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CO-INTEGRATION AND ERROR CORRECTION:
REPRESENTATION, ESTIMATION, AND TESTING

By ROBERT F. ENGLE AND C. W. J. GRANGER'

The relationship between co-integration and error correction models, first suggested in
Granger (1981), is here extended and used to develop estimation procedures, tests, and
empirical examples.

If each element of a vector of time series x, first achieves stationarity after differencing,
but a linear combination a'x, is already stationary, the time series x, are said to be
co-integrated with co-integrating vector a. There may be several such co-integrating vectors
so that @ becomes a matrix. Interpreting a'x, =0 as a long run equilibrium, co-integration
implies that deviations from equilibrium are stationary, with finite variance, even though
the series themselves are nonstationary and have infinite variance.

The paper presents a representation theorem based on Granger (1983), which connects
the moving average, autoregressive, and error correction representations for co-integrated
systems. A vector autoregression in differenced variables is incompatible with these rep-
resentations. Estimation of these models is discussed and a simple but asymptotically
efficient two-step estimator is proposed. Testing for co-integration combines the problems
of unit root tests and tests with parameters unidentified under the null. Seven statistics are
formulated and analyzed. The critical values of these statistics are calculated based on a
Monte Carlo simulation. Using these critical values, the power properties of the tests are
examined and one test procedure is recommended for application.

In a series of examples it is found that consumption and income are co-integrated,
wages and prices are not, short and long interest rates are, and nominal GNP is co-integrated
with M2, but not M1, M3, or aggregate liquid assets.

KEYWORDSs: Co-integration, vector autoregression, unit roots, error correction, multi-
variate time series, Dickey-Fuller tests.

1. INTRODUCTION

AN INDIVIDUAL ECONOMIC VARIABLE, viewed as a time series, can wander exten-
sively and yet some pairs of series may be expected to move so that they do not
drift too far apart. Typically economic theory will propose forces which tend to
keep such series together. Examples might be short and long term interest rates,
capital appropriations and expenditures, household income and expenditures,
and prices of the same commodity in different markets or close substitutes in the
same market. A similar idea arises from considering equilibrium relationships,
where equilibrium is a stationary point characterized by forces which tend to
push the economy back toward equilibrium whenever it moves away. If x, is a
vector of economic variables, then they may be said to be in equilibrium when
the specific linear constraint

a'x,=0

' The authors are indebted to David Hendry and Sam Yoo for many useful conversations and
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SES-80-08580 and SES-82-08626. A previous version of this paper was entitled “Dynamic Model
Specification with Equilibrium Constraints: Co-integration and Error Correction.”
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occurs. In most time periods, x, will not be in equilibrium and the univariate
quantity

z,=a'x,

may be called the equilibrium error. If the equilibrium concept is to have any
relevance for the specification of econometric models, the economy should appear
to prefer a small value of z, rather than a large value.

In this paper, these ideas are put onto a firm basis and it is shown that a class
of models, known as error-correcting, allows long-run components of variables
to obey equilibrium constraints while short-run components have a flexible
dynamic specification. A condition for this to be true, called co-integration, was
introduced by Granger (1981) and Granger and Weiss (1983) and is precisely
defined in the next section. Section 3 discusses several representations of co-
integrated systems, Section 4 develops estimation procedures, and Section 5
develops tests. Several applications are presented in Section 6 and conclusions
are offered in Section 7. A particularly simple example of this class of models is
shown in Section 4, and it might be useful to examine it for motivating the
analysis of such systems.

2. INTEGRATION, CO-INTEGRATION, AND ERROR CORRECTION

It is well known from Wold’s theorem that a single stationary time series with
no deterministic components has an infinite moving average representation which
is generally approximated by a finite autoregressive moving average process. See,
for example, Box and Jenkins (1970) or Granger and Newbold (1977). Commonly
however, economic series must be differenced before the assumption of station-
arity can be presumed to hold. This motivates the following familiar definition
of integration:

DEFINITION: A series with no deterministic component which has a stationary,
invertible, ARMA representation after differencing d times, is said to be integrated
of order d, denoted x, ~ I(d).

For ease of exposition, only the values d =0 and d =1 will be considered in
much of the paper, but many of the results can be generalized to other cases
including the fractional difference model. Thus, for d =0 x, will be stationary
and for d =1 the change is stationary.

There are substantial differences in appearance between a series that is 1(0)
and another that is I(1). For more discussion see, for example, Feller (1968) or
Granger and Newbold (1977).

(a) If x,~I(0) with zero mean then (i) the variance of x, is finite; (ii) an
innovation has only a temporary effect on the value of x,; (iii) the spectrum of
x,, f(w), has the property 0 <f(0) <oo; (iv) the expected length of times between
crossings of x=0 is finite; (v) the autocorrelations, p,, decrease steadily in
magnitude for large enough k, so that their sum is finite.
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(b) If x,~I(1) with x,=0, then (i) variance x, goes to infinity as t goes to
infinity; (ii) an innovation has a permanent effect on the value of x,, as x, is the
sum of all previous changes; (iii) the spectrum of x, has the approximate shape
f(o)~ Ao ? for small o so that in particular f(0) =o0; (iv) the expected time
between crossings of x =0 is infinite; (v) the theoretical autocorrelations, p, > 1
for all k as t- co.

The theoretical infinite variance for an I(1) series comes completely from the
contribution of the low frequencies, or long run part of the series. Thus an I(1)
series is rather smooth, having dominant long swings, compared to an I(0) series.
Because of the relative sizes of the variances, it is always true that the sum of
an I(0) and an I(1) will be I(1). Further, if a and b are constants, b # 0, and if
x,~1(d), then a+ bx, is also I(d).

If x, and y, are both I(d), then it is generally true that the linear combination

Z, =X, — ay,

will also be I(d). However, it is possible that z,~I(d —b), b>0. When this
occurs, a very special constraint operates on the long-run components of the
series. Consider the case d =b =1, so that x,, y, are both I(1) with dominant
long run components, but z, is I(0) without especially strong low frequencies.
The constant a is therefore such that the bulk of the long run components of x,
and y, cancel out. For a =1, the vague idea that x, and y, cannot drift too far
apart has been translated into the more precise statement that “their difference
will be I(0).” The use of the constant a merely suggests that some scaling needs
to be used before the I(0) difference can be achieved. It should be noted that it
will not generally be true that there is an a which makes z, ~ I(0).

An analogous case, considering a different important frequency, is when x,
and y, are a pair of series, each having important seasonal component, yet there
is an a so that the derived series z, has no seasonal. Clearly this could occur,
but might be considered to be unlikely.

To formalize these ideas, the following definition adapted from Granger (1981)
and Granger and Weiss (1983) is introduced:

DEerFINITION: The components of the vector x, are said to be co-integrated of
order d, b, denoted x, ~ CI(d, b), if (i) all components of x, are I(d); (ii) there
exists a vector a(#0) so that z,=a'x,~I(d —b), b>0. The vector « is called
the co-integrating vector.

Continuing to concentrate on the d =1, b =1 case, co-integration would mean
that if the components of x, were all I(1), then the equilibrium error would be
I1(0), and z, will rarely drift far from zero if it has zero mean and z, will often
cross the zero line. Putting this another way, it means that equilibrium will
occasionally occur, at least to a close approximation, whereas if x, was not
co-integrated, then z, can wander widely and zero-crossings would be very rare,
suggesting that in this case the equilibrium concept has no practical implications.
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The reduction in the order of integration implies a special kind of relationship
with interpretable and testable consequences. If however all the elements of x,
are already stationary so that they are 1(0), then the equilibrium error z, has no
distinctive property if it is 1(0). It could be that z, ~ I(—1), so that its spectrum
is zero at zero frequency, but if any of the variables have measurement error,
this property in general cannot be observed and so this case is of little realistic
interest. When interpreting the co-integration concept it might be noted that in
the N=2, d =b=1 case, Granger and Weiss (1983) show that a necessary and
sufficient condition for co-integration is that the coherence between the two series
is one at zero frequency.

If x, has N components, then there may be more than one cointegrating vector
a. It is clearly possible for several equilibrium relations to govern the joint
behavior of the variables. In what follows, it will be assumed that there are exactly
r linearly independent co-integrating vectors, with r< N — 1, which are gathered
together into the N X r array . By construction the rank of a will be r which
will be called the “co-integrating rank™ of x,.

The close relationship between co-integration and error correcting models will
be developed in the balance of the paper. Error correction mechanisms have
been used widely in economics. Early versions are Sargan (1964) and Phillips
(1957). The idea is simply that a proportion of the disequilibrium from one period
is corrected in the next period. For example, the change in price in one period
may depend upon the degree of excess demand in the previous period. Such
schemes can be derived as optimal behavior with some types of adjustment costs
or incomplete information. Recently, these models have seen great interest follow-
ing the work of Davidson, Hendry, Srba, and Yeo (1978) (DHSY), Hendry and
von Ungern Sternberg (1980), Currie (1981), Dawson (1981), and Salmon (1982)
among others.

For a two variable system a typical error correction model would relate the
change in one variable to past equilibrium errors, as well as to past changes in
both variables. For a multivariate system we can define a general error correction
representation in terms of B, the backshift operator, as follows.

DEFINITION: A vector time series x, has an error correction representation if
it can be expressed as:

A(B)(1 _B)xt ==Yzt Yy

where u, is a stationary multivariate disturbance, with A(0)=1, A(1) has all
elements finite, z. = a'x,, and y#0.

In this representation, only the disequilibrium in the previous period is an
explanatory variable. However, by rearranging terms, any set of lags of the z can
be written in this form, therefore it permits any type of gradual adjustment toward
a new equilibrium. A notable difference between this definition and most of the
applications which have occurred is that this is a multivariate definition which
does not rest on exogeneity of a subset of the variables. The notion that one
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variable may be weakly exogenous in the sense of Engle, Hendry, and Richard
(1983) may be investigated in such a system as briefly discussed below. A second
notable difference is that « is taken to be an unknown parameter vector rather
than a set of constants given by economic theory.

3. PROPERTIES OF CO-INTEGRATED VARIABLES AND THEIR REPRESENTATIONS

Suppose that each component of x, is I(1) so that the change in each component
is a zero mean purely nondeterministic stationary stochastic process. Any known
deterministic components can be subtracted before the analysis is begun. It
follows that there will always exist a multivariate Wold representation:

(3.1)  (1-B)x,=C(B)s,

taken to mean that both sides will have the same spectral matrix. Further, C(B)
will be uniquely defined by the conditions that the function det [C(z)], z=e",
have all zeroes on or outside the unit circle, and that C(0)=1I,, the NX N
identity matrix (see Hannan (1970, p. 66)). In this representation the &, are zero

mean white noise vectors with
 E[ee]=0, t#s,
=G, t=s,

so that only contemporaneous correlations can occur.
The moving average polynomial C(B) can always be expressed as

(3.2) C(B)=C(1)+(1-B)C*(B)

by simply rearranging the terms. If C(B) is of finite order, then C*(B) will be
of finite order. If C*(1) is identically zero, then a similar expression involving
(1— B)? can be defined.

The relationship between error correction models and co-integration was first
pointed out in Granger (1981). A theorem showing precisely that co-integrated
series can be represented by error correction models was originally stated and
proved in Granger (1983). The following version is therefore called the Granger
Representation Theorem. Analysis of related but more complex cases is covered
by Johansen (1985) and Yoo (1985).

GRANGER REPRESENTATION THEOREM: If the N X1 vector x, given in (3.1)
is co-integrated with d =1, b =1 and with co-integrating rank r, then:

(1) C(Q1) is of rank N —r.

(2) There exists a vector ARMA representation

(3.3) A(B)x,=d(B)g,

with the properties that A(1) has rank r and d(B) is a scalar lag polynomial with
d(1) finite, and A(0) = I. When d(B) =1, this is a vector autoregression.
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(3) There exist N X r matrices, a, vy, of rank r such that

a’'C(1)=0,
C(1)y=0,
A(l)=ya'.

(4) There exists an error correction representation with z, = a'x,, an r X 1 vector
of stationary random variables:

(34) A*(B)(I—B)x,=—}/Z,,l'f'd(B)E,

with A*(0) = I.
(5) The vector z, is given by

(3.5) z,= K(B)e,,
(3.6) (1"3)2;=—a'7’z:-1+1(3)8r,

where K(B) is an rx N matrix of lag polynomials given by o'C*(B) with all
elements of K(1) finite with rank r, and det (a'y)> 0.

(6) If a finite vector autoregressive representation is possible, it will have the form
given by (3.3) and (3.4) above with d(B) =1 and both A(B) and A*(B) as matrices
of finite polynomials.

In order to prove the Theorem the following lemma on determinants and
adjoints of singular matrix polynomials is needed.

LEMMA 1: If G(A) is a finite valued N x N matrix polynomial on X €[0, 1],
with rank G(0)= N —r for 0<r< N, and if G¥*(0) #0 in
G(A)=G(0)+A1G*(r),
then
i) det (G(A))=A"g(A)IN with g(0) finite,
(ii) Adj (G(A))=A"""H(1),
where I is the N X N identity matrix, 1< rank (H(0))<r, and H(0) is finite.

Proor: The determinant of G can be expressed in a power series in A as
det (G(A)=Y &A'
i=0

Each §; is a sum of a finite number of products of elements of G(A) and therefore
is itself finite valued. Each has some terms from G(0) and some from AG*(A).
Any product with more than N —r terms from G(0) will be zero because this
will be the determinant of a submatrix of larger order than the rank of G(0).
The only possible non-zero terms will have r or more terms from AG*(A) and
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therefore will be associated with powers of A of r or more. The first possible
nonzero §; is §,.
Defining

gM) =X A"

establishes the first part of the lemma since 8, must be finite.
To establish the second statement, express the adjoint matrix of G in a power
series in A:

AdjG(A) =Y A'H,
i=0

i

Since the adjoint is a matrix composed of elements which are determinants of
order N —1, the above argument establishes that the first r—1 terms must be
identically zero. Thus

AdjG(A)=A"""'Y ATTH,
r—1

=A""H(A).

Because the elements of H,_, are products of finitely many finite numbers, H(0)
must be finite.
The product of a matrix and its adjoint will always give the determinant so:

A'g(M) Iy =(G(0)+AG*(A))H(A)
=GOYHMA '+ h(A)G*(A)A"
Equating powers of A we get
G(0)H(0)=0.

Thus the rank of H(0) must be less than or equal to r as it lies entirely in the
column null space of the rank N —r matrix G(0). If r=1, the first term in the
expression for the adjoint will simply be the adjoint of G(0) which will have
rank 1 since G(0) has rank N —1. Q.E.D.

PrROOF OF GRANGER REPRESENTATION THEOREM: The conditions of the
Theorem suppose the existance of a Wold representation as in (3.1) for an N
vector of random variables x, which are co-integrated. Suppose the co-integrating
vector is « so that

z, =a'x,

is an r-dimensional stationary purely nondeterministic time series with invertible
moving average representation. Multiplying « times the moving average rep-
resentation in (3.1) gives

(1-B)z,=(a’'C(1)+(1—B)a'C*(B))s,.
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For z, to be 1(0), a’C(1) must equal 0. Any vector with this property will be a
co-integrating vector; therefore C(1) must have rank N —r with a null space
containing all co-integrating vectors. It also follows that o’C*(B) must be an
invertible moving average representation and in particular o’ C*(1) # 0. Otherwise
the co-integration would be with b=2 or higher.

Statement (2) is established using Lemma 1, letting A =(1—B), G(A) = C(B),
H(A)=A(B), and g(A)=d(B). Since C(B) has full rank and equals I at B=0,
its inverse is A(0) which is also Iy.

Statement (3) follows from recognition that A(1) has rank between 1 and r
and lies in the null space of C(1). Since a spans this null space, A(1) can be
written as linear combinations of the co-integrating vectors

A(l) = ya'.

Statement (4) follows by manipulation of the autoregressive structure. Rear-
ranging terms in (3.3) gives:

[A(B)+A(1)](1-B)x,=—A(1)x,, +d(B)e,,
A*(B)(1-B)x,=—vyz,_,+d(B)g,

A*(0)= A(0) = I.

The fifth condition follows from direct substitution in the Wold representation.
The definition of co-integration implies that this moving average be stationary
and invertible. Rewriting the error correction representation with A*(B)=
I+ A**(B) where A**(0) =0, and premultiplying by ' gives:

(1-B)z,=—a'yz,_+[a'd(B)+ a’A**(B)C(B)]e,
=—a'yz,_;+J(B)s,.

For this to be equivalent to the stationary moving average representation the
autoregression must be invertible. This requires that det (a'y)> 0. If the deter-
minant were zero then there would be at least one unit root, and if the determinant
were negative, then for some value of w between zero and one,

det (I, = (I, — a'y)w) =0,

implying a root inside the unit circle.
Condition six follows by repeating the previous steps, setting d(B)=1.
Q.E.D.

Stronger results can be obtained by further restrictions on the multiplicity of
roots in the moving average representations. For example, Yoo (1985), using
Smith Macmillan forms, finds conditions which establish that d (1) # 0, that A*(1)
is of full rank, and that facilitate the transformation from error correction models
to co-integrated models. However, the results given above are sufficient for the
estimation and testing problems addressed in this paper.
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The autoregressive and error correction representations given by (3.3) and (3.4)
are closely related to the vector autoregressive models so commonly used in
econometrics, particularly in the case when d(B) can reasonably be taken to be
1. However, each differs in an important fashion from typical VAR applications.
In the autoregressive representation

A(B)x, =&,

the co-integration of the variables x, generates a restriction which makes A(1)

singular. For r =1, this matrix will only have rank 1. The analysis of such systems

from an innovation accounting point of view is treacherous as some numerical

approaches to calculating the moving average representation are highly unstable.
The error correction representation

A*(B)(1-B)x, = —va'x,_;+eg

looks more like a standard vector autoregression in the differences of the data.
Here the co-integration is implied by the presence of the levels of the variables
so a pure VAR in differences will be misspecified if the variables are co-integrated.

Thus vector autoregressions estimated with co-integrated data will be mis-
specified if the data are differenced, and will have omitted important constraints
if the data are used in levels. Of course, these constraints will be satisfied
asymptotically but efficiency gains and improved multistep forecasts may be
achieved by imposing them.

As x,~I(1), z, ~ I(0), it should be noted that all terms in the error correction
models are I(0). The converse also holds; if x, ~ I(1) are generated by an error
correction model, then x, is necessarily co-integrated. It may also be noted that
if x, ~ 1(0), the generation process can always be written in the error correction
form and so, in this case, the equilibrium concept has no impact.

As mentioned above, typical empirical examples of error correcting behavior
are formulated as the response of one variable, the dependent variable, to shocks
of another, the independent variable. In this paper all the variables are treated
as jointly endogenous; nevertheless the structure of the model may imply various
Granger causal orderings and weak and strong exogeneity conditions as in Engle,
Hendry, and Richard (1983). For example, a bivariate co-integrated system must
have a causal ordering in at least one direction. Because the z’s must include
both variables and y cannot be identically zero, they must enter into one or both
of the equations. If the error correction term enters into both equations, neither
variable can be weakly exogenous for the parameters of the other equation
because of the cross equation restriction.

The notion of co-integration can in principle be extended to series with trends
or explosive autoregressive roots. In these cases the co-integrating vector would
still be required to reduce the series to stationarity. Hence the trends would have
to be proportional and any explosive roots would have to be identical for all the
series. We do not consider these cases in this paper and recognize that they may
complicate the estimation and testing problems.
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4. ESTIMATING CO-INTEGRATED SYSTEMS

In defining different forms for co-integrated systems, several estimation pro-
cedures have been implicitly discussed. Most convenient is the error correction
form (particularly if it can be assumed that there is no moving average term).
There remain cross-equation restrictions involving the parameters of the co-
integrating vectors; and therefore the maximum likelihood estimator, under
Gaussian assumptions, requires an iterative procedure.

In this section, we will propose another estimator which is a two step estimator.
In the first step the parameters of the co-integrating vector are estimated and in
the second these are used in the error correction form. Both steps require only
single equation least squares and it will be shown that the result is consistent for
all the parameters. The procedure is far more convenient because the dynamics
do not need to be specified until the error correction structure has been estimated.
As a byproduct we obtain some test statistics useful for testing for co-integration.

From (3.5) the sample moment matrix of the data can be directly expressed.
Let the moment matrix divided by T be denoted by:

My =1/T*Yxx,.
1

Recalling that z, = a'x,, (3.5) implies that
a'M; =Y [K(B)e]x!/ T

Following the argument of Dickey and Fuller (1979) or Stock (1984), it can be
shown that for processes satisfying (3.1),

(4.1) lim E(My)=M a finite nonzero matrix,

T-ox
and
(4.2) a'M=0, or (veca)(I®M)=0.

Although the moment matrix of data from a co-integrated process will be
nonsingular for any sample, in the limit, it will have rank N —r. This accords
well with the common observation that economic time series data are highly
collinear so that moment matrices may be nearly singular even when samples
are large. Co-integration appears to be a plausible hypothesis from a data analytic
point of view.

Equations (4.2) do not uniquely define the co-integrating vectors unless
arbitrary normalizations are imposed. Let ¢ and Q be arrays which incorporate
these normalizations by reparametrizing « into 6, a jx 1 matrix of unknown
parameters which lie in a compact subset of R’:

(4.3) vec a = g+ Q6.

Typically g and Q will be all zeros and ones, thereby defining one coefficient in
each column of « to be unity and defining rotations if r > 1. The parameters 0
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are said to be “identified” if there is a unique solution to (4.2), (4.3). This solution
is given by

(44) (IOM)QI=—(I®M)q

where by the assumption of identification, (I® M)Q has a left inverse even
though M does not.

As the moment matrix My will have full rank for finite samples, a reasonable
approach to estimation is to minimize the sum of squared deviations from
equilibrium. In the case of a single co-integrating vector, @ will minimize o’ Mra
subject to any restrictions such as (4.3) and the result will be simply ordinary
least squares. For multiple co-integrating vectors, define @ as the minimizer of
the trace (a’'Mra). The estimation problem becomes:

Min tr (o' Mya) =Min vec a'(I® M) vec a

as.1.(4.3) as.t. (4.3)

=Min (g+ Q8)'(I® My)(g+ Q9),

which implies the solution
(45)  6=—(QUOM)Q)(QU®OM7)q), vecd =g+ Q0.

This approach to estimation should provide a very good approxir.ition to the
true co-integrating vector because it is seeking vectors with minimal residual
variance and asymptotically all linear combinations of x will have infinite variance
except those which are co-integrating vectors.

When r =1 this estimate is obtained simply by regressing the variable normal-
ized to have a unit coefficient upon the other variables. This regression will be
called the “‘co-integrating regression” as it attempts to fit the long run or equili-
brium relationship without worrying about the dynamics. It will be shown to
provide an estimate of the elements of the co-integrating vector. Such a regression
has been pejoratively called a “spurious” regression by Granger and Newbold
(1974) primarily because the standard errors are highly misleading. They were
particularly concerned about the non-co-integrated case where there was no
relationship but the unit root in the error process led to a low Durbin Watson,
a high R?, and apparently high significance of the coefficients. Here we only seek
coefficient estimates to use in the second stage and for tests of the equilibrium
relationship. The distribution of the estimated coefficients is investigated in Stock
(1984).

When N =2, there are two possible regressions depending on the normalization
chosen. The nonuniqueness of the cstimate derives from the well known fact that
the least squares fit of a reverse regression will not give the reciprocal of the
coefficient in the forward regression. In this case, however, the normalization
matters very little. As the moment matrix approaches singularity, the R?
approaches 1 which is the product of the forward and reverse regression
coefficients. This would be exactly true if there were only two data points which,
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of course, defines a singular matrix. For variables which are trending together,
the correlation approaches one as each variance approaches infinity. The
regression line passes nearly through the extreme points almost as if there were
just two observations.

Stock (1984) in Theorem 3 proves the following proposition:

PROPOSITION 1: Suppose that x, satisfies (3.1) with C*(B) absolutely summable,
that the disturbances have finite fourth absolute moments, and that x, is co-integrated
(,.1’ 1) with r co-integrating vectors satisfying (4.3) which identify 6. Then, defining
6 by (4.5),

(46) T'%6-6) > 0 for 8>0.

The proposition establishes that the estimated parameters converge very rapidly
to their probability limits. It also establishes that the estimates are consistent with
a finite sample bias of order 1/ T. Stock presents some Monte Carlo examples to
show that these biases may be important for small samples and gives expressions
for calculating the limiting distribution of such estimates.

The two step estimator proposed for this co-integrated system uses the estimate
of a from (4.5) as a known parameter in estimating the error correction form of
the system of equations. This substantially simplifies the estimation procedure
by imposing the cross-equation restrictions and allows specification of the
individual equation dynamic patterns separately. Notice that the dynamics did
not have to be specified in order to estimate . Surprisingly, this two-step estimator
has excellent properties; as shown in the Theorem below, it is just as efficient as
the maximum likelihood estimator based on the known value of a.

THEOREM 2: The two-step estimator of a single equation of an error correction
system, obtained by taking & from (4.5) as the true value, will have the same limiting
distribution as the maximum likelihood estimator using the true value of a. Least
squares standard errors will be consistent estimates of the true standard errors.

Proor: Rewrite the first equation of the error correction system (3.4) as
Y=Y+t WB+e +vy(z_1— %),
z, = X,
7, = X4,

where X, = x;, W is an array with selected elements of Ax,_; and y is an element
of Ax, so that all regressors are I(0). Then letting the same variables without
subscripts denote data arrays,

ﬁ[g __g] =[(5 W)'(Z W)/TT'[( W) (e +y)(z—£)]/VT.
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This expression simplifies because Z'(z—Z2)=0. From Fuller (1976) or Stock
(1984), X'X/T? and X'W/ T are both of order 1. Rewriting,

W'(z=2)/NT=[WX/TIT(a-&)I1/VT],

and therefore the first and second factors to the right of the equal sign are of
order 1 and the third goes to zero so that the entire expression vanishes asymptoti-
cally. Because the terms in (z —7)/+/T vanish asymptotically, least squares stan-
dard errors will be consistent.

Letting S=plim[(Z, W)'(Z, W)/ T],

dK —7] A 2 @1
VT [ B -8 D(0,5*5™")
where D represents the limiting distribution. Under additional but standard
assumptions, this could be guaranteed to be normal.

To establish that the estimator using the true value of « has the same limiting
distribution it is sufficient to show that the probability limit of [(z, W)'(z, W)/ T]
is also S and that z'e /+/T has the same limiting distribution as 7’¢ /+/T. Examining
the off diagonal terms of S first,

FW/T-2W/T=T(G-a)[WX/TI1/T).

The first and second factors are of order 1 and the third is 1/ T so the entire
expression vanishes asymptotically:

(2-2)(2-2)/T=2'z/T-%2%/T
=T(&d—a)[X'X/T*]T(a—a)(1/T).
Again, the first three factors are of order 1 and the last is 1/ T so even though

the difference between these covariance matrices is positive definite, it will vanish
asymptotically. Finally,

(2-2)e/NT=T(a@a—a)[X'e/ TIN/VT,

which again vanishes asymptotically.

Under standard conditions the estimator using knowledge of a will be
asymptotically normal and therefore the two-step estimator will also be asymptoti-
cally normal under these conditions. This completes the proof. Q.E.D.

A simple example will illustrate many of these points and motivate the approach
to testing described in the next section. Suppose there are two series, x,, and x,,,
which are jointly generated as a function of possibly correlated white noise
disturbances €,, and &,, according to the following model:

(4.7) X1+ BXo =Uy, Uy =Up—1 T Eqy,
(4.8) Xt aXy = Uy, Uy =ply it ey, |p|<l.

Clearly the parameters @ and B are unidentified in the usual sense as there are
no exogenous variables and the errors are contemporaneously correlated. The
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reduced form for this system will make x,, and x,, linear combinations of u,,
and u,, and therefore both will be I(1). The second equation describes a particular
linear combination of the random variables which is stationary. Hence x,, and
x,, are CI(1, 1) and the question is whether it would be possible to detect this
and estimate the parameters from a data set.

Surprisingly, this is easy to do. A linear least squares regression of x;, on x5,
produces an excellen: estimate of a. This is the “‘co-integrating regression.” All
linear combinations of x,, and x,, except that defined in equation (4.8) will have
infinite variance and, therefore, least squares is easily able to estimate a. The
correlation between x,, and u,, which causes the simultaneous equations bias is
of a lower order in T than the variance of x,,. In fact the reverse regression of
X,, on x,;, has exactly the same property and thus gives a consistent estimate of
1/a. These estimators converge even faster to the true value than standard
econometric estimates.

While there are other consistent estimates of «, several apparently obvious
choices are not. For example, regression of the first differences of x, on the
differences of x, will not be consistent, and the use of Cochrane Orcutt or other
serial correlation correction in the co-integrating regression will produce incon-
sistent estimates. Once the parameter a has been estimated, the others can be
estimated in a variety of ways conditional on the estimate of a.

The model in (4.7) and (4.8) can be expressed in the autoregressive repre-.nta-
tion (after subtracting the lagged values from both sides and letting 6=
(1-p)/(a—B)) as:

(4.9) Axy, = Xy, + afdxy—y+ Ny
(4.10)  Axy =—8%,-1— adxy 1+ M2

where the n’s are linear combinations of the &’s. The error correction representa-
tion becomes:

(4.11) Axy, = B0z, + Ny,
(4.12) Ax,y, = =6z, + n,,

where z, = x,;, + ax,,. There are three unknown parameters but the autoregressive
form apparently has four unknown coefficients while the error correction form
has two. Once « is known there are no longer constraints in the error correction
form which motivates the two-step estimator. Notice that if p - 1, the series are
correlated random walks but are no longer co-integrated.

5. TESTING FOR CO-INTEGRATION

It is frequently of interest to test whether a set of variables are co-integrated.
This may be desired because of the economic implications such as whether some
system is in equilibrium in the long run, or it may be sensible to test such
hypotheses before estimating a multivariate dynamic model.
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Unfortunately the set-up is nonstandard and cannot simply be viewed as an
application of Wald, likelihood ratio, or Lagrange multiplier tests. The testing
problem is closely related to tests for unit roots in observed series as initially
formulated by Fuller (1976) and Dickey and Fuller (1979, 1981) and more recently
by Evans and Savin (1981), Sargan and Bhargava (1983), and Bhargava (1984),
and applied by Nelson and Plosser (1983). It also is related to the problem of
testing when some parameters are unidentified under the null as discussed by
Davies (1977) and Watson and Engle (1982).

To illustrate the problems in testing such an hypothesis, consider the simple
model in (4.7) and (4.8). The null hypothesis is taken to be no co-integration or
p =1. If a were known, then a test for the null hypothesis could be constructed
along the lines of Dickey and Fuller taking z, as the series which has a unit root
under the null. The distribution in this case is already nonstandard and was
computed through a simulation by Dickey (1976). However, when « is not known,
it must be estimated from the data. But if the null hypothesis that p =1 is true,
a is not identified. Thus only if the series are co-integrated can a be simply
estimated by the ‘“‘co-integrating regression,” but a test must be based upon the
distribution of a statistic when the null is true. OLS seeks the @ which minimizes
the residual variance and therefore is most likely to be stationary, so the distribu-
tion of the Dickey-Fuller test will reject the null too often if @ must be estimated.

In this paper a set of seven test statistics is proposed for testing the null of
non-co-integration against the alternative of co-integration. It is maintained that
the true system is a bivariate linear vector autoregression with Gaussian errors
where each of the series is individually I(1). As the null hypothesis is composite,
similar tests will be sought so that the probability of rejection will be constant
over the parameter set included in the null. See, for example, Cox and Hinkley
(1974, p. 134-136).

Two cases may be distinguished. In the first, the system is known to be of first
order and therefore the null is defined by

Ay, =€y, [(511)

Ax, = &, (£2:)

(5.1) ]~ N(0, 2).

This is clearly the model implied by (4.11) and (4.12) when p =1 which implies
that 8§ =0. The composite null thus includes all positive definite covariance
matrices {2. It will be shown below that all the test statistics are similar with
respect to the matrix {2 so without loss of generality, we take 2 =1

In the second case, the system is assumed merely to be a stationary linear
system in the changes. Consequently, the null is defined over a full set of stationary
autoregressive and moving average coefficients as well as (2. The “augmented”
tests described below are designed to be asymptotically similar for this case just
as established by Dickey and Fuller for their univariate tests.

The seven test statistics proposed are all calculable by least squares. The critical
values are estimated for each of these statistics by simulation using 10,000
replications. Using these critical values, the powers of the test statistics are
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computed by simulations under various alternatives. A brief motivation of each
test is useful.

1. CRDW. After running the co-integrating regression, the Durbin Watson
statistic is tested to see if the residuals appear stationary. If they are nonstationary,
the Durbin Watson will approach zero and thus the test rejects non-co-integration
(finds co-integration) if DW is too big. This was proposed recently by Bhargava
(1984) for the case where the series is observed and the null and alternative are
first order models.

2. DF. This tests the residuals from the co-integrating regression by running
an auxiliary regression as described by Dickey and Fuller and outlined in Table
I. It also assumes that the first order model is correct.

3. ADF. The augmented Dickey-Fuller test allows for more dynamics in the
DF regression and consequently is over-parametrized in the first order case but
correctly specified in the higher order cases.

4. RVAR. The restricted vector autoregression test is similar to the two step
estimator. Conditional on the estimate of the co-integrating vector from the
co-integrating regression, the error correction representation is estimated. The
test is whether the error correction term is significant. This test requires
specification of the full system dynamics. In this case a first order system is
assumed. By making the system triangular, the disturbances are uncorrelated,
and under normality the ¢ statistics are independent. The test is based on the
sum of the squared ¢ statistics.

5. ARVAR. The augmented RVAR test is the same as RVAR except that a
higher order system is postulated.

6. UVAR. The unrestricted VAR test is based on a vector autoregression in
the levels which is not restricted to satisfy the co-integration constraints. Under
the null, these are not present anyway so the test is simply whether the levels
would appear at all, or whether the model can be adequately expressed entirely
in changes. Again by triangularizing the coefficient matrix, the F tests from the
two regressions can be made independent and the overall test is the sum of the
two F’s times their degrees of freedom, 2. This assumes a first order system again.

7. AUVAR. This is an augmented or higher order version of the above test.

To establish the similarity of these tests for the first order case for all positive
definite symmetric matrices {2, it is sufficient to show that the residuals from the
regression of y on x for general {2 will be a scalar multiple of the residuals for
£ = I To show this, let &,, and &,, be drawn as independent standard normals.
Then

Y= Z €1iy

i=1,1
(5.2)
Xy = ZI E2i,
i=1,t

and

(5.3) U=y, =X 2 XY/ x%
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To generate y* and x* from {2, let

(54) 83k1= Ceyy,

e¥ = ae,, +be,,,
where
=V, a=wo,/c b=0,—0l/0..
Then substituting (5.4) in (5.2)
x*=cx, y*=ay+bx,
u* = y*—x*TyExF/Ia
= ay+bx — cxY.(ay, + bx,) cx, /Y. > x?
= au,

thus showing the exact similarity of the tests. If the same random numbers are
used, the same test statistics will be obtained regardless of (2.

In the more complicated but realistic case that the system is of infinite order
but can be approximated by a p order autoregression, the statistics will only be
asymptotically similar. Although exact similarity is achieved in the Gaussian
fixed regressor model, this is not possible in time series models where one cannot
condition on the regressors; similarity results are only asymptotic. Tests 5 and 7
are therefore asymptotically similar if the p order model is true but tests 1, 2, 4,
and 6 definitely are not even asymptotically similar as these tests omit the lagged
regressors. (This is analogous to the biased standard errors resulting from serially
correlated errors.) It is on this basis that we prefer not to suggest the latter tests
except in the first order case. Test 3 will also be asymptotically similar under the
assumption that u, the residual from the co-integration regression, follows a p
order process. This result is proven in Dickey and Fuller (1981, pp. 1065-1066).
While the assumption that the system is p order allows the residuals to be of
infinite order, there is presumably a finite autoregressive model, possibly of order
less than p, which will be a good approximation. One might therefore suggest
some experimentation to find the appropriate value of p in either case. An
alternative strategy would be to let p be a slowly increasing nonstochastic function
of T, which is closely related to the test proposed by Phillips (1985) and Phillips
and Durlauf (1985). Only substantial simulation experimentation will determine
whether it is preferable to use a data based selection of p for this testing procedure
although the evidence presented below shows that estimation of extraneous
parameters will decrease the power of the tests.

In Table I, the seven test statistics are formally stated. In Table II, the critical
values and powers of the tests are considered when the system is first order. Here
the augmented tests would be expected to be less powerful because they estimate
parameters which are truly zero under both the null and alternative. The other
four tests estimate no extraneous parameters and are correctly specified for this
experiment.

From Table II one can perform a 5 per cent test of the hypothesis of non-co-
integration with the co-integrating regression Durbin Watson test, by simply
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TABLE 1
THE TEST STATISTICS: REJECT FOR LARGE VALUES

1. The Co-integrating Regression Durbin Watson: y, = ax, +c+u,
¢, =DW. The null is DW=0.
2. Dickey Fuller Regression: du, = —¢u,_, +¢,.
& =174 the t statistic for ¢.
3. Augmented DF Regression: Au, = —¢u,_, +b,Au,_+---+bAu,—p+e,.
&3="Tg.
4. Restricted VAR: Ay, = Bu,_,+¢&,,, 4x, = Bou,_,+ yAdy, + ¢,,.
&= 'rf;l + Tf;z.
5. Augmented Restricted VAR: Same as (4) but with p lags of Ay, and Ax, in each equation.
&= ‘rfﬂ + ‘réz.
6. Unrestricted VAR: Ay, =B,y,_,+ Box,_1+ ¢+ €y, Ax, = B3y, + BaxX,—1 + yAy, +c, t €2,.

& =2[F,+F,] where F, is the F statistic for testing B, and B, both equal to zero in
the first equation, and F, is the comparable statistic in the second.

7. Augmented Unrestricted VAR: The same as (6) except for p lags of Ax, and Ay, in each equation.
¥, =2[F+F].

NOTES: y, and x, are the original data sets and u, are the residuals from the co-integrating regression.

checking DW from this regression and, if it exceeds 0.386, rejecting the null and
finding co-integration. If the true model is Model II with p =.9 rather than 1,
this will only be detected 20 per cent of the time; however if the true p = .8 this
rises to 66 per cent. Clearly, test 1 is the best in each of the power calculations
and should be preferred for this set-up, while test 2 is second in almost every
case. Notice also that the augmented tests have practically the same critical values
as the basic tests; however, as expected, they have slightly lower power. Therefore,
if it is known that the system is first order, the extra lags should not be introduced.
Whether a pre-test of the order would be useful remains to be established.

In Table III both the null and alternative hypotheses have fourth order
autoregressions. Therefore the basic unaugmented tests now are misspecified
while the augmented ones are correctly specified (although some of the intervening
lags could be set to zero if this were known). Notice now the drop in the critical
values of tests 1, 4, and 6 caused by their nonsimilarity. Using these new critical
values, test 3 is the most powerful for the local alternative while at p =.8, test 1
is the best closely followed by 2 and 3. The misspecified or unaugmented tests
4 and 6 perform very badly in this situation. Even though they were moderately
powerful in Table II, the performance here dismisses them from consideration.

Although test 1 has the best performance overall, it is not the recommended
choice from this experiment because the critical value is so sensitive to the
particular parameters within the null. For most types of economic data the
differences are not white noise and, therefore, one could not in practice know
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TABLE 11
CRITICAL VALUES AND POWER

1 MODEL: 4y, Ax independent standard normal, 100 observations, 10,000 replications,

p=4.
Critical Values

Statistic Name 1% 5% 10%
1 CRDW S11 .386 322
2 DF 4.07 3.37 3.03
3 ADF 3.77 3.17 2.84
4 RVAR 18.3 13.6 11.0
5 ARVAR 15.8 11.8 9.7
6 UVAR 23.4 18.6 16.0
7 AUVAR 22.6 17.9 15.5

ITMODEL: y,+2x,=u,, Au,=(p—Du,_,+e, x,+y,=v, Adv,=7; p=.38,9, 100
observations, 1000 replications, p =4.

Rejections per 100:p =.9

Statistic Name 1% 5% 10%
1 CRDW 4.8 19.9 33.6
2 DF 2.2 15.4 29.0
3 ADF 1.5 11.0 22.7
4 RVAR 23 11.4 25.3
5 ARVAR 1.0 9.2 17.9
6 UVAR 4.3 13.3 26.1
7 AUVAR 1.6 8.3 16.3

Rejections per 100:p =.8

Statistic Name 1% 5% 10%
1 CRDW 34.0 66.4 82.1
2 DF 20.5 59.2 76.1
3 ADF 7.8 30.9 51.6
4 RVAR 15.8 46.2 67.4
5 ARVAR 4.6 22.4 39.0
6 UVAR 19.0 459 63.7
7 AUVAR 4.8 18.3 334

what critical value to use. Test 3, the augmented Dickey-Fuller test, has essentially
the same critical value for both finite sample experiments, has theoretically the
same large sample critical value for both cases, and has nearly as good observed
power properties in most comparisons, and is therefore the recommended
approach.

Because of its simplicity, the CRDW might be used for a quick approximate
result. Fortunately, none of the best procedures require the estimation of the full
system, merely the co-integrating regression and then perhaps an auxiliary time
series regression.

This analysis leaves many questions unanswered. The critical values have only
been constructed for one sample size and only for the bivariate case, although
recently, Engle and Yoo (1986) have calculated critical values for more variables
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TABLE III
CRITICAL VALUES AND POWER WITH LAGS

MODEL I: 4y, =.84y,_,+¢,, Ax,=.84x,_,+7,; 100 observations, 10,000 replications,
p=4, £, n, independent standard normal.

Critical Values

Statistic Name 1% 5% 10%
1 CRDW .455 .282 .209
2 DF 3.90 3.05 2.71
3 ADF 3.73 3.17 291
4 RVAR 37.2 22.4 17.2
5 ARVAR 16.2 12.3 10.5
6 UVAR 59.0 40.3 31.4
7 AUVAR 28.0 22.0 19.2

MODELIIL: y,+2x,=u, Au=(p—1Du,_,+.84u,_,+e,y +x =0,

Av, = 84v,_,+7,; p=.9,.8. 100 observations, 1000 replications, p = 4.

Rejections per 100: p =.9

Statistic Name 1% 5% 10%
1 CRDW 15.6 39.9 65.6
2 DF 9.4 25.5 37.8
3 ADF 36.0 61.2 72.2
4 RVAR 3 4.4 10.9
5 ARVAR 26.4 48.5 62.8
6 UVAR .0 5 35
7 AUVAR 9.4 26.8 40.3

Rejections per 100: p =.8

Statistic Name 1% 5% 10%
1 CRDW 71.5 96.4 98.6
2 DF 66.8 89.7 96.0
3 ADF 68.9 90.3 94.4
4 RVAR 7.0 424 62.5
5 ARVAR 57.2 80.5 89.3
6 UVAR 2.5 10.8 259
7 AUVAR 322 53.0 67.7

and sample sizes using the same general approach. There is still no optimality
theory for such tests and alternative approaches may prove superior. Research
on the limiting distribution theory by Phillips (1985) and Phillips and Durlauf
(1985) may lead to improvements in test performance.

Nevertheless, it appears that the critical values for ADF given in Table II can
be used as a rough guide in applied studies at this point. The next section will
provide a variety of illustrations.

6. EXAMPLES

Several empirical examples will be presented to show performance of the tests
in practice. The relationship between consumption and income will be studied
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in some detail as it was analyzed from an error correction point of view in DHSY
and a time series viewpoint in Hall (1978) and others. Briefer analyses of wages
and prices, short and long term interest rates, and the velocity of money will
conclude this section.

DHSY have presented evidence for the error correction model of consumption
behavior from both empirical and theoretical points of view. Consumers make
plans which may be frustrated; they adjust next period’s plans to recoup a portion
of the error between income and consumption. Hall finds that U.S. consumption
is a random walk and that past values of income have no explanatory power
which implies that income and consumption are not co-integrated, at least if
income does not depend on the error correction term. Neither of these studies
models income itself and it is taken as exogenous in DHSY.

Using U.S. quarterly real per capita consumption on nondurables and real per
capita disposable income from 1947-1 to 1981-11, it was first checked that the
series were I(1). Regressing the change in consumption on its past level and two
past changes gave a ¢ statistic of +.77 which is even the wrong sign for consumption
to be stationary in the levels. Running the same model with second differences
on lagged first differences and two lags of second differences, the ¢ statistic was
—5.36 indicating that the first difference is stationary. For income, four past lags
were used and the two ¢ statistics were —.01 and —6.27 respectively, again
establishing that income is I(1).

The co-integrating regression of consumption (C) onincome ( Y) and a constant
was run. The coefficient of Y was .23 (with a ¢ statistic of 123 and an R? of .99).
The DW was however .465 indicating that by either table of critical values one
rejects the null of ““non-co-integration” or accepts co-integration at least at the
5 per cent level. Regressing the change in the residuals on past levels and four
lagged changes, the t statistic on the level is 3.1 which is essentially the critical
value for the 5 per cent ADF test. Because the lags are not significant, the DF
regression was run giving a test statistic of 4.3 which is significant at the 1 per
cent level, illustrating that when it is appropriate, it is a more powerful test. In
the reverse regression of Y on C, the coefficient is 4.3 which has reciprocal .23,
the same as the coefficient in the forward regression. The DW is now .463 and
the ¢ statistic from the ADF test is 3.2. Again the first order DF appears appropriate
and gives a test statistic of 4.4. Whichever way the regression is run, the data
rejects the null of non-co-integration at any level above 5 per cent.

To establish that the joint distribution of C and Y is an error correction system,
a series of models was estimated. An unrestricted vector autoregression of the
change in consumption on four lags of consumption and income changes plus
the lagged levels of consumption and income is given next in Table IV. The
lagged levels are of the appropriate signs and sizes for an error correction term
and are individually significant or nearly so. Of all the lagged changes, only the
first lag of income change is significant. Thus the final model has the error
correction term estimated from the co-integrating regression and one lagged
change in income. The standard error of this model is even lower than the VAR
suggesting the efficiency of the parameter restrictions. The final model passes a
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TABLE IV

REGRESSIONS OF CONSUMPTION AND INCOME

Dep. Var.: C AEC AEC AC iley
Y .23 (123)
C(-1) —.19(=2.5)
Y(-1) 1046 (2.5)
EC(-1) -.22(-3.1) —.26 (—4.3) —.14(-2.2)
AC(-1) 1092 (0.9)
AC(-2) 017 (0.2)
AC(-3) 16(1.5)
AC(-4) .009 (0.1)
AY(-1) .059 (1.8) .068 (2.5)
AY(-2) —-.023(-.7)
AY(-3) —.027(~.8)
AY(-4) —.020(-.7)
AEC(-1) —.13(-1.4)
AEC(-2) 12(1.4)
AEC(-3) .03 (0.4)
AEC(-4) —.13(-1.6)
CONST .52 (85) .10(2.4) .003 (2.6)
o .01628 .00999 0.01015 .01094 .01078
DwW .46 2.0 2.2 2.0 1.9
Dep. Var: Y AEY AEY ay ay
C 4.29 (123)
Cc(-1) 15(.67)
Y(-1) —.034(.63)
EY(-1) -.23(-3.2) —.26 (—4.4) —.053 (-1.1)
AC(-1) .79 (2.5) .66 (2.4)
AC(-2) —.48 (—1.5)
AC(-3) 68(2.2)
AC(-4) .56 (1.8) 60 (2.1)
AY(-1) -.027 (-.3) )
AY(-2) —.051 (-.5)
AY(-3) 011 (.1)
AY(-4) —.23(-2.5) -.19(2.1)
AEY(-1) -.13(-1.5)
AEY(-2) 12(1.4)
AEY(-3) .03 (0.4)
AEY(-4) —.14(-1.6)
CONST 2.22(-50) —.071(-.6) .016 (4.6)
4 .07012 .04279 .04350 .03255 .03321
DW .46 2.0 2.2 2.1 2.2
NOTES: Data are from 1947-1 to 1981-11. EC are the residuals from the first regression and EY are the residuals from the sixth

regression. T ratios are in parentheses.

series of diagnostic tests for serial correlation, lagged dependent variables, non-
linearities, ARCH, and omitted variables such as a time trend and other lags.
One might notice that an easy model building strategy in this case would be
to estimate the simplest error correction model first and then test for added lags
of C and Y, proceeding in a “simple to general” specification search.
The model building process for Y produced a similar model. The same
unrestricted VAR was estimated and distilled to a simple model with the error
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correction term, first and fourth lagged changes in C and a fourth lagged change
in Y. The error correction is not really significant with a ¢ statistic of —1.1
suggesting that income may indeed be weakly exogenous even though the variables
are co-integrated. In this case the standard error of the regression is slightly
higher in the restricted model but the difference is not significant. The diagnostic
tests are again generally good.

Campbell (1985) uses a similar structure to develop a test of the permanent
income hypothesis which incorporates “’saving for a rainy day” behavior. In this
case the error correction term is approximately saving which should be high when
income is expected to fall (such as when current income is above permanent
income). Using a broader measure of consumption and narrower measure of
income he finds the error correction term significant in the income equation.

The second example examines monthly wages and prices in the U.S. The data
are logs of the consumer price index and production worker wage in manufactur-
ing over the three decades of 50’s, 60’s and 70’s. Again, the test is run both
directions to show that there is little difference in the result. For each of the
decades there are 120 observations so the critical values as tabulated should be
appropriate.

For the full sample period the Durbin Watson from the co-integrating regression
in either direction is a notable .0054. One suspects that this will be insignificantly
different from zero even for samples much larger than this. Looking at the
augmented Dickey Fuller test statistic, for p on w we find —.6 and for w on p
we find +.2. Adding a twelfth lag in the ADF tests improves the fit substantially
and raises the test statistics to .88 and 1.50 respectively. In neither case do these
approach the critical values of 3.2. The evidence accepts the null of non-co-
integration for wages and prices over the thirty year period.

For individual decades none of the ADF tests are significant at even the 10
per cent level. The largest of these six test statistics is for the 50’s regressing p
on w which reaches 2.4, which is still below the 10 per cent level of 2.8. Thus
we find evidence that wages and prices in the U.S. are not co-integrated. Of
course, if a third variable such as productivity were available (and were I(1)),
the three might be co-integrated.

The next example tests for co-integration between short and long term interest
rates. Using monthly yields to maturity of 20 year treasury bonds as the long
term rate (R,) and the one month treasury bill rate r, as the short rate, co-
integration was tested with data from February, 1952 to December, 1982. With
the long rate as the dependent variable, the co-integrating regression gave:

R,=1.93+.785r,+ ER, DW=.126; R’=.866,
with a f ratio of 46 on the short rate. The DW is not significantly different from
zero, at least by Tables II and II1I; however, the correct critical value depends
upon the dynamics of the errors (and of course the sample size is 340—much
greater than for the tabulated values). The ADF test with four lags gives:

AER,= — .06 ER,_,
(-3.27)
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+ .25 AER,_, — .24 AER,_, + 24 AER,_; — .09 AER,_,.
(4.55) (—4.15) (—4.15) (—1.48)

When the twelfth lag is added instead of the fourth, the test statistic rises to 3.49.
Similar results were found with the reverse regression where the statistics were
3.61 and 3.89 respectively. Each of these test statistics exceeds the 5 per cent
critical values from Table III. Thus these interest rates are apparently co-
integrated.

This finding is entirely consistent with the efficient market hypothesis. The
one-period excess holding yield on long bonds as linearized by Shiller and
Campbell (1984) is:

EHY =DR,_—(D—-1)R,—r,
where D is the duration of the bond which is given by
D=((1+¢)' -1)/(c(1+¢c)""

with ¢ as the coupon rate and i the number of periods to maturity. The efficient
market hypothesis implies that the expectation of the EHY is a constant represent-
ing a risk premium if agents are risk averse. Setting EHY = k+ ¢ and rearranging
terms gives the error correction form:

AR,=(D—-1)"Y(R,_;—r_)+k'+e,

implying that R and r are co-integrated with a unit coefficient and that for long
maturities, the coefficients of the error correction term is ¢, the coupon rate. If
the risk premium is varying over time but is I(0) already, then it need not be
included in the test of co-integration.

The final example is based upon the quantity theory equation: MV = PY.
Empirical implications stem from the assumption that velocity is constant or at
least stationary. Under this condition, log M, log P, and log Y should be
co-integrated with known unit parameters. Similarly, nominal money and nominal
GNP should be co-integrated. A test of this hypothesis was constructed for four
measures of money: M1, M2, and M3, and L, total liquid assets. In each case
the sample period was 1959-1 through 1981-11, quarterly. The ADF tests statistics
were:

M1 181 1.90

M2 323 313
M3 265 255
L 215 213

where in the first column the log of the monetary aggregate was the dependent
variable while in the second, it was log GNP. For only one of the M2 tests is
the test statistic significant at the 5 per cent level, and none of the other aggregates
are significant even at the 10 per cent level. (In several cases it appears that the
DF test could be used and would therefore be more powerful.) Thus the most
stable relationship is between M2 and nominal GNP but for the other aggregates,
we reject co-integration and the stationarity of velocity.
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7. CONCLUSION

If each element of a vector of time series X, is stationary only after differencing,
but a linear combination a’x, need not be differenced, the time series x, have
been defined to be co-integrated of order (1, 1) with co-integrating vector c.
Interpreting a'x, =0 as a long run equilibrium, co-integration implies that equili-
brium holds except for a stationary, finite variance disturbance even though the
series themselves are non-stationary and have infinite variance.

The paper presents several representations for co-integrated systems including
an autoregressive representation and an error-correction representation. A vector
autoregression in differenced variables is incompatible with these representations
because it omits the error correction term. The vector autoregression in the levels
of the series ignores cross equation constraints and will give a singular autoregress-
ive operator. Consistent and efficient estimation of error correction models is
discussed and a two step estimator proposed. To test for co-integration, seven
statistics are formulated which are similar under various maintained hypotheses
about the generating model. The critical values of these statistics are calculated
based on a Monte Carlo simulation. Using these critical values, the power
properties of the tests are examined, and one test procedure is recommended for
application.

In a series of examples it is found that consumption and income are co-
integrated, wages and prices are not, short and long interest rates are, and nominal
GNP is not co-integrated with M1, M3, or total liquid assets, although it is
possibly with M?2.
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