equations (2.13) and (2.14) follow from Theorem 3.1. Cornish-Fisher
inversions of (2.13) and (2.14) yield (2.15)–(2.18). The theorem follows by applying Lemma 14 and
the delta method to (2.18). Q.E.D.

A�3� Proofs of Theorems 4.1–4.2

Assumptions 1 and 5–10 hold throughout this section.

Lemma 15: For any � > 0,

lim
n→�

n1/2−�	!n −!0	 = 0 a�s�

Proof: This follows from Lemmas 3 and 4 of Andrews (1999) and the Borel-Cantelli Lemma.

Lemma 16: Define Sn = n−1∑n
i=1+ V ��i� !0�� Ŝn = n−1∑n

i=1+ V ��̂i� !n�, S = E�Sn�, and Ŝ =
Ê�Ŝn�. There is an infinitely differentiable function , such that , �S�= , �Ŝ�= 0,

lim
n→�

sup
z

n3/2�P�tnr ≤ z�−P�n1/2, �Sn�≤ z�� = 0�

and

lim
n→�

sup
z

n3/2 �̂P�t̂nr ≤ z�− P̂�n1/2, �Ŝn�≤ z�� = 0 a�s�

Proof: This is a slightly modified version of Lemma 13 of Andrews (1999) and is proved using
the methods of proof of that lemma. Q.E.D.
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Proof of Theorem 4.1: P�n1/2, �Sn�≤ z� has an Edgeworth expansion. By Lemma 16, P�tnr ≤
z� has the same expansion to O�n−3/2�, and

P�tnr ≤ z�=��z�+
2∑

j=1

n−j/2�j�z�����z�+O�n−3/2�

uniformly over z, where � is an infinitely differentiable function of the following moments: En�Sn −
S�2� En2�Sn −S�3, and En2�Sn −S�4. Similarly,

P̂ �t̂nr ≤ z�=��z�+
2∑

j=1

n−j/2�j�z� �̂���z�+O�n−3/2�

uniformly over z a.s., where �̂ is an infinitely differentiable function of Ên�Ŝn− Ŝ�2� Ên2�Ŝn− Ŝ�3, and
Ên2�Ŝn − Ŝ�4. It is easy to see that the conclusion of Lemma 13 holds for moments of V ��i� !0� and
V ��̂i� !0�. Lemma 15 implies that V ��̂i� !n� can be replaced with V ��̂i� !0� in moments comprising
�̂. Therefore, the conclusion of Lemma 14 holds for 	�̂−�	, and the theorem is proved. Q.E.D.

Proof of Theorem 4.2: Let T̃n be the version of Tn that is obtained by sampling �X
�q�
j 	. Let

P̃ be the probability measure corresponding to T̃n. Repetition of the steps leading to the conclusions
of Theorems 3.1 and 3.2 shows that for every � > 0

sup
z

�̂P�T̂n ≤ z�− P̃�T̃n ≤ z�� = o�n−1+���

sup
z

�̂P��T̂n� ≤ z�− P̃��T̃n� ≤ z�� = o�n−3/2+�� a.s.�

and

P̃��T̃n�> ẑn
�= 
+o�n−3/2+���

Therefore, it suffices to show that

sup
z

�̃P�T̃n ≤ z�−P�Tn ≤ z�� = �n−3/2+���

P̃�T̃n ≤ z� and P�Tn ≤ z� have Edgeworth expansions, so it is enough to show that 	�̃−�	=O�n1/2+��,
where �̃ = �k̃12� k̃22� k̃31� k̃41� and k̃ij is defined as in Lemma 14 but relative to the distribution of
T̃n instead of the distribution of Tn. As in the proof of Lemma 14, 	�̃−�	 = O�n−1/2+�� follows if
�Ẽ(�u�−E(�u�� =O�n−1/2+�� for any �> 0, where Ẽ denotes the expectation relative to the measure
induced by �X

�q�
j 	. Let )j = �Xj−1�Xj−2� � � � 	. Define (�u�, rn, the multi-index w, and �w� as in the

proof of Lemma 7. Then for a suitable constant C1 <�,

�Ẽ(�u�−E(�u�� ≤
∫
�(�u��

∣∣∣∣ k∏
i=j

f �q��xi�yi�−
k∏

i=j+q

f �xi�)i�

∣∣∣∣dxj · · ·dxkdPw�)j�

≤ C1

∫ ∣∣∣∣ k∏
i=j

f �q��xi�yi�−
k∏

i=j+q

f �xi�)i�

∣∣∣∣dxj · · ·dxkdPw�)j�

= C1Sn�

where

Sn =
∑
�w�≥1

∫ [ k∏
i=j

f �xi�)i�
1−wi �f �q��xi�yi�− f �xi�)i��wi

]
dxj · · ·dxkdP)�)j��

Each value of �w� generates rn!/��w�!�rn −�w���! terms in the sum on the right-hand side of Sn. Each
term is bounded by �C2e

−bq��w� for some constant C2 <�. Therefore,

Sn ≤
∑
�w�≥1

rn!
�w�!�rn −�w��! �C2e

−bq��w� = �1+C2e
−bq�rn −1�

Sn =O�n−1/2+�� for any � > 0 follows from rn =O�logn� and q = c�logn�2. Q.E.D.
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