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CONSISTENT ESTIMATION OF MODELS DEFINED BY CONDITIONAL
MOMENT RESTRICTIONS

BY MANUEL A. DOMINGUEZ AND IGNACIO N. LOBATO!

In econometrics, models stated as conditional moment restrictions are typically
estimated by means of the generalized method of moments (GMM). The GMM es-
timation procedure can render inconsistent estimates since the number of arbitrarily
chosen instruments is finite. In fact, consistency of the GMM estimators relies on addi-
tional assumptions that imply unclear restrictions on the data generating process. This
article introduces a new, simple and consistent estimation procedure for these models
that is directly based on the definition of the conditional moments. The main feature
of our procedure is its simplicity, since its implementation does not require the selec-
tion of any user-chosen number, and statistical inference is straightforward since the
proposed estimator is asymptotically normal. In addition, we suggest an asymptotically
efficient estimator constructed by carrying out one Newton—Raphson step in the direc-
tion of the efficient GMM estimator.

KEYWORDS: Generalized method of moments, identification, unconditional mo-
ments, marked empirical process, integrated regression function, efficiency bound.

1. INTRODUCTION

IN MANY AREAS OF ECONOMETRICS such as panel data, discrete choice, macroeco-
nomics, and finance, there exist models that are defined in terms of conditional moment
restrictions. That is, the models establish that certain parametric functions have zero
conditional mean when evaluated at the true parameter value. Note that these condi-
tional restrictions imply that the expectation of the parametric functions evaluated at
the true parameter value times any function that depends on the conditioning variables
is equal to zero. Therefore, when the conditioning variables have a support with infinite
cardinality, the conditional moment restrictions imply an infinite number of uncondi-
tional moment restrictions. This fact underlies the generalized method of moments
(GMM), which is the method commonly employed to estimate these models. Basically,
this method consists of the following two stages. First, choose a finite number of un-
conditional moment restrictions out of the infinite number implied by the conditional
moment restrictions. Second, define the estimator as the parameter value that makes
the empirical analogs of the selected unconditional moments closest to 0. In linear
models, any subset of linearly independent unconditional moment restrictions identi-
fies globally the parameters of interest as long as the dimension of this subset equals the
dimension of the parameter vector. Hence, the GMM procedure provides consistent
estimators in linear models. However, in nonlinear models the selected unconditional
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moment restrictions may hold for several parameter values even if the conditional re-
strictions just hold for a single value. This means that the GMM objective function may
have several global minima. In these cases the arbitrarily chosen unconditional moment
restrictions do not identify globally the parameters of interest, and hence, the GMM
estimators are inconsistent. The next two examples illustrate this idea.

EXAMPLE 1: Assume that the random variable Y satisfies E(Y|X) = X% where
6p = 4, and X is a random variable that is symmetric around zero and whose fourth and
sixth moments are equal, such as an N(0, 1/5). Assume that the researcher specifies
correctly the model E(Y|X) = X% where 6 € @ = [2, o), and sets out to estimate 6.
The model implies that E[(Y — X%)g(X)] = 0 for any function g provided that
E|(Y — X%)g(X)| < oo. Since there is only one parameter, the researcher needs to
select at least one function g(X). Let us assume that she selects the functions (typ-
ically called instruments) 1 and X. The problem is that these two instruments do
not identify the parameter value 6y = 4 since the system of equations E(Y — X%) =
E(Y — X% X) =0 also holds for the value § = 6, at least. Of course, more arbitrary
instruments could be added, but it would be simple to find a particular distribution
for X, such that 6, and additional values for 6 satisfy the new set of orthogonality
conditions.

EXAMPLE 2: Assume that the random variable Y satisfies the simple nonlinear
model E(Y|X) = 02X + 6,X*. Suppose that 6, = 5/4 and that V(Y |X) is constant.
Assume that the researcher properly specifies the model and, instead of an arbitrary in-
strument, she chooses the optimal instrument, given by Wy = 26,X + X?; see Amemiya
(1974) and Chamberlain (1987). In this case, the parameter 6, is not identified, since
the equation E[(Y — 6°X — 0X*)W;] =0 is also satisfied for § = —5/4 when X follows
an N(—1, 1) random variable. Moreover, W, is an unfeasible instrument because 6, is
unknown. Hence, in practice the researcher just knows the form of the optimal instru-
ment, given by W = 26X + X2. In this case the parameter 6, is not identified again,
since the equation E[(Y — 6°X — 6X*)W] =0 is also satisfied for § = —5/4 and for
6 = —3 when X follows an N(1, 1) random variable.

These simple examples illustrate that the procedure based on selecting an arbitrary
finite number of instruments (even the optimal ones) can lead to inconsistent estima-
tion since it does not guarantee that the parameters of interest are globally identified.
Hence, GMM typically introduces the additional assumption that the selected uncon-
ditional restrictions identify globally the parameters of interest. As we have seen on the
examples, this additional assumption depends on the selected instruments and on the
unknown true value of the parameters, and in fact, it restricts the marginal distribution
of the conditioning variables. Thus, the introduction of this additional assumption leads
to the following paradox: while the distribution of the conditioning variables should be
irrelevant for the consistent estimation of conditional models, it turns out that this dis-
tribution is crucial for GMM estimators because it guarantees global identification of
the parameters of interest.

In this article we propose an alternative estimation procedure where the identifi-
cation problem does not arise, since the method is directly based on the conditional
moment restrictions that define the parameters of interest. Implementing our pro-
cedure is very simple since no additional user-chosen objects (such as a smoothing
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number) are needed. As far as we know, ours is the first estimator proposed in the liter-
ature that is consistent and does not require the introduction of additional user-chosen
objects. Carrying out statistical inference with our estimator is very simple since its as-
ymptotic distribution is normal. In addition, by carrying out a single Newton—Raphson
step in the direction of the efficient GMM estimator, an asymptotically efficient esti-
mator can be constructed.

The paper is organized as follows. Section 2 introduces the framework and our
estimator, Section 3 establishes the asymptotic theory, Section 4 considers efficient
estimation, Section 5 examines a brief Monte Carlo exercise, and Section 6 concludes.
The proofs are contained in the Appendix.

2. NOTATION AND FRAMEWORK

Let Z, be a time series vector and for all ¢, let {Y,, X,} be two subvectors of Z,
(that could have common coordinates). We consider Y, as a k-dimensional time series
vector that may contain endogenous and exogenous variables and a finite number of
these variables lagged and X, as a d-dimensional time series vector that contains the
exogenous variables (again, a finite number of these variables lagged can be included).
The coordinates of Z, are related by an econometric model that establishes that the
true distribution of the data satisfies the following conditional moment restrictions:

1) E(h(Yt> 60)|Xt) =0, as.

for a unique value 6, € @, where ® C R™. Equation (1) defines the parameter value of
interest 6y, which is unknown to the econometrician. The function / that maps R* x @
into R’ is supposed to be known. In general, 4(Y,, 6y) can be understood as the errors
in a multivariate nonlinear dynamic regression model. In this paper for simplicity we
will consider the case where / =1.

This model has been repeatedly considered in the econometrics literature and sev-
eral estimators have been proposed; see among others, Amemiya (1974, 1977), Hansen
(1982), Newey (1990, 1993), and Robinson (1987, 1991). However, none of these ref-
erences address the identification problem commented above. For instance, Newey
(1990) considers a similar model (see his equation (2.1) on p. 810) in a more re-
strictive framework (he considers independent and identically distributed data with
homoskedasticity) and focuses on the optimality properties of a selected estimator.
Note that he assumes that the parameter vector is globally identified by the selected
unconditional moment restrictions; see his assumption 3.3(a) on p. 817.

Recently, Donald, Imbens, and Newey (2003) have addressed the identification
problem in a different setting. They consider efficient estimation of conditional
moment restrictions models. Their analysis is different from ours. They need to in-
troduce a sequence of approximating functions such as splines or power or Fourier
series and the researcher needs to select the number of terms of these series to be
considered in the analysis. This number is a smoothing or bandwidth number that
compared to the sample size has to verify certain rate restrictions in order to achieve
efficient estimation. Although this bandwidth number allows their estimators to be
root-n asymptotically normal and efficient, statistical inference with this estimator can
be sensitive to the selection of the bandwidth number. Furthermore, their procedure is
restricted to the independent and identically distributed setting, and for most of their
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results, the conditioning variables should have a compact support and their joint density
has to be bounded away from zero. In the same spirit as Donald, Imbens, and Newey
(2003), Newey and Powell (2003) have provided consistent estimators of semiparamet-
ric models defined by conditional moment restrictions. Contrary to this approach, our
procedure is very simple, does not require the introduction of an arbitrary user-chosen
number to achieve an asymptotically normal distribution, allows for instruments with
unbounded support, and can be used for time series data.

Kitamura, Tripathi, and Ahn (2000) have also analyzed the problem of efficient esti-
mation in conditional moment restrictions models. By employing a localized empirical
likelihood, they propose an estimator that also achieves the semiparametric efficiency
bound without estimating the optimal instrument. Similarly to Donald, Imbens, and
Newey (2003), Kitamura, Tripathi, and Ahn (2000) also need to introduce a bandwidth
number and restrict to the independent and identically distributed setting.

Another related reference is Carrasco and Florens (2000). They consider optimal
GMM estimation for the case where there is a continuum of moment conditions in an
independent and identically distributed framework. Our estimator is similar to theirs
in spirit. However, our estimator cannot be written in their framework, as we will see
below, because our norm in the objective function is random and changes with the
sample size, whereas their norm is deterministic and does not change with the sample
size. Carrasco and Florens’ estimator is efficient, but efficiency is achieved at the cost of
introducing a user-chosen smoothing number that permits inversion of the covariance
operator. As in the case of Donald, Imbens, and Newey (2003) the sensitivity of the
estimator to that number is unknown.

Next, we introduce our estimator. As discussed in the previous section, the typical
estimation procedure based on selecting some orthogonality conditions does not guar-
antee global identification of the parameters of interest. In this paper we propose an
alternative estimation procedure that uses the whole information about 6, contained
in expression (1). From Billingsley (1995, Theorem 16.10iii), note that

) E(h(Y,,00)|X,)=0 as. <= H(6,x)=0 foralmostall x € R’

where H(6, x) = E(h(Y,, 0)I(X, < x)) is the integrated regression function (Brunk
(1970)) and the indicator function /(X, < x) equals 1 when each component in X,
is less than or equal to the corresponding component in x, and equals 0 otherwise.
In addition, from (1), it follows that P(E(h(Y,, 6)|X,) =0) < 1 when 6 # 6, so that
H (6, x) #0 in a nonnull set of the sample space of X,. Therefore, denoting by Py, the
probability distribution function of the random vector X,, [ H(6y, x)*dPy,(x) = 0 but
JH(8,x)*dPx,(x) >0V 6+ 6. Hence, we can write

3) 6y = arg I;ll(I)l/ H (0, x)*dPy,(x),

<6
and 6, is the unique value that satisfies (3). Denote the sample integrated regression
function by H,(0,x) = n 1Y) h(Y,, 0)I(X, < x), where n is the sample size. For

any g, the sample analog of [ g*(x) dPx,(x)isn™'Y",_, g*(X,). Then, we propose es-
timating 6, by the sample analog of (3), that is,

2
- . 1 n n
6= argmin — Z(Z h(Y;, O1(X, < X()) :

=1 \t=1
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This estimator is a minimum distance estimator; see Ch. 5 in Koul (2002). From a com-
putational point of view, the previous objective function has an additional summation
of n terms compared to the standard GMM objective function. However, it does not in-
volve either matrix inversion or nonparametric estimation, which are computationally
more demanding procedures.

3. ASYMPTOTIC THEORY

We start by enumerating the assumptions for the consistency of our estimator. Let
| - | denote the Euclidean norm in the corresponding Euclidean space, and assume that
all the considered functions are Borel measurable.

ASSUMPTION 1: h(y, -) is continuous in @ for each y in R¥, |h(Y,, 0)| < k(Y,) with
Ek(Y,) <oocand E(h(Y,, 0)|X,) =0 a.s. ifand only if 6 = 6,.

ASSUMPTION 2: Z, is ergodic and strictly stationary.
ASSUMPTION 3: O C R™ is compact.

Assumptions 1-3 are standard in the GMM literature. Assumption 1 defines the
model and identifies globally 6,. It also establishes that the function 4 is smooth
in O, but this smoothness condition is weaker than the Lipschitz condition in As-
sumption 3 in Donald, Imbens, and Newey (2003). Notice that the assumptions
concerning the existence of a bounding function k£ and the compactness of @ can be
replaced by other assumptions imposing that for all 6 € @ there exists py > 0 such
that E[sup{“efe,l‘(pm@ |h(Y,, 0) — h(Y,, 6)|] < oo and that li_mlw_,DOE|h(Yt, 0) — h(Y,,
69)| > 0. This first condition is a smoothness assumption that is still weaker than the
condition in Donald, Imbens, and Newey (2003), whereas the second condition rules
out redescending functions. Opposite to standard GMM, all our assumptions refer to
the unconditional or to the conditional distribution of £, and nothing is imposed on the
marginal distribution of X, except for Assumption 2, which just restricts dependence
and heterogeneity of the data. Next, we state the consistency theorem whose proof is
in the Appendix.

THEOREM 1: Under Assumptions 1-3 79\—>“_ 6.

In order to obtain asymptotic normality, some additional assumptions are required.

ASSUMPTION 4: h(y, -) is once continuously differentiable in a neighborhood of 6, and
satisfies £ [SUPyey, Ih(Y,, 0)|1 < co where R denotes a neighborhood of 6, and h(Y,, 0) =
oh(Y,, 0)/36.

ASSUMPTION 5: h(Y,, 0y) is a martingale difference sequence with respect to {Z, s < t}.

ASSUMPTION 6: 6, € int(@).

ASSUMPTION 7: E[h*(Y,, 6)) 1 X,]'+?] < oco.
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ASSUMPTION 8: The density of the conditioning variables given the past is bounded and
continuous.

Assumption 4 is a standard smoothness assumption that is weaker than Assump-
tion 4 in Donald, Imbens, and Newey (2003), which requires twice continuous
differentiability. In addition, contrary to Donald, Imbens, and Newey (2003) we do
not require any smoothness condition of / with respect to y. Assumption 5 bounds the
amount of dependence in the sample. These assumptions are very weak and allow for
many types of weak and strong dependence for the process Z,. Assumption 6 is stan-
dard. Assumptions 7 and 8 also restrict the dependence of the conditioning variables
with respect to the past. Conditions similar to Assumption 7 and 8 have been employed
by Koul and Stute (1999); see their assumptions (A)(b) and (B) on pp. 218-219. No-
tice that under independence, Assumption 7 can be relaxed to Eh*(Y;, 6)) < oo, and
Assumption 8 can be deleted, similarly to Stute (1997). Hence, for the independence
case, no assumption concerning X, would be required.

Next, we state the asymptotic normality theorem, proof of which is in the Appendix.

THEOREM 2: Under Assumptions 1-8
-1
Jn(6— 90)—”’></ HH' dPX1> /HBF dPy,,

where H(x) = E(ﬁ(Y,, 00)1(X, < x)) and B denotes a centered Gaussian process in
D[R] (where D[R)? is the space of real functions that are continuous from above and
with limits from below; see Bickel and Wichura (1971)), with covariance structure given by
I'(r,s)=Eh*(Y,, 0)1(X,<rAs)).

Note that, when £ is homoskedastic and d = 1, B particularizes to a scaled Brown-
ian motion. Using the previous theorem and the fact that the integrated weighted
Gaussian process follows a normal distribution (see, for instance, Tanaka (1996, Ch. 2))
the following corollary holds.

COROLLARY 1: Under Assumptions 1-8

V(0 - 6y) -5 N(0, ),

0= ([ HH/dPX>1

-1
yNMmMWmMmmmwm%ﬁmﬁa.

where

Our proposed estimator is consistent and asymptotically normal but inefficient. It
is difficult to compare (2 with the minimum asymptotic variance for a general case.
For the simplest linear location model with independents errors, (2 is 20% higher than
the asymptotic variance of the sample mean. In Section 5 we evaluate its finite sample
performance in a brief Monte Carlo exercise. In order to perform statistical inference,
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the matrix (2 needs to be estimated consistently. A simple consistent estimator of {2 is
its sample analog

n -1
(ZHn<X,->H;<X,->)

i=1

n n n -1
xZZHAX»H,;(X]-)MXI-,Xj)<ZHn<Xi)H,;<Xi>> :

i=1 j=1 i=1

where

H,()=n""Y h(Y, )I(X;<1) and

i=1

Lts)=n"' Y (Y, OI(X; <t As).

i=1

4. ATWO-STEP EFFICIENT ESTIMATOR

The previously introduced estimator 9 is consistent but inefficient. As commented
in Section 2, the literature has focused on efficient estimation; see Donald, Imbens,
and Newey (2003) and Kitamura, Tripathi, and Ahn (2000). In this section we briefly
discuss a two-step efficient estimator.

Let 6 denote the efficient GMM estimator and Q,(60) denote the efficient GMM
objective function that converges to Q(6). Assume that 6, is locally identified by Q(0),
and let 8, denote a nelghborhood of 6, such that Q(6) > Q(6,) for all 6§ € R,. Note that
consistency of 0 guarantees that 0 € R with probability one for n large enough, and
that under regularlty assumptions,  is consistent and asymptotically efficient when the
parameter space O is restricted to 8y. Hence, using these two facts, we can modify 6 to
construct an estimator that is asymptotically efficient, by carrying out a single Newton—
Raphson iterative step in the direction of the efficient GMM estimator.

Denote the gradient and Hessian of Q,,(6) as

0.(0)="= and 0,(6)=—22 %

Note that in the general case, both Qn(G) and Q,, involve estimating some conditional
expectations; see Newey (1993). In this section we assume that consistent nonpara-
metric estimators for these quantities exist, such as those based on kernels, series
expansions, or nearest neighbors methods; see Newey (1990) and Robinson (1991).
From Young’s theorem (see Serfling (1980, p. 45)),

0=0,(0)=0,(8) + 0,(8)(6 — 8) + 0,(16 — 8]).

Since both § and 9 are J/n-consistent estimators, o ,(| 0— §|) =0, (n~'?). Hence, a con-
sistent and efficient estimator is given by

0:=0—0,0)"0.00),
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with 8 satisfying
0 —6=0,(n""?).

The result is straightforward; see Robinson (1988). Although theoretically the asymp-
totic distribution is achieved after the first iteration, in practice carrying out additional
iterations may improve the finite sample performance. Contrary to the standard two-
step efficient GMM procedure, which employs some initial arbitrary estimator that
may be inconsistent, the previous result suggests that a sensible empirical strategy is to
compute the two-step efficient GMM estimator using 6 as a starting point. Note that
for the homoskedastic nonlinear regression model, this efficient estimator does not re-
quire any smoothing, as opposed to Donald, Imbens, and Newey (2003) and Kitamura,
Tripathi, and Ahn (2000).

5. SIMULATIONS

In this section we consider Example 2 from the Introduction and report some brief
Monte Carlo evidence on the finite sample performance of our method. We compare
the performance of our consistent estimator (6) the two-step efficient estimator (95)
and the feasible efficient GMM estimator (6), that uses the optimal instrument, W =
20X + X 2. Note that in this case, 6 coincides with the nonlinear least squares estimator.
We assume that X follows a normal distribution with unit variance and consider two
values for the mean, zero and one. Recall that when X follows an N(1, 1) distribution,
the optimal instrument does not identify the true value 6, = 5/4, while for the other
case, the optimal instrument does identify 6.

In Table I we report the bias, standard error (SE), and root mean squared error
(RMSE) for the three estimators for three sample sizes, n = 50, 100, and 200. The
number of replications is 5,000 in all experiments. Table I indicates that when the opti-
mal instrument does not 1dent1fy the true value 6,, 6 is unreliable as the theory predicts.
When n =50 the RMSE of 6 is 26 times higher than that of our consistent estimator
and when 7 = 200 this ratio increases to 47. For the two-step estimator these ratios are
even higher, 54 when n = 50 and 106 when n = 200. Note that for 8, neither its bias nor
its standard error decreases with the sample size. For the N(0, 1) case, for n = 50, both

TABLE 1
BIAS, STANDARD ERROR, AND ROOT MEAN SQUARED ERROR

Bias SE RMSE

[ 6

)
)
)

X n /O\E 0

N(0, 1) 50 .004 .005 —.013 112 .079 181 112 .079 182
100 .002 —-.000 —.001 .080 .035 .050 .081 .035 .050
200 .001  —.001 .000 .058 .024 .024 .058 .024 .024

N(1,1) 50 .000 —.004 —.406 .048 022 1.167 .048 023 1.235
100 .000 —.005 —.362 .035 015 1.102 .035 016  1.160
200 .000 .000 —.364 .025 011  1.113 .025 011 1171

[ 7]
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TABLE II
COVERAGE PERCENTAGES

90% 95% 99%
/O\E 7]

)
N
)
)
™/

X n [ [

N(0, 1) 50 89.2 89.0 90.3 94.2 93.8 95.1 98.2 98.3 98.6
100 89.3 89.5 90.0 94.7 94.5 95.2 98.6 99.0 99.1
200 90.1 89.7 89.7 94.9 94.7 94.5 98.7 98.7 98.9

N(1,1) 50 90.4 91.2 81.2 95.3 95.9 85.4 99.2 99.3 88.4
100 90.5 91.5 82.2 95.4 96.0 86.1 99.1 99.3 89.1
200 90.1 91.0 82.0 94.7 95.8 86.4 99.1 98.9 89.3

6 and 6 perform better than 8, although for n = 200, the RMSE of 6 is larger than
that of 8 and @E_

In Table II we report the coverage percentages for 90%, 95%, and 99% confidence
intervals for the three estimators. For the N(0, 1) case these coverage percentages are
quite accurate for the three estimators for any sample size. However, for the N(1, 1)
case, the coverage probabilities of the efficient GMM estimator present substantial
distortions that do not vanish by increasing the sample size.

In order to gain more insight for this example, in Figure 1 we have plotted the
asymptotic objective functions that our consistent estimator (solid lines) and the

FIGURE 1.—Asymptotic objective functions.
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efficient GMM estimator (dashed lines) minimize for different distributions for X.
Note that these objective functions are polynomials on 6 of degrees 4 and 6, respec-
tively. As commented in Section 1, when X follows an N(1, 1), the efficient GMM
objective function presents three global minima (at 1.25, —1.25, and —3) whereas our
objective function presents a unique global minimum at 1.25 and a local minimum at
approximately —2.93. When X follows an N(0, 1), the efficient GMM objective func-
tion identifies globally 6, but it also has a local minimum whereas our objective function
is convex. Figure 1 also plots the asymptotic objective functions when X follows an
N(1, 2) and an N(1, 3).

6. DISCUSSION

There are two approaches to consistently estimate models defined by conditional
moment restrictions. The first approach, which we follow in this article, substitutes the
conditional restrictions by an infinite number of unconditional moment restrictions that
fully characterize the conditional restrictions. In our case, the infinite unconditional re-
strictions arise by considering the expectation of the function of interest times a class
of indicators functions. Alternative classes of functions, such as the exponentials, could
have been employed; see Bierens (1990) and Carrasco and Florens (2000). The second
approach fits the conditional expectation that defines the model by means of non-
parametric methods. This approach has been followed by Donald, Imbens, and Newey
(2003) and by Kitamura, Tripathi, and Ahn (2000). The main difference between both
approaches resides in the number of unconditional restrictions effectively employed
in finite samples. Whereas infinite moment restrictions are employed in the first ap-
proach, the second approach employs a finite number of them, where this number is
determined by a smoothing parameter that increases to infinity. The main advantage
of introducing this smoothing number is that it allows the derivation of estimators
that are asymptotically efficient. However, in the absence of automatic data-dependent
methods for selecting this smoothing number, such as cross-validation procedures, a
researcher faces the difficulty of selecting it for her particular case. In many cases, sta-
tistical inference is very sensitive to this selection.

Asymptotically efficient estimators can also be derived in the first approach. How-
ever, deriving them would also require the introduction of a bandwidth parameter
necessary to avoid a singularity problem; see Carrasco and Florens (2000). The es-
timator proposed in this article is consistent and very simple to implement since it
does not require the introduction of any user chosen object such as the order of a lag
or a bandwidth number. It possesses the additional advantages of being applicable to
cross-sectional and to a wide variety of time series data, of allowing for instruments
with unbounded support, and of imposing mild smoothness conditions on the function
that defines the model. In addition, the techniques employed in this article are differ-
ent from those used in the previous references. Finally, in Section 4 we have shown
that our estimator can be modified to achieve the semiparametric efficiency bound,
although this modification may require the introduction of smoothing estimators.

We finish with a suggestion on further research. Similarly to the GMM overidentify-
ing restriction test, by evaluating our objective function at our estimate, we can perform
specification testing for conditional parametric models such as (1). Whereas the GMM
overidentifying restriction test is not consistent since the number of unconditional re-
strictions tested is finite, our test would be consistent since it would use an infinite
number of them.
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APPENDIX

Unless explicitly stated, the summations run from 1 to n.

PROOF OF THEOREM 1: In Section 2 we have shown that [ H (6, x)?dPx,(x) has a unique
minimum at 6,. Then, using theory of M-estimators we just have to show that

/ H,(0,x)*dP,(x) S / H (0, x)>dPy,(x) uniformly in 6,

where P,(x) =n~'Y""_ I(X; = x) is the empirical analog of Py, (x). This result holds applying
the Continuous Mapping theorem since

H,(0, x) = H(0,x) uniformlyin (x, 0),
which follows from Ranga Rao (1962). Q.E.D.

PROOF OF THEOREM 2: The first-order conditions of the minimization problem are

Z[Z h(Y,, OI(X, < th)i| [Z h(Y,, OI(X, < th)i| =0.

14

Let denote h,(0) = h(Y,, 6) and h,(@) = h(Y,, 0). Assumpti’(\)n 6 and the mean value theorem
imply that for some random A € [0, 1] and 6* = A6, + (1 — 1) 6, we can write

Z[Z h(®I (X, < Xe)} [Z hy(00)] (X, < X[)] +G,(0—6y) =0,
LT :
where
G,= Z[Z h(OI(X, < Xg)] [Z R0 (X, < Xg)]
e = ‘
Therefore,
V(@ — 69) = n3G;l(% X[:[% 2,: h(®I(X, < Xz)i| [% Z h(00)I(X, < Xz)D'

Then, the result follows from the continuous mapping theorem, Lemmas 1 and 2 below, and using
Assumption 4, which guarantees that n=*G, —, [ HH'dPy,. Q.E.D.

LEMMA 1: Let 6* be a consistent estimator of 6. Under Assumptions 1-8,

%Zh,(@*)I(X, <x) = E(ﬁ(HO)I(X, < x)) :H(x) uniformly in x.



1612 M. DOMINGUEZ AND 1. LOBATO

The proof of this lemma is omitted since it follows from Ranga Rao (1962).

LEMMA 2: Under Assumptions 1-8,
1
Jn
where = denotes weak convergence in D[R]?, and D[R" is the natural extension of D[0, 11% in the

sense of Stute (1997) and D0, 1 is defined in Bickel and Wichura (1971), Neuhaus (1971), or Straf
(1970).

> h(6)I(X, <) = Br

PROOF OF LEMMA 2: For simplicity, we introduce the notation H,(x) = H,(6y, x). Accord-
ing to Bickel and Wichura (1971), we need to show that the finite-dimensional distributions of
the process +/nH,(x) are asymptotically normal with the appropriate covariance matrix and
that the process /nH, (x) is tight.

Convergence of finite-dimensional distributions refers to the weak convergence of vectors
of the form (nH,(x1), nH,(x2),...,/nH,(x,)), for arbitrary ¢ € N and x; € RY, i =
1,2, ..., q. This result can be obtained using the Corollary 3.1 in Hall and Heyde (1980).

In order to prove tightness, some definitions are required. Let {W,(1):t € R?, n=1,2,...} be
a sequence of stochastic processes in some metric space of functions G. Then, {W,} is tight if and
only if for any é > 0 there exists a compact set K C G depending on 8, such that

4 supP(W,eK)>1-46.

Let Dy = (s', '] = x{_, (s, t]1, and D, = (s>, ] = X, (57, £7] be two intervals in R?. Then,

D, and D, are neighbor intervals if and only if for some j* € {1,2,...,d}, (s}*, 1] # (sjz-*, t]i],
Xjze (8], 1] = Xjje (s]?, tf] and ¢}, = s]i, that is, if and only if they are next to each other and
share the j*th face. Each stochastic process indexed by a parameter in R¢ has an associated
process indexed by the intervals that is defined as

1

1
WD) =Y - D (=D EiW, (s +ea(t] = 5], ..., sh+ealty —sp)  (h=1,2).

e;=0 eq=0

In this proof we verify Kolmogorov—Chentsov’s criterion, which is a sufficient condition for (4)
according to Bickel and Wichura (1971, p. 1658).

In what follows we will simplify further the notation by writing /4, instead of /,(6,). In our case,
the process

JaH, (x) = = D hI(X, <x),

Vi

has associated with it the following process indexed by the intervals
1 n
H,(D)=—" [hI.(D)],
VnH,(D;) ﬁ;[ A(D))]

where I,(D;) =1(X, € D;). Then

E((vnH,(D)*(v/rH,(D2))’)

1 n n n n
= ;E{Z 303> A (DO (D)Ih L (D), (D2)]1

t=1 s=1 u=1 v=1
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Case 1: Assume that Z, and Z, ; have no common coordinates for any s # 0. Using
that 4, is a centered MDS, the nonzero terms are those such that the greater subindex ap-
pears at least twice. Moreover, notice that when a subindex appears three times, the corre-
sponding term is zero because D; and D, are disjoint sets. For the same reason, terms like
[A21.(D )1, (D)1, 1, (D)1A,1,(D5)] are also zero. Therefore,

1 n t—1 2
E((VnH,(D1))*(vVnH,(D,))*) = ;Ei Z[h?lwm(Z[M-(Dm) }
=1 s=1

1 n -1 2
+ FE{Zl[h?l,(Dm(Z[hslwl)]) }

s=1

Under our assumptions, these expectations exist. Note that both terms are analyzed similarly
since the only difference is the indexing set D;.
Now, denote the o-algebra generated by {Z,_y, Z,_,, ...} by J,_;. Then

1 n -1 2
;EiZ[hflt(Dl)](Z[h.ylx(Dz)]) }

t=1 s=1

1 n t—1 2
== ZEH L GIER X»L(DQ(Z[M(DM) }
t=1

s=1

where 0%(3,_1, X;) denotes the conditional variance of #, given J,_; and X,. This last expression
equals

2
1 n t—1
;ZEH f «72(%,_1,e>fxl:‘,1(e>de(2[h;ls(02>]> }
t=1 D1

s=1
and applying Fubini’s theorem, it is

—

2
1 n 1
; ZLI E{UZ(Stl, e)f)(,\),,] (6) <Z[hsls(D2)]> } de.

=1 s=1
Now, using Cauchy-Schwarz’s inequality, the term is bounded above by

1 n t—1 4
=2 / EI/Z[UZ(St1,€)fx,3L1(6)]2E1/2|:th1.y(Dz)i| de.
=1 YD1

s=1

Using the Burkholder’s inequality, and denoting by K some generic constant, this term is
bounded by

s=1

n t—1 2
%Z / El/z[o'z(St1,€)fx,3l1(6)]2E1/2[Zh3[y(1)2):| de
=1 YD1

== / E'[0*(R-1, @) fryn,, ()] (t = DERiL(Dy) de
D

K n
< 7 ZIM(Dl)(l - 1)#«;/2(D2) <Kui(Dy UD2)IJ«;/2(D1 UD,),
=1
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where
Ml(D):/E1/2[o'2(‘3,_1,e)fX,‘;\,fl(e)]zde and
D

ua(D) = EhI (D),

which is a Chentsov’s criterion provided that u; and u, are finite. This final condition is straight-
forward to check using Holder’s inequality and Assumptions 7 and §, as in Koul and Stute (1999).

Case 2: In case Z, and Z,_; have common coordinates, define b as the minimum s such that
Z, and Z,_; have no common coordinates for all j > s. Note that b < k + d. In this case the
process

1
ﬁ Xt:htl(Xt <x)

can be rewritten as

b—1 ([n/b+1] 1

S ﬁhsb-%—jl(Xsb-#jfx) ,

s=0 Jj=1

which are b different processes. Tightness of each of these b processes follows similarly as above,
and, since b is fixed and finite, tightness of the original process follows from the tightness of each
of its components. Q.E.D.
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